forked from jhdorsett/BforStrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtools.py
1041 lines (877 loc) · 46.8 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
from mesh2d import smooth2, tricon2
from scipy.spatial import Voronoi, Delaunay
import params
import pandas as pd
import pyproj
###############
# Coordinate transforms defined using pyproj, called via wrapper functions
local_crs = pyproj.CRS.from_proj4(f"+proj=tmerc +lat_0={params.origin[1]} +lon_0={params.origin[0]} +x_0=0 +y_0=0 +ellps=WGS84 +units=km +no_defs")
llh_to_local = pyproj.Transformer.from_crs(pyproj.CRS("EPSG:4326"), local_crs, always_xy=True)
local_to_llh = pyproj.Transformer.from_crs(local_crs, pyproj.CRS("EPSG:4326"), always_xy=True)
def llh2local(lons,lats):
return(np.array(llh_to_local.transform(lons,lats)).T)
def local2llh(xs,ys):
return(np.array(local_to_llh.transform(xs,ys)).T)
class build_G_pointforce:
"""
for a mesh object, builds body force green functions following sandwell and wessel
mesh object requirements:
nodes 2 by n numpy array (created from geodetic data file+regular grid)
tri_centroids 2 by n numpy array (computed automatically in make_tri_centroids)
from inputs:
nu
"""
def __init__(self,mesh):
# for legibility in math below...
print("")
print("Computing Body Force Green's Functions")
nu = params.nu
x_diff = mesh.tri_centroids[:, 0][:, np.newaxis] - mesh.nodes[:, 0]
y_diff = mesh.tri_centroids[:, 1][:, np.newaxis] - mesh.nodes[:, 1]
r = np.sqrt(x_diff**2 + y_diff**2)
Ue_x = (3 - nu) * np.log(r) + (1 + nu) * (y_diff**2) / r**2
Un_y = (3 - nu) * np.log(r) + (1 + nu) * (x_diff**2) / r**2
Ue_y = -(1 + nu) * x_diff * y_diff / r**2
Un_x = Ue_y
Exx_x = (3 - nu) * x_diff / r**2 - 2 * (1 + nu) * y_diff**2 * x_diff / r**4
Eyy_y = (3 - nu) * y_diff / r**2 - 2 * (1 + nu) * x_diff**2 * y_diff / r**4
Exx_y = -(1 + nu) * (-2 * x_diff**2 * y_diff / r**4 + y_diff / r**2)
Eyy_x = -(1 + nu) * (-2 * y_diff**2 * x_diff / r**4 + x_diff / r**2)
dq_dy = (3 - nu) * y_diff / r**2 + 2 * (1 + nu) * (-y_diff**3 / r**4 + y_diff / r**2)
dp_dx = (3 - nu) * x_diff / r**2 + 2 * (1 + nu) * (-x_diff**3 / r**4 + x_diff / r**2)
Exy_x = 0.5 * (Exx_y + dq_dy)
Exy_y = 0.5 * (dp_dx + Eyy_x)
self.Omega_x = 0.5 * (dq_dy - Exx_y)
self.Omega_y = 0.5 * (Eyy_x - dp_dx)
self.GVe = np.concatenate([Ue_x, Ue_y], axis=1)
self.GVn = np.concatenate([Un_x, Un_y], axis=1)
self.GExx = np.concatenate([Exx_x, Exx_y], axis=1)
self.GExy = np.concatenate([Exy_x, Exy_y], axis=1)
self.GEyy = np.concatenate([Eyy_x, Eyy_y], axis=1)
class build_G_creep:
"""
for a mesh object, discretizes given fault patches down to specified length,
builds creeping greens functions using Okada formulation (disloc3d)
mesh object requirements where :
nodes: 2 by n numpy array (created from geodetic data file+regular grid)
tri_centroids: 2 by n numpy array (computed automatically in make_tri_centroids)
pm: 7 by m numpy array (fault patch model for m faults read in)
Patch_id: 1 by m numpy array
"""
def __init__(self,mesh):
def piecewise_Gcreep(faultnums,A1,A2):
# helper function for 3 different geometric creep scenarios (fault is 1 patch, 2 patches, or 3+ patches)
# combines G1 and G2 greens functions depending on fine mesh system
# A1 = uniform slip on patch
# A2 = slip tapering from 0 - 1 linearly
cnt = 0
A = np.zeros(A1.shape)
for k in range(len(faultnums)):
# n provides the amount of patches (lines in the matrix) that are part of one continuous fault
n = np.sum(np.floor(mesh.Patch_id) == faultnums[k])
# assign slip based on configuration defined for piecewise_G above
if n == 1:
A[:, cnt] = A1[:, cnt]
# possibly can be removed and generalized but only 2 samples so I don't want to mess with it too much rn
elif n == 2:
A[:, cnt] = A1[:, cnt] - A2[:, cnt]
A[:, cnt + 1] = A2[:, cnt] + A1[:, cnt + 1]
else:
A[:, cnt] = A1[:, cnt] - A2[:, cnt]
for j in range(cnt + 1, cnt + n-1):
A[:, j] = A2[:, j - 1] + A1[:, j] - A2[:, j]
A[:, cnt+n-1] = A2[:, cnt+ n - 2] + A1[:, cnt + n-1]
cnt = cnt + n
return(A)
npatches = mesh.pm.shape[0]
faultnums = np.unique(np.floor(mesh.Patch_id))
nobs = len(mesh.ind)
xobs = np.vstack((mesh.tri_centroids[:, :2].T, np.zeros((1, mesh.tri_centroids.shape[0]))))
G1east_creep = np.zeros((nobs, npatches))
G1north_creep = np.zeros((nobs, npatches))
G1Exx_creep = np.zeros((nobs, npatches))
G1Exy_creep = np.zeros((nobs, npatches))
G1Eyy_creep = np.zeros((nobs, npatches))
G2east_creep = np.zeros((nobs, npatches))
G2north_creep = np.zeros((nobs, npatches))
G2Exx_creep = np.zeros((nobs, npatches))
G2Exy_creep = np.zeros((nobs, npatches))
G2Eyy_creep = np.zeros((nobs, npatches))
print("Computing Creepings Green's functions calculation")
past = 0
for k in range(npatches):
# Divide into small segments
nhe = int(np.ceil(mesh.pm[k, 0] / params.refine))
pf = patchfault(mesh.pm[k, :], nhe, 1)
# run disoc3d on each fine grained fault patch and increment over each coarse piece
# k is looping over large patches, sum up displacement for each large patch in small patch (J)
# G2 are additional GFs used below e.g. piecewise_G that apply a taper to slip on each patch
for j in range(nhe):
