-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathl1ls_featuresign_Couple.m
278 lines (225 loc) · 8.6 KB
/
l1ls_featuresign_Couple.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 3D Human Pose Estimation using Couple Sparse Coding %
%%%% Written by Mohammadreza Zolfaghari and Amin Jourablo %%%%%%%%%%%%
%%% If you are using this code for your research, -------------------%
%%%%% please cite the following paper: ------------------------------%
%%%%% 3D human pose estimation from image using ---------------------%
%%%%% couple sparse coding, MVA 2014-------------------------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Xout = l1ls_featuresign_Couple (A, Y, B, Z, alpha, gamma, Xinit)
% The feature-sign search algorithm
% L1-regularized least squares problem solver
%
% This code solves the following problem:
%
% minimize_x 0.5*||y - A*x||^2 + 0.5*alpha*||z - B*x||^2 + gamma*||x||_1
%
% The ideas of the algorithm is described in the following paper:
% 'Efficient Sparse Codig Algorithms', Honglak Lee, Alexis Battle, Rajat Raina, Andrew Y. Ng,
% Advances in Neural Information Processing Systems (NIPS) 19, 2007
%
% Written by Honglak Lee <[email protected]>
% Copyright 2007 by Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng
% Changed by Mohammadreza Zolfaghari, Amin Jourabloo
warning('off', 'MATLAB:divideByZero');
use_Xinit = false;
if exist('Xinit', 'var')
use_Xinit= true;
end
Xout= zeros(size(A,2), size(Y,2));
AtA = A'*A;
AtY = A'*Y;
BtB = B'*B;
BtZ = B'*Z;
rankA = rank(AtA);
% rankA = min(size(A,1)-10, size(A,2)-10);
for i=1:size(Y,2)
if mod(i, 100)==0, fprintf('.'); end %fprintf(1, 'l1ls_featuresign: %d/%d\r', i, size(Y,2)); end
if use_Xinit
idx1 = find(Xinit(:,i)~=0);
maxn = min(length(idx1), rankA);
xinit = zeros(size(Xinit(:,i)));
xinit(idx1(1:maxn)) = Xinit(idx1(1:maxn), i);
[Xout(:,i), fobj]= ls_featuresign_sub_bilevel (A, Y(:,i), AtA, AtY(:, i), B, Z(:,i), BtB, BtZ(:,i), alpha, gamma, xinit);
else
[Xout(:,i), fobj]= ls_featuresign_sub_bilevel (A, Y(:,i), AtA, AtY(:, i), B, Z(:,i), BtB, BtZ(:,i), alpha, gamma);
end
end
fprintf(1, '\n');
warning('on', 'MATLAB:divideByZero');
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x, fobj] = ls_featuresign_sub_bilevel (A, y, AtA, Aty, B, z, BtB, Btz, alpha, gamma, xinit)
[L,M] = size(A);
%rankA = min(size(A,1)-10, size(A,2)-10);
rankA = max( rank(AtA), rank(BtB) );
% Step 1: Initialize
usexinit = false;
if ~exist('xinit', 'var') || isempty(xinit)
xinit= [];
x= sparse(zeros(M,1));
theta= sparse(zeros(M,1));
act= sparse(zeros(M,1));
allowZero = false;
else
% xinit = [];
x= sparse(xinit);
theta= sparse(sign(x));
act= sparse(abs(theta));
usexinit = true;
allowZero = true;
end
fname_debug = sprintf('../tmp/fsdebug_%x.mat', datestr(now, 30));
fobj = 0; %fobj_featuresign(x, A, y, AtA, Aty, gamma);
ITERMAX=1000;
optimality1=false;
for iter=1:ITERMAX
% check optimality0
act_indx0 = find(act == 0);
%grad = AtA*sparse(x) - Aty;
grad = AtA*sparse(x) - Aty + alpha*BtB*sparse(x) - alpha*Btz;
theta = sign(x);
optimality0= false;
% Step 2
[mx,indx] = max (abs(grad(act_indx0)));
if ~isempty(mx) && (mx >= gamma) && (iter>1 || ~usexinit)
act(act_indx0(indx)) = 1;
theta(act_indx0(indx)) = -sign(grad(act_indx0(indx)));
usexinit= false;
else
optimality0= true;
if optimality1
break;
end
end
act_indx1 = find(act == 1);
if length(act_indx1)>rankA
% warning('sparsity penalty is too small: too many coefficients are activated');
return;
end
if isempty(act_indx1) %length(act_indx1)==0
% if ~assert(max(abs(x))==0), save(fname_debug, 'A', 'y', 'gamma', 'xinit'); error('error'); end
if allowZero, allowZero= false; continue, end
return;
end
% if ~assert(length(act_indx1) == length(find(act==1))), save(fname_debug, 'A', 'y', 'gamma', 'xinit'); error('error'); end
k=0;
while 1
k=k+1;
if k>ITERMAX
% warning('Maximum number of iteration reached. The solution may not be optimal');
% save(fname_debug, 'A', 'y', 'gamma', 'xinit');
return;
end
if isempty(act_indx1) % length(act_indx1)==0
% if ~assert(max(abs(x))==0), save(fname_debug, 'A', 'y', 'gamma', 'xinit'); error('error'); end
if allowZero, allowZero= false; break, end
return;
end
% Step 3: feature-sign step
[x, theta, act, act_indx1, optimality1, lsearch, fobj] = compute_FS_step_Couple (x, A, y, AtA, Aty, B, z, BtB, Btz, theta, act, act_indx1, alpha, gamma);
% Step 4: check optimality condition 1
if optimality1 break; end;
if lsearch >0 continue; end;
end
end
if iter >= ITERMAX
%warning('Maximum number of iteration reached. The solution may not be optimal');
% save(fname_debug, 'A', 'y', 'gamma', 'xinit');
end
if 0 % check if optimality
act_indx1 = find(act==1);
grad = AtA*sparse(x) - Aty + alpha*BtB*sparse(x) - alpha*Btz;
norm(grad(act_indx1) + gamma.*sign(x(act_indx1)),'inf')
find(abs(grad(setdiff(1:M, act_indx1)))>gamma)
end
fobj = fobj_featuresign(x, A, y, AtA, Aty, B, z, BtB, Btz, alpha, gamma);
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x, theta, act, act_indx1, optimality1, lsearch, fobj] = compute_FS_step_Couple (x, A, y, AtA, Aty, B, z, BtB, Btz, theta, act, act_indx1, alpha, gamma)
x2 = x(act_indx1);
% A2 = A(:, act_indx1);
AtA2 = AtA(act_indx1, act_indx1);
BtB2 = BtB(act_indx1, act_indx1);
theta2 = theta(act_indx1);
% call matlab optimization solver..
