-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02-quickstart.Rmd
52 lines (38 loc) · 1.61 KB
/
02-quickstart.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Quick-Start
This section provides a basic *CopyKit* workflow.
```{r quickstart, eval=FALSE}
# Load library
library(copykit)
# Run pre-processing module
tumor <- runVarbin("/path/to/marked/bam/files/",
remove_Y = TRUE)
# Mark euploid cells if they exist
tumor <- findAneuploidCells(tumor)
# Mark low-quality cells for filtering
tumor <- findOutliers(tumor)
# Visualize cells labeled by filter and aneuploid status
plotHeatmap(tumor, label = c('outlier', 'is_aneuploid'), row_split = 'outlier')
# Remove cells marked as low-quality and/or aneuploid from the copykit object
tumor <- tumor[,SummarizedExperiment::colData(tumor)$outlier == FALSE]
tumor <- tumor[,SummarizedExperiment::colData(tumor)$is_aneuploid == TRUE]
# kNN smooth profiles
tumor <- knnSmooth(tumor)
# Create a umap embedding
tumor <- runUmap(tumor)
# Search for the K value that maximizes jaccard similarity for clustering of subclones
# Plot the results
# This step is optional. A fixed K value can be provided later to findClusters()
tumor <- findSuggestedK(tumor)
plotSuggestedK(tumor)
# Find clusters of similar copy number profiles and plot the results
# If no k_subclones value is provided, automatically detect it from findSuggestedK()
tumor <- findClusters(tumor)
plotUmap(tumor, label = 'subclones')
# Calculate consensus profiles for each subclone,
# and order cells by cluster for visualization with plotHeatmap
tumor <- calcConsensus(tumor)
tumor <- runConsensusPhylo(tumor)
# Plot a copy number heatmap with clustering annotation
plotHeatmap(tumor, label = 'subclones')
```
The following sections explain all functions in detail.