taper = j / nhe
# create disloc3d fault plane with 1 unit of right lateral along strike slip
m1 = np.hstack([pf[j, :], -1, 0, 0])
# dont store stress value since we don't use it
U1, D = disloc3D_wrapper(m1, xobs, return_stress=False,return_2d=True)
# update G1 matrices
G1east_creep[:, k] += U1[0, :]
G1north_creep[:, k] += U1[1, :]
# commented out lines for indexing if return_2d=False or unspecified
#G1Exy_creep[:, k] += 0.5 * (D[1, :] + D[3, :])
#G1Eyy_creep[:, k] += D[4, :]
G1Exx_creep[:, k] += D[0, :]
G1Exy_creep[:, k] += 0.5 * (D[1, :] + D[2, :])
G1Eyy_creep[:, k] += D[3, :]
# update G2 matrices
G2east_creep[:, k] += taper * U1[0, :]
G2north_creep[:, k] += taper * U1[1, :]
# commented out lines for indexing if return_2d=False or unspecified
#G2Exy_creep[:, k] += taper * 0.5 * (D[1, :] + D[3, :])
#G2Eyy_creep[:, k] += taper * D[4, :]
G2Exx_creep[:, k] += taper * D[0, :]
G2Exy_creep[:, k] += taper * 0.5 * (D[1, :] + D[2, :])
G2Eyy_creep[:, k] += taper * D[3, :]
del U1, D
pct_done = round(k/npatches*100)
if round(pct_done,-1) > past:
print(" ",round(pct_done,-1),"% completed")
past = round(pct_done,-1)
self.Geast=piecewise_Gcreep(faultnums,G1east_creep,G2east_creep)
self.Gnorth=piecewise_Gcreep(faultnums,G1north_creep,G2north_creep)
self.GExx=piecewise_Gcreep(faultnums,G1Exx_creep,G2Exx_creep)
self.GExy=piecewise_Gcreep(faultnums,G1Exy_creep,G2Exy_creep)
self.GEyy=piecewise_Gcreep(faultnums,G1Eyy_creep,G2Eyy_creep)
def build_mesh(mesh):
def make_patches_creep(mesh):
def discretize_patches(mesh):
SegEnds = mesh.SegEnds
creeping_faults = mesh.creeping_faults
# Initialize variables
PatchEnds = np.empty((0, 4), dtype=float)
PatchCreepRates = np.empty((0,1), dtype=float)
Patch_id = np.empty((0,1), dtype=int)
# discretize
for k in range(SegEnds.shape[0]):
patchlength = np.sqrt((SegEnds[k, 2] - SegEnds[k, 0]) ** 2 + (SegEnds[k, 3] - SegEnds[k, 1]) ** 2)
numpatch = int(np.ceil(patchlength / params.patchL))
xs = np.linspace(SegEnds[k, 0], SegEnds[k, 2], numpatch + 1)
ys = np.linspace(SegEnds[k, 1], SegEnds[k, 3], numpatch + 1)
PatchEnds = np.vstack((PatchEnds, np.column_stack((xs[:-1], ys[:-1], xs[1:], ys[1:]))))
PatchCreepRates = np.vstack((PatchCreepRates, np.full((numpatch, 1), creeping_faults[k, 5])))
Patch_id = np.vstack((Patch_id, np.full((numpatch,1), creeping_faults[k, 5])))
mesh.PatchCreepRates = PatchCreepRates
mesh.PatchEnds = PatchEnds
mesh.Patch_id = Patch_id
creeping_faults = mesh.creeping_faults
#Convert lon,lat to x,y
x1 = llh2local(creeping_faults[:,1],creeping_faults[:,2])
x2 = llh2local(creeping_faults[:,3],creeping_faults[:,4])
# crop to bounding box, since each segment contains 2 points
_, keeppatch1 = mesh.bounds.crop(x1,True)
_, keeppatch2 = mesh.bounds.crop(x2,True)
keeppatch = keeppatch1 | keeppatch2
SegEnds = np.column_stack((x1,x2))
mesh.SegEnds = SegEnds[keeppatch]
mesh.creeping_faults = creeping_faults[keeppatch]
# discretizes each creeping fault segment down to the length specified in inputs file
# creates PatchEnds, PatchCreepRates, and Patch_id
discretize_patches(mesh)
segends1 = mesh.PatchEnds[:, :2]
segends2 = mesh.PatchEnds[:, 2:]
num_rows = segends1.shape[0] + segends2.shape[0]
node_creep = np.zeros((num_rows, 2))
node_creep[::2] = segends1
node_creep[1::2] = segends2
# Create 'edge_creep' using NumPy
edge_creep = np.column_stack((np.arange(0, num_rows, 2), np.arange(1, num_rows, 2)))
# Convert the NumPy array to a pandas DataFrame because the numpy unique function automatically sorts
# we need to preserve the order
df = pd.DataFrame(np.round(node_creep, 4), columns=['x', 'y'])
ic, unique_vals = pd.factorize(df.apply(tuple, axis=1))
mesh.node_creep = np.array(unique_vals.tolist())
new_edge = edge_creep.copy()
for k in range(len(ic)):
new_edge[edge_creep == (k)] = ic[k]
mesh.edge_creep = new_edge
def refine(mesh):
# Compute the Voronoi diagram
vor = Voronoi(mesh.xy_gps)
# Extract the vertices of the Voronoi diagram
vx = vor.vertices[:, 0]
vy = vor.vertices[:, 1]
_, unique_indices = np.unique(vx, return_index=True)
vx = vx[unique_indices]
vy = vy[unique_indices]
nodes_refine = np.column_stack((vx, vy))
# crop it using our box
nodes_refine = mesh.bounds.crop(nodes_refine)
if params.refine_mesh == 4:
mesh.nodes = np.vstack((mesh.nodes, nodes_refine))
elif params.refine_mesh == 3:
mesh.nodes = np.vstack((mesh.nodes, nodes_refine[::2]))
elif params.refine_mesh == 2:
mesh.nodes = np.vstack((mesh.nodes, nodes_refine[::3]))
elif params.refine_mesh == 1:
mesh.nodes = np.vstack((mesh.nodes, nodes_refine[::5]))
# using bounding box, create meshgrid
mesh.nodes=mesh.bounds.make_grid()
# crop geodetic data down to bounding box extent
mesh.xy_gps, ind_gps = mesh.bounds.crop(mesh.xy_gps,True)
mesh.vel.Ve=mesh.vel.Ve[ind_gps]
mesh.vel.Vn=mesh.vel.Vn[ind_gps]
mesh.vel.Sige=mesh.vel.Sige[ind_gps]
mesh.vel.Sign=mesh.vel.Sign[ind_gps]
# combine bounding box and geodetic observation points for initial nodes
mesh.nodes = np.vstack((mesh.nodes, mesh.xy_gps))
# if desired, refine mesh by computing voronoi diagram
# and upscaling mesh with these points
if bool(params.refine_mesh) == True: refine(mesh)
