-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathawgn.py
52 lines (36 loc) · 1.75 KB
/
awgn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import argparse
import numpy
def read_signal_data(filename):
with open(filename) as f:
content = f.readlines()
return [numpy.complex(x.strip()) for x in content]
def write_noised_signal_data(filename, noised):
formatted = [str(noised[i]).replace(")", "").replace("(", "") for i in range(0, len(noised))]
with open(filename, 'w+') as fi:
fi.write("\n".join(formatted))
def measure_power(x):
return float(sum([(float(1) / float(len(x))) * numpy.absolute(x[i]) ** 2 for i in range(0, len(x))]))
def generate_random_vector(signal):
re = numpy.random.normal(0, 1, len(signal))
im = numpy.random.normal(0, 1, len(signal))
return [numpy.complex(re[x], im[x]) for x in range(0, len(re))]
def convert_snr_to_lin(snr):
return float(10 ** (snr / 20))
def noise_signal(orig_signal, snr):
variance = numpy.sqrt(measure_power(orig_signal) / (2 * convert_snr_to_lin(snr)))
random_data = generate_random_vector(orig_signal)
print len(random_data), variance
noise = [random_data[i] * variance for i in range(0, len(random_data))]
return [(orig_signal[i]) + noise[i] for i in range(0, len(orig_signal))]
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--src', type=str, required=True, dest='src')
parser.add_argument('--dst', type=str, required=True, dest='dst')
parser.add_argument('--snr', type=float, required=True, dest='snr')
return parser.parse_args()
if __name__ == '__main__':
signal = read_signal_data(parse_arguments().src)
print signal
signal_with_noise = noise_signal(signal, parse_arguments().snr)
print signal_with_noise
write_noised_signal_data(parse_arguments().dst, signal_with_noise)