-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
465 lines (377 loc) · 15.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
"""
VideoFrameGenerator - Simple Generator
--------------------------------------
A simple frame generator that takes distributed frames from
videos. It is useful for videos that are scaled from frame 0 to end
and that have no noise frames.
"""
import os
import glob
import numpy as np
import cv2 as cv
from math import floor
import logging
import re
log = logging.getLogger()
from keras.utils import Sequence
from keras.preprocessing.image import ImageDataGenerator
import tensorflow as tf
import h5py
from keras.models import load_model
from keras.models import save_model
def load_model_ext(filepath):
model = load_model(filepath, custom_objects=None)
f = h5py.File(filepath, mode='r')
meta_data = None
if 'my_meta_data' in f.attrs:
meta_data = f.attrs.get('my_meta_data')
f.close()
return model, meta_data
def save_model_ext(model, filepath, overwrite=True, meta_data=None):
save_model(model, filepath, overwrite)
if meta_data is not None:
f = h5py.File(filepath, mode='a')
f.attrs['my_meta_data'] = meta_data
f.close()
class VideoFrameGenerator(Sequence):
"""
Create a generator that return batches of frames from video
- rescale: float fraction to rescale pixel data (commonly 1/255.)
- nb_frames: int, number of frames to return for each sequence
- classes: list of str, classes to infer
- batch_size: int, batch size for each loop
- use_frame_cache: bool, use frame cache (may take a lot of memory for \
large dataset)
- shape: tuple, target size of the frames
- shuffle: bool, randomize files
- transformation: ImageDataGenerator with transformations
- split: float, factor to split files and validation
- nb_channel: int, 1 or 3, to get grayscaled or RGB images
- glob_pattern: string, directory path with '{classname}' inside that \
will be replaced by one of the class list
- use_header: bool, default to True to use video header to read the \
frame count if possible
You may use the "classes" property to retrieve the class list afterward.
The generator has that properties initialized:
- classes_count: number of classes that the generator manages
- files_count: number of video that the generator can provides
- classes: the given class list
- files: the full file list that the generator will use, this \
is usefull if you want to remove some files that should not be \
used by the generator.
"""
def __init__(
self,
rescale=1/255.,
nb_frames: int = 5,
classes: list = None,
batch_size: int = 16,
use_frame_cache: bool = False,
target_shape: tuple = (224, 224),
shuffle: bool = True,
transformation: ImageDataGenerator = None,
split_test: float = None,
split_val: float = None,
nb_channel: int = 3,
glob_pattern: str = './videos/{classname}/*.avi',
use_headers: bool = True,
*args,
**kwargs):
# deprecation
if 'split' in kwargs:
log.warn("Warning, `split` argument is replaced by `split_val`, "
"please condider to change your source code."
"The `split` argument will be removed "
"in future releases.")