# generate initial guess for delaunay triangles. maybe switch out with tridel2?
triDel=Delaunay(mesh.nodes, qhull_options = 'Qt Qbb Qc') #qhull settings consistent with matlab
mesh.tri=triDel.simplices
# save fixed edges of mesh
edge = tricon2(mesh.tri)[0]
edge_bnd = edge[:,3] < 1
mesh.edges = edge[edge_bnd,0:2]
# if we have a set of creeping fault traces that we want to incorporate into the mesh:
if mesh.creeping:
make_patches_creep(mesh)
# update nodes and list of fixed edges
mesh.edges = np.vstack((mesh.edges, mesh.edge_creep+mesh.nodes.shape[0]))
mesh.nodes = np.vstack((mesh.nodes, mesh.node_creep))
else:
mesh.SegEnds = []
mesh.PatchEnds = []
mesh.PatchCreepRates = []
mesh.Patch_id = []
mesh.edge_creep = []
mesh.node_creep = []
# now that we have generated an initial nodeset, fixed edge set, and triangulation,
# smooth it all
mesh = smooth2(mesh)
mesh.elts=mesh.nodes[mesh.tri]
def patchfault(m,i,j):
dip = m[3] * np.pi / 180
strike = -m[4] * np.pi / 180
sin_dip = np.sin(dip)
cos_dip = np.cos(dip)
iw = m[0] / i
jw = m[1] / j
is_ = np.arange(1, i + 1)
js = np.arange(1, j + 1)
n = i * j
#c1 = -m[1] * cos_dip
#c2 = 0.5 * (m[0] + iw)
#c3 = m[2] - j * jw * sin_dip
# Calculate midpoints, depths of each patch
p = np.outer(cos_dip * (jw * js - m[1]), np.ones(i))
q = np.outer(np.ones(j), (iw * is_) - 0.5 * (m[0] + iw))
r = np.outer(m[2] - jw * sin_dip * (j - js), np.ones(i))
mp = np.column_stack((p.flatten(), q.flatten(), r.flatten()))
# Adjust midpoints for strike
R = np.array([[np.cos(strike), -np.sin(strike), 0],
[np.sin(strike), np.cos(strike), 0],
[0, 0, 1]])
mp = np.dot(mp, R.T)
# Adjust midpoints for offset from origin
mp[:, 0] += m[5]
mp[:, 1] += m[6]
# Form patch-models
pm = np.zeros((n, 7))
pm[:, 0] = np.ones(n) * iw
pm[:, 1] = np.ones(n) * jw
pm[:, 2] = mp[:, 2]
pm[:, 3:5] = np.ones(n).reshape(-1, 1) * m[3:5]
pm[:, 5:7] = mp[:, 0:2]
return(pm)
def make_triangular_patch_stuff(tri, p):
strikevec_faces = []
strike_faces = []
dipvec_faces = []
dip_faces = []
centroids_faces = []
normal_faces = []
area_faces = []
for j in range(tri.shape[0]):
temp1 = [p]
temp2 = [tri[j, :]]
vec1 = p[temp2[0][0], :] - p[temp2[0][1], :]
vec2 = p[temp2[0][2], :] - p[temp2[0][1], :]
cross_face = np.cross(vec1, vec2)
veclength = np.linalg.norm(cross_face)
normal = cross_face / veclength
strikevec = np.array([1, -normal[0] / normal[1], 0])
strikevec = strikevec / np.linalg.norm(strikevec)
dipvec = np.cross(normal, strikevec)
if dipvec[2] > 0:
dipvec = -dipvec
if normal[2] < 0:
normal = -normal
strikevec = np.cross(normal, dipvec)
normal_faces.append(normal)
strikevec_faces.append(strikevec)
dipvec_faces.append(dipvec)
strike_faces.append(90 - np.arctan2(strikevec[1], strikevec[0]) * 180 / np.pi)
dip_faces.append(np.abs(np.arctan(dipvec[2] / np.sqrt(dipvec[0] ** 2 + dipvec[1] ** 2)) * 180 / np.pi))
centroids_faces.append([np.mean(temp1[0][temp2[0], 0]), np.mean(temp1[0][temp2[0], 1]), np.mean(temp1[0][temp2[0], 2])])
area_faces.append(0.5 * np.abs(np.linalg.norm(np.cross(vec1, vec2))))
patch_stuff = {
'strikevec_faces': strikevec_faces,
'strike_faces': strike_faces,
'dipvec_faces': dipvec_faces,
'dip_faces': dip_faces,
'centroids_faces': centroids_faces,
'normal_faces': normal_faces,
'area_faces': area_faces
}
return patch_stuff
def checkInputs(disloc,coordinates):
if disloc.c < disloc.W * np.sin(disloc.delta) and np.array_equal(coordinates[2, :], -np.abs(coordinates[2, :])):
print('warning: physically impossible')
return(False)
elif disloc.c >= disloc.W * np.sin(disloc.delta) and np.array_equal(coordinates[2, :], -np.abs(coordinates[2, :])):
return(True)
else:
print('warning: All z should be negative.')
return(False)
def disloc3D(disloc,coordinates):
X, Y, z = coordinates[:3, :]
x,y=disloc.coordTrans(X,Y) #rorate into local system
L = disloc.L
W = disloc.W
c = disloc.c
delta = disloc.delta #dip in rad
angle_Str = disloc.strike # clockwise is positive
[Xc, Yc] = disloc.centroids #rupture centroids
[slip_str, slip_dip, tensile] = disloc.slip
nu=disloc.nu
Gshear=disloc.Gshear
youngs, alpha = disloc.elastic() # method in elastic class to compute these from nu and Gshear defined in class
# integrating
d = c - z
p = y * np.cos(delta) + d * np.sin(delta)
xi = np.array([x, x, x - L, x - L])
eta = np.array([p, p - W, p, p - W])
q = np.ones((4,x.size)) * y * np.sin(delta) - np.ones((4,x.size)) * d * np.cos(delta)
R = np.sqrt(xi**2 + eta**2 + q**2)
y_ = eta * np.cos(delta) + q * np.sin(delta)
d_ = eta * np.sin(delta) - q * np.cos(delta)
c_ = d_ + np.ones((4,x.size)) * z
# For displacement
X11 = 1 / (R * (R + xi))
X32 = (2 * R + xi) / (R**3 * (R + xi)**2)
X53 = (8 * R**2 + 9 * R * xi + 3 * xi**2) / (R**5 * (R + xi)**3)
