forked from KuangLab-Harvard/SAM_SRCv6.11
-
Notifications
You must be signed in to change notification settings - Fork 0
/
forcing.f90
487 lines (392 loc) · 13.7 KB
/
forcing.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
subroutine forcing
use vars
use params
use microphysics, only: micro_field, index_water_vapor, total_water, mklsadv
use simple_ocean, only: sst_evolve
implicit none
integer i,j,k,n,nn,m,iz,iday0,iday
real coef, radtend, dayy
real tt(nzm,2),qq(nzm,2),uu(nzm,2),vv(nzm,2),ww(nzm,2),tp(nzm,2),pp(nzm,2)
real tpm(nzm)
real ratio1, ratio2, ratio_t1, ratio_t2
logical zgrid, pgrid
! linear response perturbation (Song Qiyu, 2022)
real, save :: delt_t, delt_q ! Layer by layer perturbation
! ktrop index for tropopause
integer :: ktrop
call t_startf ('forcing')
! if doseasons=.false. do perpetual forcing
if(doseasons) then
dayy = day
else
iday0 = day0
iday = day
dayy = day-iday
dayy = iday0 + dayy
end if
! ---------------------------------------------------------------
! Large-scale sounding:
nn=1
do i=1,nsnd-1
if(day.gt.daysnd(i)) then
nn=i
endif
end do
do n=1,2
m = nn+n-1
zgrid = .false.
pgrid = .false.
if(zsnd(2,m).gt.zsnd(1,m)) zgrid=.true.
if(psnd(2,m).lt.psnd(1,m)) pgrid=.true.
if((.not.zgrid).and.(.not.pgrid)) then
if(masterproc) print*,'error in grid in snd'
stop
end if
do iz = 1,nzm
if(zgrid) then
do i = 2,nzsnd
if(z(iz).le.zsnd(i,m)) then
coef = (z(iz)-zsnd(i-1,m))/(zsnd(i,m)-zsnd(i-1,m))
tt(iz,n)=tsnd(i-1,m)+(tsnd(i,m)-tsnd(i-1,m))*coef
if(pgrid) then
pp(iz,n)=psnd(i-1,m)+(psnd(i,m)-psnd(i-1,m))*coef
tt(iz,n)=tt(iz,n)/((1000./pp(iz,n))**(rgas/cp))
else
tt(iz,n)=tt(iz,n)/prespotb(iz)
endif
tp(iz,n)=tsnd(i-1,m)+(tsnd(i,m)-tsnd(i-1,m))*coef
qq(iz,n)=qsnd(i-1,m)+(qsnd(i,m)-qsnd(i-1,m))*coef
uu(iz,n)=usnd(i-1,m)+(usnd(i,m)-usnd(i-1,m))*coef
vv(iz,n)=vsnd(i-1,m)+(vsnd(i,m)-vsnd(i-1,m))*coef
goto 11
endif
end do
else
do i = 2,nzsnd
if(pres(iz).ge.psnd(i,m)) then
coef = (pres(iz)-psnd(i-1,m))/(psnd(i,m)-psnd(i-1,m))
tt(iz,n)=tsnd(i-1,m)+(tsnd(i,m)-tsnd(i-1,m))*coef/prespotb(iz)
tp(iz,n)=tsnd(i-1,m)+(tsnd(i,m)-tsnd(i-1,m))*coef
qq(iz,n)=qsnd(i-1,m)+(qsnd(i,m)-qsnd(i-1,m))*coef
uu(iz,n)=usnd(i-1,m)+(usnd(i,m)-usnd(i-1,m))*coef
vv(iz,n)=vsnd(i-1,m)+(vsnd(i,m)-vsnd(i-1,m))*coef
pp(iz,n)=psnd(i-1,m)+(psnd(i,m)-psnd(i-1,m))*coef
goto 11
endif
end do
end if
call atmosphere(z(iz-1)/1000.,ratio1,ratio2,ratio_t1)
call atmosphere(z(iz)/1000.,ratio1,ratio2,ratio_t2)
tt(iz,n)=ratio_t2/ratio_t1*tt(iz-1,n)
! qq(iz,n)=max(0.,2.*qq(iz-1,n)-qq(iz-2,n))
qq(iz,n) = qq(iz-1,n)*exp(-(z(iz)-z(iz-1))/3000.)
