-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheckquality.py
45 lines (37 loc) · 1.5 KB
/
checkquality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import cv2
from PIL import Image
import numpy as np
# Function to calculate image sharpness
def calculate_sharpness(image):
# Convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Use the Laplacian method to calculate the variance
laplacian_var = cv2.Laplacian(gray, cv2.CV_64F).var()
return laplacian_var
# Function to analyze image composition
def analyze_composition(image):
# Calculate the number of channels
channels = image.shape[2] if len(image.shape) == 3 else 1
# Calculate the dominant color in BGR format
mean_color = cv2.mean(image)[:3] # Get BGR mean color
return channels, mean_color
# Function to check for visible watermarks
def detect_image_quality(img_array):
# Get image resolution
height, width = img_array.shape[:2]
resolution = f"{width} x {height}"
# Analyze composition
channels, mean_color = analyze_composition(img_array)
# Calculate sharpness
sharpness = calculate_sharpness(img_array)
# return image analysis results
return resolution, channels, mean_color, sharpness
if __name__ == '__main__':
# Replace 'image_path.jpg' with the path to your image
file = 'input_images/watermark.jpeg'
img_array = np.array(Image.open(file))
resolution, channels, mean_color, sharpness = detect_image_quality(img_array)
print(f"Resolution: {resolution}")
print(f"Channels: {channels}")
print(f"Mean Color (BGR): {mean_color}")
print(f"Sharpness (Laplacian Variance): {sharpness}")