-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
221 lines (183 loc) · 7.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import random
import numpy as np
import tensorflow as tf
import os
import glob
import matplotlib.pyplot as plt
import argparse
import time
import mlflow
import json
from keras.callbacks import EarlyStopping, ModelCheckpoint
from models import convlstm_model, LRCN_model
from keras.preprocessing.image import ImageDataGenerator
from utils import VideoFrameGenerator, save_model_ext
seed_constant = 27
np.random.seed(seed_constant)
random.seed(seed_constant)
tf.random.set_seed(seed_constant)
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--dataset", type=str, required=True,
help="path to csv Data")
# Specify the number of frames of a video that will be fed to the model as one sequence.
ap.add_argument("-l", "--seq_len", type=int, default=20,
help="length of Sequence")
ap.add_argument("-s", "--size", type=int, default=64,
help="Specify the height and width to which each video frame will be resized in our dataset.")
ap.add_argument("-m", "--model", type=str, default='LRCN',
choices=['convLSTM', 'LRCN'],
help="select model type convLSTM or LRCN")
ap.add_argument("-e", "--epochs", type=int, default=70,
help="number of epochs")
ap.add_argument("-b", "--batch_size", type=int, default=4,
help="number of batch_size")
args = vars(ap.parse_args())
DATASET_DIR = args["dataset"]
SEQUENCE_LENGTH = args["seq_len"]
IMAGE_SIZE = args["size"]
model_type = args["model"]
epochs = args["epochs"]
batch_size = args["batch_size"]
# some global params
SIZE = (IMAGE_SIZE, IMAGE_SIZE)
CHANNELS = 3
n = 0
# pattern to get videos and classes
glob_pattern= DATASET_DIR + '/{classname}/*'
# Data Extraction Start
s_time = time.time()
# Specify the list containing the names of the classes used for training. Feel free to choose any set of classes.
CLASSES_LIST = sorted(os.listdir(DATASET_DIR))
labels_string = json.dumps(CLASSES_LIST + [SEQUENCE_LENGTH, IMAGE_SIZE])
# for data augmentation
preprocessor = ImageDataGenerator(
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True
)
# Create video frame generator
train_gen = VideoFrameGenerator(
classes=CLASSES_LIST,
glob_pattern=glob_pattern,
nb_frames=SEQUENCE_LENGTH,
split=.1,
shuffle=True,
batch_size=batch_size,
target_shape=SIZE,
nb_channel=CHANNELS,
transformation=preprocessor,
use_frame_cache=False
)
# Validation Generator
valid_gen = train_gen.get_validation_generator()
# Data Size
train_size = int(train_gen.files_count)
val_size = int(valid_gen.files_count)
total_data = train_size + val_size
# Model Selection
if model_type == 'convLSTM':
print("\33[5;30;43m [INFO] Selected convLSTM Model \33[0m")
model = convlstm_model(SEQUENCE_LENGTH, IMAGE_SIZE, CLASSES_LIST)
print("\33[1;37;42m [INFO] convLSTM Created Successfully \33[0m")
elif model_type == 'LRCN':
print("\33[5;30;43m [INFO] Selected LRCN Model \33[0m")
model = LRCN_model(SEQUENCE_LENGTH, IMAGE_SIZE, CLASSES_LIST)
print("\33[1;37;42m [INFO] LRCN Created Successfully \33[0m")
else:
print('\33[91m [INFO] Model NOT Choosen!! \33[0m')
# Model Dir
while True:
path_to_model_dir = f'runs/train/{model_type}{n}'
if not os.path.isdir(path_to_model_dir):
os.makedirs(path_to_model_dir, exist_ok=True)
print(f'\33[92m [INFO] Created {path_to_model_dir} Folder \33[0m')
break
else:
n += 1
png_name = f'{model_type}_model_str.png'
path_to_model_str = os.path.join(path_to_model_dir, png_name)
