-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgallop_streamlit.py
246 lines (215 loc) · 11.7 KB
/
gallop_streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# coding: utf-8
# Copyright (c) Mark Spillman.
# Distributed under the terms of the GPL v3 License.
"""
GALLOP web app, built with Streamlit.
"""
import time
import os
import json
import torch
import streamlit as st
import numpy as np
import pandas as pd
from gallop.optim.local import minimise
from gallop import streamlit_utils as su
from gallop import optim
from gallop import structure
from gallop import multiGPU
st.set_page_config(page_title='GALLOP Web App', page_icon = ":gem:",
layout = 'centered', initial_sidebar_state = 'auto')
# Top section
st.title("GALLOP")
st.sidebar.title("Options")
function = st.sidebar.radio("Choose function",
["GALLOP","View previous results",])
# Re-enable this in a future update, once help files are written!
# "Instructions"])
if "View" in function:
su.browse_solved_zips()
#elif "Instructions" in function:
# su.instructions()
elif function == "GALLOP":
# First get the settings for the runs
st.sidebar.markdown("**Settings**")
all_settings = su.sidebar()
# Now we upload the files needed for GALLOP - DASH fit files and Z-matrices
uploaded_files, sdi, gpx, out, hkl, ins, cif, json_settings, zms, \
dbf, load_settings_from_file, pawley_program, clear_files, \
use_profile, step = su.files.get_files()
st.text("")
st.text("")
all_files=st.button("Solve")
if all_files and len(zms) == 0:
st.write("No files uploaded. Upload files or select from examples")
elif all_files and len(zms) > 0:
if load_settings_from_file and json_settings is not None:
all_settings.update(json_settings)
st.text("")
st.text("")
# All files prepared, now need to construct the GALLOP structure object
# and get the settings for the GALLOP runs.
# If the structure name hasn't been changed, use the Pawley files to
# give it a meaningful name
all_settings["structure_name"] = su.structure.get_name(all_settings,
pawley_program, sdi, gpx, out,
cif, ins)
struct = structure.Structure(
name=all_settings["structure_name"],
ignore_H_atoms=all_settings["ignore_H_atoms"])
if all_settings["temperature"] > 0.0:
struct.temperature = all_settings["temperature"]
su.structure.add_data(struct, all_settings, pawley_program, sdi, gpx, out, cif,
ins, hkl)
su.structure.add_zmatrices(struct, zms, all_settings)
minimiser_settings = su.structure.get_minimiser_settings(struct,
all_settings, use_profile, step)
if all_settings["memory_opt"]:
su.improve_GPU_memory_use(struct, minimiser_settings)
st.write("Attempting to reduce GPU memory use at the expense of "
"reduced Local Optimisation speed")
# Create the swarm object and generate initial positions for the particles
swarm = su.structure.get_swarm(struct, all_settings)
external, internal = swarm.get_initial_positions(MDB=dbf)
external = np.array(external)
internal = np.array(internal)
failed = False
su.files.remove_uploaded_files(clear_files, uploaded_files)
su.display_info(struct, all_settings, minimiser_settings,
pawley_program)
st.write("")
st.write("")
st.markdown("**Progress**")
if all_settings["find_lr"]:
all_settings, minimiser_settings, failed = su.structure.find_learning_rate(
all_settings,
minimiser_settings,
struct,
external,
internal)
else:
minimiser_settings["learning_rate"] = all_settings["lr"]
if not failed:
