|
| 1 | +import numpy as np |
| 2 | +import argparse |
| 3 | +from scipy import io |
| 4 | +from sklearn.metrics import confusion_matrix |
| 5 | + |
| 6 | +parser = argparse.ArgumentParser(description="ESZSL") |
| 7 | + |
| 8 | +parser.add_argument('-data', '--dataset', help='choose between APY, AWA2, CUB, SUN', default='AWA2', type=str) |
| 9 | +parser.add_argument('-mode', '--mode', help='train/test, if test set alpha, gamma to best values below', default='train', type=str) |
| 10 | +parser.add_argument('-alpha', '--alpha', default=0, type=int) |
| 11 | +parser.add_argument('-gamma', '--gamma', default=0, type=int) |
| 12 | + |
| 13 | +""" |
| 14 | +
|
| 15 | +Best Values of (Alpha, Gamma) found by validation & corr. test accuracies: |
| 16 | +
|
| 17 | +AWA2 -> (3, 0) -> Test Acc : 0.5482 |
| 18 | +CUB -> (3, -1) -> Test Acc : 0.5394 |
| 19 | +SUN -> (3, 2) -> Test Acc : 0.5569 |
| 20 | +APY -> (3, -1) -> Test Acc : 0.3856 |
| 21 | +
|
| 22 | +""" |
| 23 | + |
| 24 | +class ESZSL(): |
| 25 | + |
| 26 | + def __init__(self, args): |
| 27 | + |
| 28 | + self.args = args |
| 29 | + |
| 30 | + data_folder = '../datasets/'+args.dataset+'/' |
| 31 | + res101 = io.loadmat(data_folder+'res101.mat') |
| 32 | + att_splits=io.loadmat(data_folder+'att_splits.mat') |
| 33 | + |
| 34 | + train_loc = 'train_loc' |
| 35 | + val_loc = 'val_loc' |
| 36 | + test_loc = 'test_unseen_loc' |
| 37 | + |
| 38 | + feat = res101['features'] |
| 39 | + self.X_train = feat[:,np.squeeze(att_splits[train_loc]-1)] |
| 40 | + self.X_val = feat[:,np.squeeze(att_splits[val_loc]-1)] |
| 41 | + self.X_trainval = np.concatenate((self.X_train, self.X_val), axis=1) |
| 42 | + self.X_test = feat[:,np.squeeze(att_splits[test_loc]-1)] |
| 43 | + |
| 44 | + labels = res101['labels'] |
| 45 | + labels_train = labels[np.squeeze(att_splits[train_loc]-1)] |
| 46 | + self.labels_val = labels[np.squeeze(att_splits[val_loc]-1)] |
| 47 | + labels_trainval = np.concatenate((labels_train, self.labels_val), axis=0) |
| 48 | + self.labels_test = labels[np.squeeze(att_splits[test_loc]-1)] |
| 49 | + |
| 50 | + train_labels_seen = np.unique(labels_train) |
| 51 | + val_labels_unseen = np.unique(self.labels_val) |
| 52 | + trainval_labels_seen = np.unique(labels_trainval) |
| 53 | + test_labels_unseen = np.unique(self.labels_test) |
| 54 | + |
| 55 | + i=0 |
| 56 | + for labels in train_labels_seen: |
| 57 | + labels_train[labels_train == labels] = i |
| 58 | + i+=1 |
| 59 | + |
| 60 | + j=0 |
| 61 | + for labels in val_labels_unseen: |
| 62 | + self.labels_val[self.labels_val == labels] = j |
| 63 | + j+=1 |
| 64 | + |
| 65 | + k=0 |
| 66 | + for labels in trainval_labels_seen: |
| 67 | + labels_trainval[labels_trainval == labels] = k |
| 68 | + k+=1 |
| 69 | + |
| 70 | + l=0 |
| 71 | + for labels in test_labels_unseen: |
| 72 | + self.labels_test[self.labels_test == labels] = l |
| 73 | + l+=1 |
| 74 | + |