Y11 = 1 / (R * (R + eta))
Y32 = (2 * R + eta) / (R**3 * (R + eta)**2)
Y53 = (8 * R**2 + 9 * R * eta + 3 * eta**2) / (R**5 * (R + eta)**3)
h = q * np.cos(delta) - np.ones((4,x.size)) * z
Z32 = np.sin(delta) / R**3 - h * Y32
Z53 = 3 * np.sin(delta) / R**5 - h * Y53
Y0 = Y11 - xi**2 * Y32
Z0 = Z32 - xi**2 * Z53
# Selecting a right root for theta
qsign = np.sign(q)
theta = np.arctan2(xi * eta, np.abs(q) * R)
theta = qsign * theta
X = np.sqrt(xi**2 + q**2)
if np.abs(np.cos(delta)) < 0.000001:
I3 = 1/2 * (eta / (R + d_) + y_ * q / ((R + d_)**2) - np.log(R + eta))
I4 = 1/2 * (xi * y_ / ((R + d_)**2))
else:
I3 = 1/np.cos(delta) * y_ / (R + d_) - 1 / np.cos(delta)**2 * (
np.log(R + eta) - np.sin(delta) * np.log(R + d_))
I4 = np.sin(delta) / np.cos(delta) * xi / (R + d_) + 2 / (np.cos(delta)**2) * np.arctan2(
eta * (X + q * np.cos(delta)) + X * (R + X) * np.sin(delta),
xi * (R + X) * np.cos(delta))
I1 = -(xi / (R + d_)) * np.cos(delta) - I4 * np.sin(delta)
I2 = np.log(R + d_) + I3 * np.sin(delta)
D11 = 1 / (R * (R + d_))
if np.abs(np.cos(delta)) < 0.000001:
K1 = (xi * q) / (R + d_) * D11
K3 = np.sin(delta) / (R + d_) * (xi**2 * D11 - 1)
else:
K1 = xi / np.cos(delta) * (D11 - Y11 * np.sin(delta))
K3 = 1 / np.cos(delta) * (q * Y11 - y_ * D11)
K2 = 1 / R + K3 * np.sin(delta)
K4 = xi * Y11 * np.cos(delta) - K1 * np.sin(delta)
J5 = -(d_ + y_**2 / (R + d_)) * D11
J2 = xi * y_ / (R + d_) * D11
if np.abs(np.cos(delta)) < 0.000001:
J6 = -y_ / (R + d_)**2 * (xi**2 * D11 - 1/2)
J3 = -xi / (R + d_)**2 * (q**2 * D11 - 1/2)
else:
J6 = 1 / np.cos(delta) * (K3 - J5 * np.sin(delta))
J3 = 1 / np.cos(delta) * (K1 - J2 * np.sin(delta))
J1 = J5 * np.cos(delta) - J6 * np.sin(delta)
J4 = -xi * Y11 - J2 * np.cos(delta) + J3 * np.sin(delta)
# ki
E = np.sin(delta) / R - y_ * q / R**3
F = d_ / R**3 + xi**2 * Y32 * np.sin(delta)
G = 2 * X11 * np.sin(delta) - y_ * q * X32
H = d_ * q * X32 + xi * q * Y32 * np.sin(delta)
P = np.cos(delta) / R**3 + q * Y32 * np.sin(delta)
Q = 3 * c_ * d_ / R**5 - (np.ones((4, 1)) * z * Y32 + Z32 + Z0) * np.sin(delta)
# li
E_ = np.cos(delta) / R + d_ * q / R**3
F_ = y_ / R**3 + xi**2 * Y32 * np.cos(delta)
G_ = 2 * X11 * np.cos(delta) + d_ * q * X32
H_ = y_ * q * X32 + xi * q * Y32 * np.cos(delta)
P_ = np.sin(delta) / R**3 - q * Y32 * np.cos(delta)
Q_ = (3 * c_ * y_) / R**5 + q * Y32 - (np.ones((4, 1)) * z * Y32 + Z32 + Z0) * np.cos(delta)
# strike slip
if slip_str != 0:
# displacement
#uA
Su1A = theta/2 + alpha / 2 * xi * q * Y11
Su2A = alpha / 2 * q / R
Su3A = (1 - alpha) / 2 * np.log(R + eta) - alpha / 2 * q**2 * Y11
#uB
Su1B = -xi * q * Y11 - theta - (1 - alpha) / alpha * I1 * np.sin(delta)
Su2B = -q / R + (1 - alpha) / alpha * y_ / (R + d_) * np.sin(delta)
Su3B = q**2 * Y11 - (1 - alpha) / alpha * I2 * np.sin(delta)
#uC
Su1C = (1 - alpha) * xi * Y11 * np.cos(delta) - alpha * xi * q * Z32
Su2C = (1 - alpha) * (np.cos(delta) / R + 2 * q * Y11 * np.sin(delta)) - alpha * c_ * q / R**3
Su3C = (1 - alpha) * q * Y11 * np.cos(delta) - alpha * (c_ * eta / R**3 - np.ones((4, 1)) * z * Y11 + xi**2 * Z32)
# displacement gradient
#jA
Sj1A = -(1 - alpha) / 2 * q * Y11 - alpha / 2 * (xi**2) * q * Y32
Sj2A = - alpha / 2 * xi * q / R**3
Sj3A = (1 - alpha) / 2 * xi * Y11 + alpha / 2 * xi * q**2 * Y32
#jB
Sj1B = xi**2 * q * Y32 - (1 - alpha) / alpha * J1 * np.sin(delta)
Sj2B = xi * q / R**3 - (1 - alpha) / alpha * J2 * np.sin(delta)
Sj3B = -xi * q**2 * Y32 - (1 - alpha) / alpha * J3 * np.sin(delta)
#jC
Sj1C = (1 - alpha) * Y0 * np.cos(delta) - alpha * q * Z0
Sj2C = -(1 - alpha) * xi * (np.cos(delta) / R**3 + 2 * q * Y32 * np.sin(delta)) + alpha * (
3 * c_ * xi * q) / R**5
Sj3C = -(1 - alpha) * xi * q * Y32 * np.cos(delta) + alpha * xi * (
(3 * c_ * eta) / R**5 - np.ones((4, 1)) * z * Y32 - Z32 - Z0)
#kA
Sk1A = (1 - alpha) / 2 * xi * Y11 * np.sin(delta) + d_ / 2 * X11 + alpha / 2 * xi * F
Sk2A = alpha / 2 * E
Sk3A = (1 - alpha) / 2 * (
np.cos(delta) / R + q * Y11 * np.sin(delta)) - alpha / 2 * q * F
#kB
Sk1B = -xi * F - d_ * X11 + (1 - alpha) / alpha * (xi * Y11 + J4) * np.sin(delta)
Sk2B = -E + (1 - alpha) / alpha * (1 / R + J5) * np.sin(delta)
Sk3B = q * F - (1 - alpha) / alpha * (q * Y11 - J6) * np.sin(delta)
#kC
Sk1C = -(1 - alpha) * xi * P * np.cos(delta) - alpha * xi * Q
Sk2C = 2 * (1 - alpha) * (d_ / R**3 - Y0 * np.sin(delta)) * np.sin(delta) - y_ / R**3 * np.cos(
delta) - alpha * ((c_ + d_) / R**3 * np.sin(delta) - eta / R**3 - 3 * c_ * y_ * q / R**5)
Sk3C = -(1 - alpha) * q / R**3 + (y_ / R**3 - Y0 * np.cos(delta)) * np.sin(
delta) + alpha * ((c_ + d_) / R**3 * np.cos(delta) + 3 * c_ * d_ * q / R**5 - (
Y0 * np.cos(delta) + q * Z0) * np.sin(delta))
#lA