# Now dump all of the settings used to a JSON so it can be inspected
# or read in at a later stage. This will be included with the zip
# that the user downloads to get their CIFs.
settings_file = struct.name+"_GALLOP_Settings.json"
with open(os.path.join(os.getcwd(),settings_file), "w") as f:
json.dump(all_settings, f, indent=4)
f.close()
# Outer loop over the number of independent runs requested
nruns = int(all_settings["n_GALLOP_runs"])
for run in range(nruns):
if run > 0:
# New swarm and starting positions for each independent run
swarm = su.structure.get_swarm(struct, all_settings)
external, internal = swarm.get_initial_positions(MDB=dbf)
external = np.array(external)
internal = np.array(internal)
st.write("")
result_info = []
start_time = time.time()
run_placeholder = st.empty() # Which run is currently active
iter_placeholder = st.empty() # Which iteration of run N
progress_bar_placeholder = st.empty()
result_placeholder = st.empty()
lr = minimiser_settings["learning_rate"]
GPU_split = all_settings["particle_division"]
n_GPUs = torch.cuda.device_count()
if (GPU_split is not None and n_GPUs >= len(GPU_split)):
import torch.multiprocessing as mp
mp.set_start_method('spawn', force=True)# For use with CUDA on
# Unix systems
pool = mp.Pool(processes = len(GPU_split))
with run_placeholder:
if run+1 == nruns:
st.write(f"Run {run+1} of {nruns}.")
else:
st.write(f"Run {run+1} of {nruns}...")
zipname, filename = su.files.get_zipname(struct, all_settings, run)
# Inner loop over GALLOP iterations
for i in range(int(all_settings["n_GALLOP_iters"])):
itertext = su.get_itertext(i, all_settings)
iter_placeholder.text(itertext)
# Run the local optimisation component of GALLOP
with progress_bar_placeholder:
try:
if (GPU_split is not None and n_GPUs >= len(GPU_split)):
result = multiGPU.minimise(i, struct, swarm,
external, internal, GPU_split,
minimiser_settings, pool, start_time=start_time)
else:
result = optim.local.minimise(struct,
external=external,
internal=internal,
run=i, start_time=start_time,
**minimiser_settings)
except RuntimeError as e:
if "memory" in str(e):
st.error("GPU memory error! Reset GALLOP, then:")
st.write("Try reducing number of particles, the "
"number of reflections or use the Reduce "
"performance option in Local optimiser "
"settings.")
st.write("Error code below:")
st.write("")
st.text(str(e))
else:
st.error("An unknown error occurred:")
st.text(str(e))
break
chi_2 = result["chi_2"]
result_info.append([chi_2.min().item(),
(time.time() - start_time)/60])
result_info_df = pd.DataFrame(result_info, columns=["best chi2",
"time / min"])
result_info_df.index = np.arange(1, len(result_info_df) + 1)
# Now display some output to the user, including a link to
# download the CIFs
col1, col2 = result_placeholder.columns([1,2])
with col1:
# Zip and then delete the cifs, then make a download
# link for the zip file
su.files.get_download_link(run, i, zipname, result,
all_settings, filename, struct)
st.table(result_info_df.iloc[::-1])
with col2:
swarm_plot, structure_plot, profile_plot = st.tabs([
"Swarms", "View structure", "View Profile"])
# Show the swarms
with swarm_plot:
su.plots.plot_swarms(chi_2, all_settings)
# Display the structure
with structure_plot:
su.plots.plot_structure(result, struct, all_settings, i)
# If using DASH data, plot the diffraction data
with profile_plot:
su.plots.plot_profile(struct, result, i)
# Perform the PSO update and get the new starting points
external, internal = swarm.update_position(result=result,
verbose=False)
# Now optionally randomise the worst performing particles if
# requested by the user.
if all_settings["randomise_worst"]:
if (i+1) % all_settings["randomise_freq"] == 0:
pcnt = all_settings["randomise_percentage"] / 100.
to_randomise = swarm.best_chi_2 >= np.percentile(
swarm.best_chi_2, 100.-pcnt)
external[to_randomise] = np.random.uniform(-1, 1,
size=external[to_randomise].shape)
internal[to_randomise] = np.random.uniform(-np.pi,
np.pi,size=internal[to_randomise].shape)
swarm.best_chi_2[to_randomise] = np.inf
swarm.velocity[to_randomise] *= 0
# If using torsion shadowing, check if the number of assigned
# iterations has passed, and if so, disable shadowing.
if ((i+1)==all_settings["shadow_iters"] and
all_settings["torsion_shadowing"]):
minimiser_settings["torsion_shadowing"] = False
# Add a little random noise to the internal DoF as they
# will all be the same. This is roughly +/- 10 deg
internal += np.random.uniform(-0.157,0.157,
size=internal.shape)
if (GPU_split is not None and n_GPUs >= len(GPU_split)):
pool.close()
pool.join()