| 75 | + self.gt_train = np.zeros((labels_train.shape[0], len(train_labels_seen))) |
| 76 | + self.gt_train[np.arange(labels_train.shape[0]), np.squeeze(labels_train)] = 1 |
| 77 | + |
| 78 | + self.gt_trainval = np.zeros((labels_trainval.shape[0], len(trainval_labels_seen))) |
| 79 | + self.gt_trainval[np.arange(labels_trainval.shape[0]), np.squeeze(labels_trainval)] = 1 |
| 80 | + |
| 81 | + sig = att_splits['att'] |
| 82 | + self.train_sig = sig[:, train_labels_seen-1] |
| 83 | + self.val_sig = sig[:, val_labels_unseen-1] |
| 84 | + self.trainval_sig = sig[:, trainval_labels_seen-1] |
| 85 | + self.test_sig = sig[:, test_labels_unseen-1] |
| 86 | + |
| 87 | + def find_W(self, X, y, sig, alpha, gamma): |
| 88 | + |
| 89 | + part_0 = np.linalg.pinv(np.matmul(X, X.transpose()) + (10**alpha)*np.eye(X.shape[0])) |
| 90 | + part_1 = np.matmul(np.matmul(X, y), sig.transpose()) |
| 91 | + part_2 = np.linalg.pinv(np.matmul(sig, sig.transpose()) + (10**gamma)*np.eye(sig.shape[0])) |
| 92 | + |
| 93 | + W = np.matmul(np.matmul(part_0, part_1), part_2) |
| 94 | + |
| 95 | + return W |
| 96 | + |
| 97 | + def find_hyperparamters(self): |
| 98 | + |
| 99 | + print('Training...\n') |
| 100 | + |
| 101 | + best_acc = 0.0 |
| 102 | + |
| 103 | + for alph in range(-3, 4): |
| 104 | + for gamm in range(-3, 4): |
| 105 | + W = self.find_W(self.X_train, self.gt_train, self.train_sig, alph, gamm) |
| 106 | + acc = self.zsl_acc(self.X_val, W, self.labels_val, self.val_sig) |
| 107 | + print('Val Acc:{}; Alpha:{}; Gamma:{}\n'.format(acc, alph, gamm)) |
| 108 | + if acc>best_acc: |
| 109 | + best_acc = acc |
| 110 | + alpha = alph |
| 111 | + gamma = gamm |
| 112 | + |
| 113 | + print('\nBest Val Acc:{} with Alpha:{} & Gamma:{}\n'.format(best_acc, alpha, gamma)) |
| 114 | + |
| 115 | + return alpha, gamma |
| 116 | + |
| 117 | + def zsl_acc(self, X, W, y_true, sig): # Class Averaged Top-1 Accuarcy |
| 118 | + |
| 119 | + class_scores = np.matmul(np.matmul(X.transpose(), W), sig) |
| 120 | + predicted_classes = np.array([np.argmax(output) for output in class_scores]) |
| 121 | + cm = confusion_matrix(y_true, predicted_classes) |
| 122 | + cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] |
| 123 | + acc = sum(cm.diagonal())/sig.shape[1] |
| 124 | + |
| 125 | + return acc |
| 126 | + |
| 127 | + def evaluate(self): |
| 128 | + |
| 129 | + if self.args.mode=='train': alpha, gamma = self.find_hyperparamters() |
| 130 | + else: alpha, gamma = self.args.alpha, self.args.gamma |
| 131 | + |
| 132 | + best_W = self.find_W(self.X_trainval, self.gt_trainval, self.trainval_sig, alpha, gamma) # combine train and val |
| 133 | + |
| 134 | + test_acc = self.zsl_acc(self.X_test, best_W, self.labels_test, self.test_sig) |
| 135 | + |
| 136 | + print('Test Acc:{}'.format(test_acc)) |
| 137 | + |
| 138 | +args = parser.parse_args() |
| 139 | +model = ESZSL(args) |
| 140 | +model.evaluate() |
0 commit comments