Sl1A = (1 - alpha) / 2 * xi * Y11 * np.cos(delta) + y_ / 2 * X11 + alpha / 2 * xi * F_
Sl2A = alpha / 2 * E_
Sl3A = -(1 - alpha) / 2 * (
np.sin(delta) / R - q * Y11 * np.cos(delta)) - alpha / 2 * q * F_
#lB
Sl1B = -xi * F_ - y_ * X11 + (1 - alpha) / alpha * K1 * np.sin(delta)
Sl2B = -E_ + (1 - alpha) / alpha * y_ * D11 * np.sin(delta)
Sl3B = q * F_ + (1 - alpha) / alpha * K2 * np.sin(delta)
#lC
Sl1C = (1 - alpha) * xi * P_ * np.cos(delta) - alpha * xi * Q_
Sl2C = 2 * (1 - alpha) * (y_ / R**3 - Y0 * np.cos(delta)) * np.sin(delta) + d_ / R**3 * np.cos(
delta) - alpha * ((c_ + d_) / R**3 * np.cos(delta) + 3 * c_ * d_ * q / R**5)
Sl3C = (y_ / R**3 - Y0 * np.cos(delta)) * np.cos(delta) - alpha * (
(c_ + d_) / R**3 * np.sin(delta) - 3 * c_ * y_ * q / R**5 - Y0 * np.sin(
delta)**2 + q * Z0 * np.cos(delta))
# displacement
# u1A_
Su1A_ = theta / 2 + alpha / 2 * xi * q * Y11
Su2A_ = alpha / 2 * q / R
Su3A_ = (1 - alpha) / 2 * np.log(R + eta) - alpha / 2 * q**2 * Y11
# displacement gradient
# jA_
Sj1A_ = -(1 - alpha) / 2 * q * Y11 - alpha / 2 * xi**2 * q * Y32
Sj2A_ = - alpha / 2 * xi * q / R**3
Sj3A_ = (1 - alpha) / 2 * xi * Y11 + alpha / 2 * xi * q**2 * Y32
# kA_
Sk1A_ = (1 - alpha) / 2 * xi * Y11 * np.sin(delta) + d_ / 2 * X11 + alpha / 2 * xi * F
Sk2A_ = alpha / 2 * E
Sk3A_ = (1 - alpha) / 2 * (np.cos(delta) / R + q * Y11 * np.sin(delta)) - alpha / 2 * q * F
# lA_
Sl1A_ = (1 - alpha) / 2 * xi * Y11 * np.cos(delta) + y_ / 2 * X11 + alpha / 2 * xi * F_
Sl2A_ = alpha / 2 * E_
Sl3A_ = - (1 - alpha) / 2 * (np.sin(delta) / R - q * Y11 * np.cos(delta)) - alpha / 2 * q * F_
# displacement
Sux = 1 / (2 * np.pi) * slip_str * (Su1A - Su1A_ + Su1B + np.ones((4, 1)) * z * Su1C)
Suy = 1 / (2 * np.pi) * slip_str * (
(Su2A - Su2A_ + Su2B + np.ones((4, 1)) * z * Su2C) * np.cos(delta) -
(Su3A - Su3A_ + Su3B + np.ones((4, 1)) * z * Su3C) * np.sin(delta))
Suz = 1 / (2 * np.pi) * slip_str * (
(Su2A - Su2A_ + Su2B - np.ones((4, 1)) * z * Su2C) * np.sin(delta) +
(Su3A - Su3A_ + Su3B - np.ones((4, 1)) * z * Su3C) * np.cos(delta))
# displacement gradients
Sduxdx = 1 / (2 * np.pi) * slip_str * (Sj1A - Sj1A_ + Sj1B + np.ones((4, 1)) * z * Sj1C)
Sduydx = 1 / (2 * np.pi) * slip_str * (
(Sj2A - Sj2A_ + Sj2B + np.ones((4, 1)) * z * Sj2C) * np.cos(delta) -
(Sj3A - Sj3A_ + Sj3B + np.ones((4, 1)) * z * Sj3C) * np.sin(delta))
Sduzdx = 1 / (2 * np.pi) * slip_str * (
(Sj2A - Sj2A_ + Sj2B - np.ones((4, 1)) * z * Sj2C) * np.sin(delta) +
(Sj3A - Sj3A_ + Sj3B - np.ones((4, 1)) * z * Sj3C) * np.cos(delta))
Sduxdy = 1 / (2 * np.pi) * slip_str * (Sk1A - Sk1A_ + Sk1B + np.ones((4, 1)) * z * Sk1C)
Sduydy = 1 / (2 * np.pi) * slip_str * (
(Sk2A - Sk2A_ + Sk2B + np.ones((4, 1)) * z * Sk2C) * np.cos(delta) -
(Sk3A - Sk3A_ + Sk3B + np.ones((4, 1)) * z * Sk3C) * np.sin(delta))
Sduzdy = 1 / (2 * np.pi) * slip_str * (
(Sk2A - Sk2A_ + Sk2B - np.ones((4, 1)) * z * Sk2C) * np.sin(delta) +
(Sk3A - Sk3A_ + Sk3B - np.ones((4, 1)) * z * Sk3C) * np.cos(delta))
Sduxdz = 1 / (2 * np.pi) * slip_str * (Sl1A + Sl1A_ + Sl1B + Su1C + np.ones((4, 1)) * z * Sl1C)
Sduydz = 1 / (2 * np.pi) * slip_str * (
(Sl2A + Sl2A_ + Sl2B + Su2C + np.ones((4, 1)) * z * Sl2C) * np.cos(delta) -
(Sl3A + Sl3A_ + Sl3B + Su3C + np.ones((4, 1)) * z * Sl3C) * np.sin(delta))
Sduzdz = 1 / (2 * np.pi) * slip_str * (
(Sl2A + Sl2A_ + Sl2B - Su2C - np.ones((4, 1)) * z * Sl2C) * np.sin(delta) +
(Sl3A + Sl3A_ + Sl3B - Su3C - np.ones((4, 1)) * z * Sl3C) * np.cos(delta))
else:
Sux, Suy, Suz = 0, 0, 0
Sduxdx, Sduydx, Sduzdx = 0, 0, 0
Sduxdy, Sduydy, Sduzdy = 0, 0, 0
Sduxdz, Sduydz, Sduzdz = 0, 0, 0
# dip-slip
if slip_dip != 0:
# displacement
#uA
Du1A = alpha / 2 * q / R
Du2A = theta / 2 + alpha / 2 * eta * q * X11
Du3A = (1 - alpha) / 2 * np.log(R + xi) - alpha / 2 * q**2 * X11
#uB
Du1B = -q / R + (1 - alpha) / alpha * I3 * np.sin(delta) * np.cos(delta)
Du2B = -eta * q * X11 - theta - (1 - alpha) / alpha * xi / (R + d_) * np.sin(delta) * np.cos(delta)
Du3B = q**2 * X11 + (1 - alpha) / alpha * I4 * np.sin(delta) * np.cos(delta)
#uC
Du1C = (1 - alpha) * np.cos(delta) / R - q * Y11 * np.sin(delta) - alpha * c_ * q / R**3
Du2C = (1 - alpha) * y_ * X11 - alpha * c_ * eta * q * X32
Du3C = -d_ * X11 - xi * Y11 * np.sin(delta) - alpha * c_ * (X11 - q**2 * X32)
# displacement gradient
#jA
Dj1A = -alpha / 2 * xi * q / R**3
Dj2A = -q / 2 * Y11 - alpha / 2 * eta * q / R**3
Dj3A = (1 - alpha) / 2 * 1 / R + alpha / 2 * q**2 / R**3
#jB
Dj1B = xi * q / R**3 + (1 - alpha) / alpha * J4 * np.sin(delta) * np.cos(delta)
Dj2B = eta * q / R**3 + q * Y11 + (1 - alpha) / alpha * J5 * np.sin(delta) * np.cos(delta)
Dj3B = -q**2 / R**3 + (1 - alpha) / alpha * J6 * np.sin(delta) * np.cos(delta)
#jC
