-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathabm_strategies.py
41 lines (31 loc) · 1.12 KB
/
abm_strategies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import argparse
import os
import sys
import random
import numpy as np
from farmer import Farmer
from river import River
from learning.reinforcement import Reinforcement
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("alpha", type=float, help="alpha")
parser.add_argument("lambda_", type=float, help="lambda")
parser.add_argument("seed", nargs="?", default=None, type=int, help="seed")
args = parser.parse_args()
rng = np.random.default_rng(args.seed)
print(f"initial,welfare_pi,welfare_liter,strat0,strat1,strat2,strat3")
for replication in range(10000):
r = River(1)
for _ in range(4):
r.add_farmer(
learn_model=Reinforcement,
learn_args=dict(alpha=args.alpha, lambda_=args.lambda_, rng=rng),
)
rounds = r.many_rounds(5000)
next_round = r.another_round()
CSV_prep = (
[r.initial]
+ next_round["welfare"]
+ [str(g[0]) + "+" + g[1].name for g in next_round["choices"]]
)
print(",".join(map(str, CSV_prep)), flush=True)