%x_new = AtA2 \ ( Aty(act_indx1) - gamma.*theta2 ); % RR
x_new = (AtA2 + alpha*BtB2) \ ( Aty(act_indx1) + alpha*Btz(act_indx1) - gamma.*theta2 ); % RR
% opts.POSDEF=true; opts.SYM=true; % RR
% x_new = linsolve(AtA2, ( Aty(act_indx1) - gamma.*theta2 ), opts); % RR
optimality1= false;
if (sign(x_new) == sign(x2))
optimality1= true;
x(act_indx1) = x_new;
fobj = 0; %fobj_featuresign(x, A, y, AtA, Aty, gamma);
lsearch = 1;
return;
end
% do line search: x -> x_new
progress = (0 - x2)./(x_new - x2);
lsearch=0;
%a= 0.5*sum((A2*(x_new- x2)).^2);
%a= 0.5*sum((A(:, act_indx1)*(x_new- x2)).^2);
a = 0.5*sum((A(:, act_indx1)*(x_new- x2)).^2) + 0.5*alpha*sum((B(:, act_indx1)*(x_new- x2)).^2);
%b = (x2'*AtA2*(x_new- x2) - (x_new- x2)'*Aty(act_indx1));
b = (x2'*(AtA2+alpha*BtB2)*(x_new- x2) - (x_new- x2)'*Aty(act_indx1) - alpha*(x_new- x2)'*Btz(act_indx1));
fobj_lsearch = gamma*sum(abs(x2));
[sort_lsearch, ix_lsearch] = sort([progress',1]);
remove_idx=[];
for i = 1:length(sort_lsearch)
t = sort_lsearch(i); if t<=0 | t>1 continue; end
s_temp= x2+ (x_new- x2).*t;
fobj_temp = a*t^2 + b*t + gamma*sum(abs(s_temp));
if fobj_temp < fobj_lsearch
fobj_lsearch = fobj_temp;
lsearch = t;
if t<1 remove_idx = [remove_idx ix_lsearch(i)]; end % remove_idx can be more than two..
elseif fobj_temp > fobj_lsearch
break;
else
if (sum(x2==0)) == 0
lsearch = t;
fobj_lsearch = fobj_temp;
if t<1 remove_idx = [remove_idx ix_lsearch(i)]; end % remove_idx can be more than two..
end
end
end
% if ~assert(lsearch >=0 && lsearch <=1), save(fname_debug, 'A', 'y', 'gamma', 'xinit'); error('error'); end
if lsearch >0
% update x
x_new = x2 + (x_new - x2).*lsearch;
x(act_indx1) = x_new;
theta(act_indx1) = sign(x_new); % this is not clear...
end
% if x encounters zero along the line search, then remove it from
% active set
if lsearch<1 & lsearch>0
%remove_idx = find(x(act_indx1)==0);
remove_idx = find(abs(x(act_indx1)) < eps);
x(act_indx1(remove_idx))=0;
theta(act_indx1(remove_idx))=0;
act(act_indx1(remove_idx))=0;
act_indx1(remove_idx)=[];
end
fobj_new = 0; %fobj_featuresign(x, A, y, AtA, Aty, gamma);
fobj = fobj_new;
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [f, g] = fobj_featuresign(x, A, y, AtA, Aty, B, z, BtB, Btz, alpha, gamma)
f = 0.5*norm(y-A*x)^2;
f = f + 0.5*alpha*norm(z-B*x)^2;
f = f + gamma*norm(x,1);
if nargout >1
g = AtA*x - Aty + alpha*BtB*x - alpha*Btz;
g = g + gamma*sign(x);
end
return;
%%%%%%%%%%%%%%%%%%%%%
function retval = assert(expr)
retval = true;
if ~expr
% error('Assertion failed');
%warning ('Assertion failed');
retval = false;
end
return