Dj1C = -(1 - alpha) * xi / R**3 * np.cos(delta) + xi * q * Y32 * np.sin(delta) + alpha * (
3 * c_ * xi * q / R**5)
Dj2C = -(1 - alpha) * y_ / R**3 + alpha * 3 * c_ * eta * q / R**5
Dj3C = d_ / R**3 - Y0 * np.sin(delta) + alpha * c_ / R**3 * (1 - 3 * q**2 / R**2)
#kA
Dk1A = alpha / 2 * E
Dk2A = (1 - alpha) / 2 * d_ * X11 + xi / 2 * Y11 * np.sin(delta) + alpha / 2 * eta * G
Dk3A = (1 - alpha) / 2 * y_ * X11 - alpha / 2 * q * G
#kB
Dk1B = -E + (1 - alpha) / alpha * J1 * np.sin(delta) * np.cos(delta)
Dk2B = -eta * G - xi * Y11 * np.sin(delta) + (1 - alpha) / alpha * J2 * np.sin(delta) * np.cos(delta)
Dk3B = q * G + (1 - alpha) / alpha * J3 * np.sin(delta) * np.cos(delta)
#kC
Dk1C = -(1 - alpha) * eta / R**3 + Y0 * np.sin(delta)**2 - alpha * (
(c_ + d_) / R**3 * np.sin(delta) - 3 * c_ * y_ * q / R**5)
Dk2C = (1 - alpha) * (X11 - y_**2 * X32) - alpha * c_ * (
(d_ + 2 * q * np.cos(delta)) * X32 - y_ * eta * q * X53)
Dk3C = xi * P * np.sin(delta) + y_ * d_ * X32 + alpha * c_ * (
(y_ + 2 * q * np.sin(delta)) * X32 - y_ * q**2 * X53)
#lA
Dl1A = alpha / 2 * E_
Dl2A = (1 - alpha) / 2 * y_ * X11 + xi / 2 * Y11 * np.cos(delta) + alpha / 2 * eta * G_
Dl3A = -(1 - alpha) / 2 * d_ * X11 - alpha / 2 * q * G_
#lB
Dl1B = -E_ - (1 - alpha) / alpha * K3 * np.sin(delta) * np.cos(delta)
Dl2B = -eta * G_ - xi * Y11 * np.cos(delta) - (1 - alpha) / alpha * xi * D11 * np.sin(delta) * np.cos(delta)
Dl3B = q * G_ - (1 - alpha) / alpha * K4 * np.sin(delta) * np.cos(delta)
#lB
Dl1C = -q / R**3 + Y0 * np.sin(delta) * np.cos(delta) - alpha * (
(c_ + d_) / R**3 * np.cos(delta) + 3 * c_ * d_ * q / R**5)
Dl2C = (1 - alpha) * y_ * d_ * X32 - alpha * c_ * (
(y_ - 2 * q * np.sin(delta)) * X32 + d_ * eta * q * X53)
Dl3C = -xi * P_ * np.sin(delta) + X11 - d_**2 * X32 - alpha * c_ * (
(d_ - 2 * q * np.cos(delta)) * X32 - d_ * q**2 * X53)
# displacement
# u1A_
Du1A_ = alpha / 2 * q / R
Du2A_ = theta / 2 + alpha / 2 * eta * q * X11
Du3A_ = (1 - alpha) / 2 * np.log(R + xi) - alpha / 2 * q**2 * X11
# displacement gradient
# jA_
Dj1A_ = - alpha / 2 * xi * q / R**3
Dj2A_ = - q / 2 * Y11 - alpha / 2 * eta * q / R**3
Dj3A_ = (1 - alpha) / 2 * 1 / R + alpha / 2 * q**2 / R**3
# kA_
Dk1A_ = alpha / 2 * E
Dk2A_ = (1 - alpha) / 2 * d_ * X11 + xi / 2 * Y11 * np.sin(delta) + alpha / 2 * eta * G
Dk3A_ = (1 - alpha) / 2 * y_ * X11 - alpha / 2 * q * G
# lA_
Dl1A_ = alpha / 2 * E_
Dl2A_ = (1 - alpha) / 2 * y_ * X11 + xi / 2 * Y11 * np.cos(delta) + alpha / 2 * eta * G_
Dl3A_ = - (1 - alpha) / 2 * d_ * X11 - alpha / 2 * q * G_
# displacement
Dux = 1 / (2 * np.pi) * slip_dip * (Du1A - Du1A_ + Du1B + np.ones((4, 1)) * z * Du1C)
Duy = 1 / (2 * np.pi) * slip_dip * (
(Du2A - Du2A_ + Du2B + np.ones((4, 1)) * z * Du2C) * np.cos(delta) -
(Du3A - Du3A_ + Du3B + np.ones((4, 1)) * z * Du3C) * np.sin(delta))
Duz = 1 / (2 * np.pi) * slip_dip * (
(Du2A - Du2A_ + Du2B - np.ones((4, 1)) * z * Du2C) * np.sin(delta) +
(Du3A - Du3A_ + Du3B - np.ones((4, 1)) * z * Du3C) * np.cos(delta))
# displacement gradients
Dduxdx = 1 / (2 * np.pi) * slip_dip * (Dj1A - Dj1A_ + Dj1B + np.ones((4, 1)) * z * Dj1C)
Dduydx = 1 / (2 * np.pi) * slip_dip * (
(Dj2A - Dj2A_ + Dj2B + np.ones((4, 1)) * z * Dj2C) * np.cos(delta) -
(Dj3A - Dj3A_ + Dj3B + np.ones((4, 1)) * z * Dj3C) * np.sin(delta))
Dduzdx = 1 / (2 * np.pi) * slip_dip * (
(Dj2A - Dj2A_ + Dj2B - np.ones((4, 1)) * z * Dj2C) * np.sin(delta) +
(Dj3A - Dj3A_ + Dj3B - np.ones((4, 1)) * z * Dj3C) * np.cos(delta))
Dduxdy = 1 / (2 * np.pi) * slip_dip * (Dk1A - Dk1A_ + Dk1B + np.ones((4, 1)) * z * Dk1C)
Dduydy = 1 / (2 * np.pi) * slip_dip * (
(Dk2A - Dk2A_ + Dk2B + np.ones((4, 1)) * z * Dk2C) * np.cos(delta) -
(Dk3A - Dk3A_ + Dk3B + np.ones((4, 1)) * z * Dk3C) * np.sin(delta))
Dduzdy = 1 / (2 * np.pi) * slip_dip * (
(Dk2A - Dk2A_ + Dk2B - np.ones((4, 1)) * z * Dk2C) * np.sin(delta) +
(Dk3A - Dk3A_ + Dk3B - np.ones((4, 1)) * z * Dk3C) * np.cos(delta))
Dduxdz = 1 / (2 * np.pi) * slip_dip * (Dl1A + Dl1A_ + Dl1B + Du1C + np.ones((4, 1)) * z * Dl1C)
Dduydz = 1 / (2 * np.pi) * slip_dip * (
(Dl2A + Dl2A_ + Dl2B + Du2C + np.ones((4, 1)) * z * Dl2C) * np.cos(delta) -
(Dl3A + Dl3A_ + Dl3B + Du3C + np.ones((4, 1)) * z * Dl3C) * np.sin(delta))
Dduzdz = 1 / (2 * np.pi) * slip_dip * (
(Dl2A + Dl2A_ + Dl2B - Du2C - np.ones((4, 1)) * z * Dl2C) * np.sin(delta) +
(Dl3A + Dl3A_ + Dl3B - Du3C - np.ones((4, 1)) * z * Dl3C) * np.cos(delta))
else:
Dux, Duy, Duz = 0, 0, 0
Dduxdx, Dduydx, Dduzdx = 0, 0, 0
Dduxdy, Dduydy, Dduzdy = 0, 0, 0
Dduxdz, Dduydz, Dduzdz = 0, 0, 0
if tensile != 0:
# displacement
# uA
Tu1A = -(1 - alpha) / 2 * np.log(R + eta) - alpha / 2 * q**2 * Y11
Tu2A = -(1 - alpha) / 2 * np.log(R + xi) - alpha / 2 * q**2 * X11
Tu3A = theta / 2 - alpha / 2 * q * (eta * X11 + xi * Y11)