# Plot the structure of the contructed model.
tf.keras.utils.plot_model(model, to_file=path_to_model_str,
show_shapes=True, show_layer_names=True)
print(f'\33[92m [INFO] Successfully Created {png_name} \33[0m')
# Create an Instance of Early Stopping Callback
early_stopping_callback = EarlyStopping(
monitor='val_loss', patience=15, mode='min', restore_best_weights=True)
# Model Checkpoint
ckpt_path = os.path.join(path_to_model_dir, "weight-{epoch:02d}-{val_accuracy:.2f}.h5")
checkpoint = ModelCheckpoint(
ckpt_path, monitor='val_accuracy',
verbose=1, save_best_only=False, mode='max'
)
# Compile the model and specify loss function, optimizer and metrics values to the model
model.compile(loss='categorical_crossentropy',
optimizer='Adam', metrics=["accuracy"])
print(f'\33[1;37;44m [INFO] {model_type} Model Training Started... \33[0m')
# MLFlow
mlflow.set_experiment('Action Recognition')
with mlflow.start_run(run_name=f'{model_type}_model'):
mlflow.tensorflow.autolog()
# Start training the model.
history = model.fit(
train_gen,
validation_data=valid_gen,
batch_size=batch_size,
epochs=epochs,
callbacks=[early_stopping_callback, checkpoint]
)
print(f'\33[1;37;42m [INFO] Successfully Completed {model_type} Model Training \33[0m')
# Training End
te_time = time.time()
t2 = (te_time-s_time)/60
print(f'\33[5;30;46m [INFO] Model Training Completed in {round(t2, 2)} Minutes \33[0m')
# Evaluate the trained model.
model_evaluation_history = model.evaluate(valid_gen)
# Get the loss and accuracy from model_evaluation_history.
model_evaluation_loss, model_evaluation_accuracy = model_evaluation_history
# Define a useful name for our model to make it easy for us while navigating through multiple saved models.
model_file_name = f'{model_type}_model_loss_{model_evaluation_loss:.3}_acc_{model_evaluation_accuracy:.3}.h5'
# Save your Model
path_to_save_model = os.path.join(path_to_model_dir, model_file_name)
# model.save(path_to_save_model)
# Saved model with class names
save_model_ext(model, path_to_save_model, meta_data=labels_string)
print(f'\33[1;37;42m [INFO] Model {model_file_name} saved Successfully.. \33[0m')
# Model Size
mb_size = os.path.getsize(f'{path_to_save_model}')
mb_size = round(mb_size / 1e+6, 2)
print(f'\33[5;30;47m [INFO] {model_type} Model Size: {mb_size} MB \33[0m')
# Plot History
metric_loss = history.history['loss']
metric_val_loss = history.history['val_loss']
metric_accuracy = history.history['accuracy']
metric_val_accuracy = history.history['val_accuracy']
# Construct a range object which will be used as x-axis (horizontal plane) of the graph.
epochs = range(len(metric_loss))
# Plot the Graph.
plt.plot(epochs, metric_loss, 'blue', label=metric_loss)
plt.plot(epochs, metric_val_loss, 'red', label=metric_val_loss)
plt.plot(epochs, metric_accuracy, 'magenta', label=metric_accuracy)
plt.plot(epochs, metric_val_accuracy, 'green', label=metric_val_accuracy)
# Add title to the plot.
plt.title(str('Model Metrics'))
# Add legend to the plot.
plt.legend(['loss', 'val_loss', 'accuracy', 'val_accuracy'])
# If the plot already exist, remove
metrics_png_name = f'{model_type}_metrics.png'
path_to_metrics = os.path.join(path_to_model_dir, metrics_png_name)
plt.savefig(path_to_metrics, bbox_inches='tight')
print(f'\33[1;37;42m [INFO] Successfully Saved {metrics_png_name} \33[0m')
# MLFlow Metrics
mlflow.log_metric('Input Image Size', IMAGE_SIZE)
mlflow.log_metric('Total Image Data', total_data)
mlflow.log_metric('Train Size', train_size)
mlflow.log_metric('Validation Size', val_size)
mlflow.log_artifact(f'{path_to_metrics}')
mlflow.log_metric('Model Size MB', mb_size)
print("\33[1;30;43m [INFO] MLFlow Run: \33[0m", mlflow.active_run().info.run_uuid)
mlflow.end_run()
# Total Time
e_time = time.time()
t3 = (e_time-s_time)/60
print(f'\33[5;30;46m [INFO] Completed All process in {round(t3, 2)} Minutes \33[0m')