split_val = float(kwargs.get('split'))
self.glob_pattern = glob_pattern
# should be only RGB or Grayscale
assert nb_channel in (1, 3)
if classes is None:
classes = self._discover_classes()
# we should have classes
if len(classes) == 0:
log.warn("You didn't provide classes list or "
"we were not able to discover them from "
"your pattern.\n"
"Please check if the path is OK, and if the glob "
"pattern is correct.\n"
"See https://docs.python.org/3/library/glob.html")
# shape size should be 2
assert len(target_shape) == 2
# split factor should be a propoer value
if split_val is not None:
assert 0.0 < split_val < 1.0
if split_test is not None:
assert 0.0 < split_test < 1.0
self.use_video_header = use_headers
# then we don't need None anymore
split_val = split_val if split_val is not None else 0.0
split_test = split_test if split_test is not None else 0.0
# be sure that classes are well ordered
classes.sort()
self.rescale = rescale
self.classes = classes
self.batch_size = batch_size
self.nbframe = nb_frames
self.shuffle = shuffle
self.target_shape = target_shape
self.nb_channel = nb_channel
self.transformation = transformation
self.use_frame_cache = use_frame_cache
self._random_trans = []
self.__frame_cache = {}
self.files = []
self.validation = []
self.test = []
_validation_data = kwargs.get('_validation_data', None)
_test_data = kwargs.get('_test_data', None)
if _validation_data is not None:
# we only need to set files here
self.files = _validation_data
elif _test_data is not None:
# we only need to set files here
self.files = _test_data
else:
if split_val > 0 or split_test > 0:
for cls in classes:
files = glob.glob(glob_pattern.format(classname=cls))
nbval = 0
nbtest = 0
info = []
# generate validation and test indexes
indexes = np.arange(len(files))
if shuffle:
np.random.shuffle(indexes)
if 0.0 < split_val < 1.0:
nbval = int(split_val * len(files))
nbtrain = len(files) - nbval
# get some sample for validation_data
val = np.random.permutation(indexes)[:nbval]
# remove validation from train
indexes = np.array(
[i for i in indexes if i not in val])
self.validation += [files[i] for i in val]
info.append("validation count: %d" % nbval)
if 0.0 < split_test < 1.0:
nbtest = int(split_test * nbtrain)
nbtrain = len(files) - nbval - nbtest
# get some sample for test_data
val_test = np.random.permutation(indexes)[:nbtest]
# remove test from train
indexes = np.array(
[i for i in indexes if i not in val_test])
self.test += [files[i] for i in val_test]
info.append("test count: %d" % nbtest)
# and now, make the file list
self.files += [files[i] for i in indexes]
print("class %s, %s, train count: %d" %
(cls, ", ".join(info), nbtrain))
else:
for cls in classes:
self.files += glob.glob(glob_pattern.format(classname=cls))
# build indexes
self.files_count = len(self.files)
self.indexes = np.arange(self.files_count)
self.classes_count = len(classes)
# to initialize transformations and shuffle indices
if 'no_epoch_at_init' not in kwargs:
self.on_epoch_end()
kind = "train"
if _validation_data is not None:
kind = "validation"
elif _test_data is not None:
kind = "test"
self._current = 0
self._framecounters = {}
print("Total data: %d classes for %d files for %s" % (
self.classes_count,
self.files_count,
kind))
def count_frames(self, cap, name, force_no_headers=False):
""" Count number of frame for video
if it's not possible with headers """
if not force_no_headers and name in self._framecounters:
return self._framecounters[name]
total = cap.get(cv.CAP_PROP_FRAME_COUNT)
if force_no_headers or total < 0:
# headers not ok
total = 0
# TODO: we're unable to use CAP_PROP_POS_FRAME here
# so we open a new capture to not change the
# pointer position of "cap"
c = cv.VideoCapture(name)
while True:
grabbed, frame = c.read()
if not grabbed:
# rewind and stop
break
total += 1
# keep the result
self._framecounters[name] = total
return total
def _discover_classes(self):
pattern = os.path.realpath(self.glob_pattern)
pattern = re.escape(pattern)
pattern = pattern.replace('\\{classname\\}', '(.*?)')