uu(iz,n)=uu(iz-1,n)
vv(iz,n)=vv(iz-1,n)
11 continue
end do ! iz
end do ! n
coef=(day-daysnd(nn))/(daysnd(nn+1)-daysnd(nn))
do k=1,nzm
tg0(k)=tt(k,1)+(tt(k,2)-tt(k,1))*coef
tp0(k)=tp(k,1)+(tp(k,2)-tp(k,1))*coef
qg0(k)=qq(k,1)+(qq(k,2)-qq(k,1))*coef
qg0(k)=qg0(k)*1.e-3
! Note that ug0 and vg0 maybe reset if dolargescale is true)
ug0(k)=uu(k,1)+(uu(k,2)-uu(k,1))*coef - ug
vg0(k)=vv(k,1)+(vv(k,2)-vv(k,1))*coef - vg
pg0(k)=pp(k,1)+(pp(k,2)-pp(k,1))*coef - vg
end do
! ---------------------------------------------------------------
! Initialize tendencies:
ttend(:) = 0.
qtend(:) = 0.
! ---------------------------------------------------------------
! Large-Scale Advection Forcing:
if(dolargescale.and.time.gt.timelargescale) then
nn=1
do i=1,nlsf-1
if(day.gt.dayls(i)) nn=i
end do
do n=1,2
m = nn+n-1
if(zls(2,m).gt.zls(1,m)) then
zgrid=.true.
else if(pls(2,m).lt.pls(1,m)) then
zgrid=.false.
else
if(masterproc) print*,'error in grid in lsf'
stop
end if
do iz = 1,nzm
if(zgrid) then
do i = 2,nzlsf
if(z(iz).le.zls(i,m)) then
coef = (z(iz)-zls(i-1,m))/(zls(i,m)-zls(i-1,m))
tt(iz,n)=dtls(i-1,m)+(dtls(i,m)-dtls(i-1,m))*coef
qq(iz,n)=dqls(i-1,m)+(dqls(i,m)-dqls(i-1,m))*coef
uu(iz,n)=ugls(i-1,m)+(ugls(i,m)-ugls(i-1,m))*coef
vv(iz,n)=vgls(i-1,m)+(vgls(i,m)-vgls(i-1,m))*coef
ww(iz,n)=wgls(i-1,m)+(wgls(i,m)-wgls(i-1,m))*coef
goto 12
endif
end do
else
do i = 2,nzlsf
if(pres(iz).ge.pls(i,m)) then
coef = (pres(iz)-pls(i-1,m))/(pls(i,m)-pls(i-1,m))
tt(iz,n)=dtls(i-1,m)+(dtls(i,m)-dtls(i-1,m))*coef
qq(iz,n)=dqls(i-1,m)+(dqls(i,m)-dqls(i-1,m))*coef
uu(iz,n)=ugls(i-1,m)+(ugls(i,m)-ugls(i-1,m))*coef
vv(iz,n)=vgls(i-1,m)+(vgls(i,m)-vgls(i-1,m))*coef
ww(iz,n)=wgls(i-1,m)+(wgls(i,m)-wgls(i-1,m))*coef
goto 12
endif
end do
end if
tt(iz,n)=0.
qq(iz,n)=0.
uu(iz,n)=uu(iz-1,n)
vv(iz,n)=vv(iz-1,n)
ww(iz,n)=0.
12 continue
end do
end do ! n
! linear response perturbation: layer by layer (Song Qiyu, 2022)
if(dolayerperturb) then
delt_t = 0.5/86400.
delt_q = 1.e-3*0.2/86400.
! Apply perturbation forcing
if (tperturbi.gt.0) then
tt(tperturbi,:) = tt(tperturbi,:)+tperturbA*delt_t
end if
if (qperturbi.gt.0) then
! For height with small humidity, rescale humidity perturbation
delt_q = min(delt_q,0.2*qg0(qperturbi)/7200.)
qq(qperturbi,:) = qq(qperturbi,:)+qperturbA*delt_q
end if
end if
coef=(day-dayls(nn))/(dayls(nn+1)-dayls(nn))
dosubsidence = .false.
do k=1,nzm
ttend(k)=tt(k,1)+(tt(k,2)-tt(k,1))*coef
qtend(k)=qq(k,1)+(qq(k,2)-qq(k,1))*coef
ug0(k)=uu(k,1)+(uu(k,2)-uu(k,1))*coef - ug
vg0(k)=vv(k,1)+(vv(k,2)-vv(k,1))*coef - vg
wsub(k)=ww(k,1)+(ww(k,2)-ww(k,1))*coef
dosubsidence = dosubsidence .or. wsub(k).ne.0.
do j=1,ny
do i=1,nx
t(i,j,k)=t(i,j,k)+ttend(k) * dtn
micro_field(i,j,k,index_water_vapor) = &
max(0.,micro_field(i,j,k,index_water_vapor) + qtend(k) * dtn)
end do
end do
end do
pres0 = pres0ls(nn)+(pres0ls(nn+1)-pres0ls(nn))*coef
if(wgls_holds_omega) then
! convert omega (sitting in wsub) into large-scale vertical velocity.