# uB
Tu1B = q**2 * Y11 - (1 - alpha) / alpha * I3 * np.sin(delta)**2
Tu2B = q**2 * X11 + (1 - alpha) / alpha * xi / (R + d_) * np.sin(delta)**2
Tu3B = q * (eta * X11 + xi * Y11) - theta - (1 - alpha) / alpha * I4 * np.sin(delta)**2
# uC
Tu1C = -(1 - alpha) * (np.sin(delta) / R + q * Y11 * np.cos(delta)) - alpha * (
np.ones((4, 1)) * z * Y11 - q**2 * Z32)
Tu2C = (1 - alpha) * 2 * xi * Y11 * np.sin(delta) + d_ * X11 - alpha * c_ * (
X11 - q**2 * X32)
Tu3C = (1 - alpha) * (y_ * X11 + xi * Y11 * np.cos(delta)) + alpha * q * (
c_ * eta * X32 + xi * Z32)
# displacement gradient
# jA
Tj1A = - (1 - alpha) / 2 * xi * Y11 + alpha / 2 * xi * q**2 * Y32
Tj2A = - (1 - alpha) / 2 * 1 / R + alpha / 2 * q**2 / R**3
Tj3A = - (1 - alpha) / 2 * q * Y11 - alpha / 2 * q**3 * Y32
# jB
Tj1B = -xi * q**2 * Y32 - (1 - alpha) / alpha * J4 * np.sin(delta)**2
Tj2B = -q**2 / R**3 - (1 - alpha) / alpha * J5 * np.sin(delta)**2
Tj3B = q**3 * Y32 - (1 - alpha) / alpha * J6 * np.sin(delta)**2
# jC
Tj1C = (1 - alpha) * xi / R**3 * np.sin(delta) + xi * q * Y32 * np.cos(delta) + alpha * xi * (
3 * c_ * eta / R**5 - 2 * Z32 - Z0)
Tj2C = (1 - alpha) * 2 * Y0 * np.sin(delta) - d_ / R**3 + alpha * c_ / R**3 * (
1 - 3 * q**2 / R**2)
Tj3C = -(1 - alpha) * (y_ / R**3 - Y0 * np.cos(delta)) - alpha * (
3 * c_ * eta * q / R**5 - q * Z0)
# kA
Tk1A = -(1 - alpha) / 2 * (np.cos(delta) / R + q * Y11 * np.sin(delta)) - alpha / 2 * q * F
Tk2A = -(1 - alpha) / 2 * y_ * X11 - alpha / 2 * q * G
Tk3A = (1 - alpha) / 2 * (d_ * X11 + xi * Y11 * np.sin(delta)) + alpha / 2 * q * H
# kB
Tk1B = q * F - (1 - alpha) / alpha * J1 * np.sin(delta)**2
Tk2B = q * G - (1 - alpha) / alpha * J2 * np.sin(delta)**2
Tk3B = -q * H - (1 - alpha) / alpha * J3 * np.sin(delta)**2
# kC
Tk1C = (1 - alpha) * (q / R**3 + Y0 * np.sin(delta) * np.cos(delta)) + alpha * (
np.ones((4, 1)) * z / R**3 * np.cos(delta) + 3 * c_ * d_ * q / R**5 - q * Z0 * np.sin(delta))
Tk2C = -(1 - alpha) * 2 * xi * P * np.sin(delta) - y_ * d_ * X32 + alpha * c_ * (
(y_ + 2 * q * np.sin(delta)) * X32 - y_ * q**2 * X53)
Tk3C = -(1 - alpha) * (xi * P * np.cos(delta) - X11 + y_**2 * X32) + alpha * c_ * (
(d_ + 2 * q * np.cos(delta)) * X32 - y_ * eta * q * X53) + alpha * xi * Q
# lA
Tl1A = (1 - alpha) / 2 * (np.sin(delta) / R - q * Y11 * np.cos(delta)) - alpha / 2 * q * F_
Tl2A = (1 - alpha) / 2 * d_ * X11 - alpha / 2 * q * G_
Tl3A = (1 - alpha) / 2 * (y_ * X11 + xi * Y11 * np.cos(delta)) + alpha / 2 * q * H_
# lB
Tl1B = q * F_ + (1 - alpha) / alpha * K3 * np.sin(delta)**2
Tl2B = q * G_ + (1 - alpha) / alpha * xi * D11 * np.sin(delta)**2
Tl3B = -q * H_ + (1 - alpha) / alpha * K4 * np.sin(delta)**2
# lC
Tl1C = -eta / R**3 + Y0 * np.cos(delta)**2 - alpha * (
np.ones((4, 1)) * z / R**3 * np.sin(delta) - 3 * c_ * y_ * q / R**5 - Y0 * np.sin(delta)**2 + q * Z0 * np.cos(delta))
Tl2C = (1 - alpha) * 2 * xi * P_ * np.sin(delta) - X11 + d_**2 * X32 - alpha * c_ * (
(d_ - 2 * q * np.cos(delta)) * X32 - d_ * q**2 * X53)
Tl3C = (1 - alpha) * (
xi * P_ * np.cos(delta) + y_ * d_ * X32) + alpha * c_ * (
(y_ - 2 * q * np.sin(delta)) * X32 + d_ * eta * q * X53) + alpha * xi * Q_
# displacement
# uA_
Tu1A_ = - (1 - alpha) / 2 * np.log(R + eta) - alpha / 2 * q**2 * Y11
Tu2A_ = - (1 - alpha) / 2 * np.log(R + xi) - alpha / 2 * q**2 * X11
Tu3A_ = theta / 2 - alpha / 2 * q * (eta * X11 + xi * Y11)
# displacement gradient
# jA_
Tj1A_ = - (1 - alpha) / 2 * xi * Y11 + alpha / 2 * xi * q**2 * Y32
Tj2A_ = - (1 - alpha) / 2 * 1 / R + alpha / 2 * q**2 / R**3
Tj3A_ = - (1 - alpha) / 2 * q * Y11 - alpha / 2 * q**3 * Y32
# kA_
Tk1A_ = - (1 - alpha) / 2 * (np.cos(delta) / R + q * Y11 * np.sin(delta)) - alpha / 2 * q * F
Tk2A_ = - (1 - alpha) / 2 * y_ * X11 - alpha / 2 * q * G
Tk3A_ = (1 - alpha) / 2 * (d_ * X11 + xi * Y11 * np.sin(delta)) + alpha / 2 * q * H
# lA_
Tl1A_ = (1 - alpha) / 2 * (np.sin(delta) / R - q * Y11 * np.cos(delta)) - alpha / 2 * q * F_
Tl2A_ = (1 - alpha) / 2 * d_ * X11 - alpha / 2 * q * G_
Tl3A_ = (1 - alpha) / 2 * (y_ * X11 + xi * Y11 * np.cos(delta)) + alpha / 2 * q * H_
# Tensile
# Displacement
Tux = (1 / (2 * np.pi)) * tensile * (Tu1A - Tu1A_ + Tu1B + np.ones((4, 1)) * z * Tu1C)
Tuy = (1 / (2 * np.pi)) * tensile * ((Tu2A - Tu2A_ + Tu2B + np.ones((4, 1)) * z * Tu2C) * np.cos(delta) -
(Tu3A - Tu3A_ + Tu3B + np.ones((4, 1)) * z * Tu3C) * np.sin(delta))
Tuz = (1 / (2 * np.pi)) * tensile * ((Tu2A - Tu2A_ + Tu2B - np.ones((4, 1)) * z * Tu2C) * np.sin(delta) +
(Tu3A - Tu3A_ + Tu3B - np.ones((4, 1)) * z * Tu3C) * np.cos(delta))
# Displacement gradients
Tduxdx = (1 / (2 * np.pi)) * tensile * (Tj1A - Tj1A_ + Tj1B + np.ones((4, 1)) * z * Tj1C)