pattern = pattern.replace('\\*', '.*')
files = glob.glob(self.glob_pattern.replace('{classname}', '*'))
classes = set()
for f in files:
f = os.path.realpath(f)
cl = re.findall(pattern, f)[0]
classes.add(cl)
return list(classes)
def next(self):
""" Return next element"""
elem = self[self._current]
self._current += 1
if self._current == len(self):
self._current = 0
self.on_epoch_end()
return elem
def get_validation_generator(self):
""" Return the validation generator if you've provided split factor """
return self.__class__(
nb_frames=self.nbframe,
nb_channel=self.nb_channel,
target_shape=self.target_shape,
classes=self.classes,
batch_size=self.batch_size,
shuffle=self.shuffle,
rescale=self.rescale,
glob_pattern=self.glob_pattern,
use_headers=self.use_video_header,
_validation_data=self.validation)
def get_test_generator(self):
""" Return the validation generator if you've provided split factor """
return self.__class__(
nb_frames=self.nbframe,
nb_channel=self.nb_channel,
target_shape=self.target_shape,
classes=self.classes,
batch_size=self.batch_size,
shuffle=self.shuffle,
rescale=self.rescale,
glob_pattern=self.glob_pattern,
use_headers=self.use_video_header,
_test_data=self.test)
def on_epoch_end(self):
""" Called by Keras after each epoch """
if self.transformation is not None:
self._random_trans = []
for _ in range(self.files_count):
self._random_trans.append(
self.transformation.get_random_transform(self.target_shape)
)
if self.shuffle:
np.random.shuffle(self.indexes)
def __iter__(self):
return self
def __next__(self):
return self.next()
def __len__(self):
return int(np.floor(self.files_count / self.batch_size))
def __getitem__(self, index):
classes = self.classes
shape = self.target_shape
nbframe = self.nbframe
labels = []
images = []
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
transformation = None
for i in indexes:
# prepare a transformation if provided
if self.transformation is not None:
transformation = self._random_trans[i]
video = self.files[i]
classname = self._get_classname(video)
# create a label array and set 1 to the right column
label = np.zeros(len(classes))
col = classes.index(classname)
label[col] = 1.
if video not in self.__frame_cache:
frames = self._get_frames(
video,
nbframe,
shape,
force_no_headers=not self.use_video_header)
if frames is None:
# avoid failure, nevermind that video...
continue
# add to cache
self.__frame_cache[video] = frames
else:
frames = self.__frame_cache[video]
# apply transformation
if transformation is not None:
frames = [self.transformation.apply_transform(
frame, transformation) for frame in frames]
# add the sequence in batch
images.append(frames)
labels.append(label)
return np.array(images), np.array(labels)
def _get_classname(self, video: str) -> str:
""" Find classname from video filename following the pattern """
# work with real path
video = os.path.realpath(video)
pattern = os.path.realpath(self.glob_pattern)
# remove special regexp chars
pattern = re.escape(pattern)
# get back "*" to make it ".*" in regexp
pattern = pattern.replace('\\*', '.*')
# use {classname} as a capture
pattern = pattern.replace('\\{classname\\}', '(.*?)')
# and find all occurence
classname = re.findall(pattern, video)[0]
return classname
def _get_frames(self, video, nbframe, shape, force_no_headers=False):
cap = cv.VideoCapture(video)
total_frames = self.count_frames(cap, video, force_no_headers)
orig_total = total_frames
if total_frames % 2 != 0:
total_frames += 1
frame_step = floor(total_frames/(nbframe-1))
# TODO: fix that, a tiny video can have a frame_step that is
# under 1
frame_step = max(1, frame_step)
frames = []
frame_i = 0
while True:
grabbed, frame = cap.read()
if not grabbed:
break
frame_i += 1
if frame_i == 1 or frame_i % frame_step == 0 or frame_i == orig_total:
# resize
frame = cv.resize(frame, shape)
# use RGB or Grayscale ?
if self.nb_channel == 3:
frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
else:
frame = cv.cvtColor(frame, cv.COLOR_RGB2GRAY)
# to np
frame = tf.keras.utils.img_to_array(frame) * self.rescale
# keep frame
frames.append(frame)
if len(frames) == nbframe:
break
cap.release()
if not force_no_headers and len(frames) != nbframe:
# There is a problem here
# That means that frame count in header is wrong or broken,
# so we need to force the full read of video to get the right
# frame counter
return self._get_frames(
video,
nbframe,
shape,
force_no_headers=True)
if force_no_headers and len(frames) != nbframe:
# and if we really couldn't find the real frame counter
# so we return None. Sorry, nothing can be done...
log.error("\33[1;37;41m Frame count is not OK for video %s, "
"%d total, %d extracted \33[0m" % (
video, total_frames, len(frames)))
return None
return np.array(frames)