! Note that omega was read in from SCAM IOP netcdf input file.
do k = 1,nzm
wsub(k) = -wsub(k)/rho(k)/ggr
end do
end if
!-------------------------------------------------------------------------------
! Kuang Lab Addition
! Save reference copy of large-scale vertical velocity before modification
! by WTG or scaling techniques, similar to Blossey's version of SAM
wsub_ref(1:nzm) = wsub(1:nzm)
if(dodgw) then
if(wtgscale_time.gt.0) then
twtgmax = (nstop * dt - timelargescale) * wtgscale_time
twtg = time-timelargescale
if(twtg.gt.twtgmax) then
am_wtg_time = am_wtg
else
am_wtg_time = am_wtg * twtgmax / twtg
endif
else
am_wtg_time = am_wtg
endif
if (dowtg_blossey_etal_JAMES2009) then
call wtg_james2009(nzm, &
100.*pres, tg0, qg0, tabs0, qv0, qn0+qp0, &
fcor, lambda_wtg, am_wtg_time, am_wtg_exp, o_wtg, ktrop)
w_wtg(1:nzm) = -o_wtg(1:nzm)/rho(1:nzm)/ggr
end if
if (dowtg_kuang_JAS2008) then
call wtg_jas2008()
o_wtg(1:nzm) = -w_wtg(1:nzm)*rho(1:nzm)*ggr
end if
if (dowtg_decompdgw) then
call wtg_james2009(nzm, &
100.*pres, tg0, qg0, tabs0, qv0, qn0+qp0, &
fcor, lambda_wtg, am_wtg_time, am_wtg_exp, owtgr, ktrop)
call wtg_decompdgw(masterproc, &
nzm, nz, z, 100.*pg0, tg0, qg0, tabs0, qv0, qn0+qp0, &
lambda_wtg, am_wtg_time, wtgscale_vertmodenum, wtgscale_vertmodescl, &
o_wtg, wwtgc, ktrop)
w_wtg(1:nzm) = -o_wtg(1:nzm)/rho(1:nzm)/ggr
wwtgr(1:nzm) = -owtgr(1:nzm)/rho(1:nzm)/ggr
end if
end if
if (dotgr) then
if(wtgscale_time.gt.0) then
twtgmax = (nstop * dt - timelargescale) * wtgscale_time
twtg = time-timelargescale
if(twtg.gt.twtgmax) then
tau_wtg_time = tau_wtg
else
tau_wtg_time = tau_wtg * twtg / twtgmax
endif
else
tau_wtg_time = tau_wtg
endif
do k = 1,nzm
tpm(k) = tabs0(k) * prespot(k)
end do
if (dowtg_raymondzeng_QJRMS2005) call wtg_qjrms2005(masterproc, nzm, nz, z, &
tp0, tpm, tabs0, tau_wtg_time, dowtgLBL, boundstatic, &
dthetadz_min, w_wtg, wwtgr)
if (dowtg_hermanraymond_JAMES2014) call wtg_james2014(masterproc, nzm, nz, z, &
tp0, tpm, tabs0, tau_wtg_time, dowtgLBL, boundstatic, &
dthetadz_min, wtgscale_vertmodepwr, w_wtg, wwtgr, wwtgc)
if (dowtg_decomptgr) call wtg_decomptgr(masterproc, nzm, nz, z, &
tp0, tpm, tabs0, tau_wtg_time, &
wtgscale_vertmodenum, wtgscale_vertmodescl, &
dowtgLBL, boundstatic, dthetadz_min, w_wtg, wwtgr, wwtgc)
! convert from omega in Pa/s to wsub in m/s
o_wtg(1:nzm) = -w_wtg(1:nzm)*rho(1:nzm)*ggr
owtgr(1:nzm) = -wwtgr(1:nzm)*rho(1:nzm)*ggr
end if
if (dotgr.OR.dodgw) then
! add to reference large-scale vertical velocity.
wsub(1:nzm) = wsub(1:nzm) + w_wtg(1:nzm)
dosubsidence = .true.
end if
if (dohadley) then
if(hadscale_time.gt.0) then
thadmax = (nstop * dt - timelargescale) * hadscale_time
thad = time - timelargescale
if(thad.gt.thadmax) then
whad = whadmax
else
whad = whadmax * thad / thadmax
endif
else
whad = whadmax
endif
call hadley(masterproc, nzm, nz, z, tabs0, whad, zhadmax, whadley)
if(.NOT.dodrivenequilibrium) then
wsub(1:nzm) = wsub(1:nzm) + whadley(1:nzm)
dosubsidence = .true.