Tduydx = (1 / (2 * np.pi)) * tensile * ((Tj2A - Tj2A_ + Tj2B + np.ones((4, 1)) * z * Tj2C) * np.cos(delta) -
(Tj3A - Tj3A_ + Tj3B + np.ones((4, 1)) * z * Tj3C) * np.sin(delta))
Tduzdx = (1 / (2 * np.pi)) * tensile * ((Tj2A - Tj2A_ + Tj2B - np.ones((4, 1)) * z * Tj2C) * np.sin(delta) +
(Tj3A - Tj3A_ + Tj3B - np.ones((4, 1)) * z * Tj3C) * np.cos(delta))
Tduxdy = (1 / (2 * np.pi)) * tensile * (Tk1A - Tk1A_ + Tk1B + np.ones((4, 1)) * z * Tk1C)
Tduydy = (1 / (2 * np.pi)) * tensile * ((Tk2A - Tk2A_ + Tk2B + np.ones((4, 1)) * z * Tk2C) * np.cos(delta) -
(Tk3A - Tk3A_ + Tk3B + np.ones((4, 1)) * z * Tk3C) * np.sin(delta))
Tduzdy = (1 / (2 * np.pi)) * tensile * ((Tk2A - Tk2A_ + Tk2B - np.ones((4, 1)) * z * Tk2C) * np.sin(delta) +
(Tk3A - Tk3A_ + Tk3B - np.ones((4, 1)) * z * Tk3C) * np.cos(delta))
Tduxdz = (1 / (2 * np.pi)) * tensile * (Tl1A + Tl1A_ + Tl1B + Tu1C + np.ones((4, 1)) * z * Tl1C)
Tduydz = (1 / (2 * np.pi)) * tensile * ((Tl2A + Tl2A_ + Tl2B + Tu2C + np.ones((4, 1)) * z * Tl2C) * np.cos(delta) -
(Tl3A + Tl3A_ + Tl3B + Tu3C + np.ones((4, 1)) * z * Tl3C) * np.sin(delta))
Tduzdz = (1 / (2 * np.pi)) * tensile * ((Tl2A + Tl2A_ + Tl2B - Tu2C - np.ones((4, 1)) * z * Tl2C) * np.sin(delta) +
(Tl3A + Tl3A_ + Tl3B - Tu3C - np.ones((4, 1)) * z * Tl3C) * np.cos(delta))
else:
Tux, Tuy, Tuz = 0, 0, 0
Tduxdx, Tduydx, Tduzdx = 0, 0, 0
Tduxdy, Tduydy, Tduzdy = 0, 0, 0
Tduxdz, Tduydz, Tduzdz = 0, 0, 0
factor=np.ones((xi.shape))
factor[1,:]=factor[1,:]*-1
factor[2,:]=factor[2,:]*-1
G1 = np.sum(factor * (Sux + Dux + Tux),axis=0)
G2 = np.sum(factor * (Suy + Duy + Tuy),axis=0)
G3 = np.sum(factor * (Suz + Duz + Tuz),axis=0)
Dg11 = np.sum(factor * (Sduxdx + Dduxdx + Tduxdx),axis=0)
Dg12 = np.sum(factor * (Sduxdy + Dduxdy + Tduxdy),axis=0)
Dg13 = np.sum(factor * (Sduxdz + Dduxdz + Tduxdz),axis=0)
Dg21 = np.sum(factor * (Sduydx + Dduydx + Tduydx),axis=0)
Dg22 = np.sum(factor * (Sduydy + Dduydy + Tduydy),axis=0)
Dg23 = np.sum(factor * (Sduydz + Dduydz + Tduydz),axis=0)
Dg31 = np.sum(factor * (Sduzdx + Dduzdx + Tduzdx),axis=0)
Dg32 = np.sum(factor * (Sduzdy + Dduzdy + Tduzdy),axis=0)
Dg33 = np.sum(factor * (Sduzdz + Dduzdz + Tduzdz),axis=0)
# Coordinate transformation
Gx = np.cos(angle_Str) * (-G2) - np.sin(angle_Str) * G1
Gy = np.sin(angle_Str) * (-G2) + np.cos(angle_Str) * G1
Gz = G3
displacement = np.array([Gx, Gy, Gz])
Dg11_ = Dg22
Dg12_ = -Dg21
Dg13_ = -Dg23
Dg21_ = -Dg12
Dg22_ = Dg11
Dg23_ = Dg13
Dg31_ = -Dg32
Dg32_ = Dg31
Dg33_ = Dg33
# Coordinate transformation
Dgxx = (np.cos(angle_Str) * Dg11_ - np.sin(angle_Str) * Dg21_) * np.cos(angle_Str) + \
(np.cos(angle_Str) * Dg12_ - np.sin(angle_Str) * Dg22_) * (-np.sin(angle_Str))
Dgyx = (np.sin(angle_Str) * Dg11_ + np.cos(angle_Str) * Dg21_) * np.cos(angle_Str) - \
(np.sin(angle_Str) * Dg12_ + np.cos(angle_Str) * Dg22_) * np.sin(angle_Str)
Dgzx = Dg31_ * np.cos(angle_Str) - Dg32_ * np.sin(angle_Str)
Dgxy = (np.cos(angle_Str) * Dg11_ - np.sin(angle_Str) * Dg21_) * np.sin(angle_Str) + \
(np.cos(angle_Str) * Dg12_ - np.sin(angle_Str) * Dg22_) * np.cos(angle_Str)
Dgyy = (np.sin(angle_Str) * Dg11_ + np.cos(angle_Str) * Dg21_) * np.sin(angle_Str) + \
(np.sin(angle_Str) * Dg12_ + np.cos(angle_Str) * Dg22_) * np.cos(angle_Str)
Dgzy = np.sin(angle_Str) * Dg31_ + np.cos(angle_Str) * Dg32_
Dgxz = np.cos(angle_Str) * Dg13_ - np.sin(angle_Str) * Dg23_
Dgyz = np.sin(angle_Str) * Dg13_ + np.cos(angle_Str) * Dg23_
Dgzz = Dg33_
gradient = np.array([[Dgxx, Dgxy, Dgxz],
[Dgyx, Dgyy, Dgyz],
[Dgzx, Dgzy, Dgzz]])
gradient = gradient.reshape(9, x.size)
# Strain components
Ex = Dgxx
Ey = Dgyy
Ez = Dgzz
Exy = 0.5 * (Dgyx + Dgxy)
Eyz = 0.5 * (Dgyz + Dgzy)
Ezx = 0.5 * (Dgzx + Dgxz)
# Stress components
Sx = youngs / ((1 + nu) * (1 - 2 * nu)) * (Ex + nu * (Ey + Ez - Ex))
Sy = youngs / ((1 + nu) * (1 - 2 * nu)) * (Ey + nu * (Ex + Ez - Ey))
Sz = youngs / ((1 + nu) * (1 - 2 * nu)) * (Ez + nu * (Ey + Ex - Ez))
Sxy = 2 * Gshear * Exy
Syz = 2 * Gshear * Eyz
Szx = 2 * Gshear * Ezx
# Stress vector
Stress = np.array([Sx, Sxy, Szx, Sy, Syz, Sz])
return(displacement,gradient,Stress)
def disloc3D_wrapper(m,coordinates,return_stress=False,return_2d=False):
class makeFault:
nu = params.nu
Gshear = params.Gshear
def __init__(self, m):
self.L = m[0]
self.W = m[1]
self.c = m[2]
self.delta = np.deg2rad(m[3])
self.strike = -np.deg2rad(m[4]) # clockwise is positive
self.centroids = np.array([m[5],m[6]])
self.slip = m[7], m[8], m[9]
self.rotate = np.array([[-np.sin(self.strike), np.cos(self.strike)],
[-np.cos(self.strike), -np.sin(self.strike)]])
def coordTrans(self,X,Y):
coordinates_vector = np.array([X-self.centroids[0],Y-self.centroids[1]])
x, y = np.dot(self.rotate, coordinates_vector)
x = x + 0.5 * self.L
return(x,y)
@classmethod