end if
end if
! ---------------------------------------------------------------
! Initialize large-scale advection tendencies:
ulsvadv(:) = 0.
vlsvadv(:) = 0.
qlsvadv(:) = 0.
tlsvadv(:) = 0.
mklsadv(:,:) = 0. ! large-scale microphysical tendencies
if(dosubsidence) call subsidence()
if(dodrivenequilibrium) call drivenequilibrium()
! normalize large-scale vertical momentum forcing
ulsvadv(:) = ulsvadv(:) / float(nx*ny)
vlsvadv(:) = vlsvadv(:) / float(nx*ny)
mklsadv(1:nzm,index_water_vapor) = qlsvadv(1:nzm) * float(nx*ny)
end if
!---------------------------------------------------------------------
! Prescribed Radiation Forcing:
if(doradforcing.and.time.gt.timelargescale) then
nn=1
do i=1,nrfc-1
if(day.gt.dayrfc(i)) nn=i
end do
do n=1,2
m = nn+n-1
if(prfc(2,m).gt.prfc(1,m)) then
zgrid=.true.
else if(prfc(2,m).lt.prfc(1,m)) then
zgrid=.false.
else
if(masterproc) print*,'error in grid in rad'
stop
end if
do iz = 1,nzm
if(zgrid) then
do i = 2,nzrfc
if(z(iz).le.prfc(i,m)) then
tt(iz,n)=dtrfc(i-1,m)+(dtrfc(i,m)-dtrfc(i-1,m))/(prfc(i,m)-prfc(i-1,m)) &
*(z(iz)-prfc(i-1,m))
goto 13
endif
end do
else
do i = 2,nzrfc
if(pres(iz).ge.prfc(i,m)) then
tt(iz,n)=dtrfc(i-1,m)+(dtrfc(i,m)-dtrfc(i-1,m))/(prfc(i,m)-prfc(i-1,m)) &
*(pres(iz)-prfc(i-1,m))
goto 13
endif
end do
end if
tt(iz,n)=0.
13 continue
end do
end do ! n
coef=(day-dayrfc(nn))/(dayrfc(nn+1)-dayrfc(nn))
do k=1,nzm
radtend=tt(k,1)+(tt(k,2)-tt(k,1))*coef
radqrlw(k)=radtend*float(nx*ny)
radqrsw(k)=0.
do j=1,ny
do i=1,nx
t(i,j,k)=t(i,j,k)+radtend*dtn
end do
end do
end do
endif
!----------------------------------------------------------------------------
! Surface flux forcing:
if(dosfcforcing.and.time.gt.timelargescale) then
nn=1
do i=1,nsfc-1
if(day.gt.daysfc(i)) nn=i
end do
coef=(day-daysfc(nn))/(daysfc(nn+1)-daysfc(nn))
tabs_s=sstsfc(nn)+(sstsfc(nn+1)-sstsfc(nn))*coef
fluxt0=(shsfc(nn)+(shsfc(nn+1)-shsfc(nn))*coef)/(rhow(1)*cp)
fluxq0=(lhsfc(nn)+(lhsfc(nn+1)-lhsfc(nn))*coef)/(rhow(1)*lcond)
tau0=tausfc(nn)+(tausfc(nn+1)-tausfc(nn))*coef
do j=1,ny
do i=1,nx
sstxy(i,j) = tabs_s - t00
end do
end do
if(dostatis) then
sstobs = tabs_s ! sst is not averaged over the sampling period
lhobs = lhobs + fluxq0 * rhow(1)*lcond
shobs = shobs + fluxt0 * rhow(1)*cp
end if
endif
!----------------------------------------------------------------------------
! Temperature Tendency Forcing:
! Simple Radiative Tendencies taken from Pauluis & Garner [2006]
if(doradtendency.and.time.gt.timelargescale) then
do k = 1,nzm
do j=1,ny
do i=1,nx
if (tabs(i,j,k)>207.5) then
t(i,j,k) = t(i,j,k) - dtn * troptend / 86400
else
t(i,j,k) = t(i,j,k) + dtn * (200 - tabs(i,j,k)) / (5*86400)
end if
end do
end do
end do
endif
!-------------------------------------------------------------------------------
if(.not.dosfcforcing.and.dodynamicocean) call sst_evolve()
!-------------------------------------------------------------------------------
call t_stopf ('forcing')
end subroutine forcing