-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathabm_stoch.py
57 lines (48 loc) · 1.58 KB
/
abm_stoch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
import os
import sys
import random
import numpy as np
from farmer import Farmer
from river import River
from learning.reinforcement import Reinforcement
from helpers import *
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("alpha", type=float, help="alpha")
parser.add_argument("lambda_", type=float, help="lambda")
parser.add_argument("seed", nargs="?", default=None, type=int, help="seed")
parser.add_argument("replications", type=int, help="replications")
parser.add_argument("rounds", type=int, help="rounds per replication")
args = parser.parse_args()
rng = np.random.default_rng(args.seed)
print(
f"initial,welfare_pi,welfare_liter,"
+ ",".join(
[
f"p{k}i{i}A{j}"
for k in range(0, 4)
for i in range(0, 4)
for j in range(1, 6)
]
)
)
for replication in range(args.replications):
r = River(None)
for _ in range(4):
r.add_farmer(
learn_model=Reinforcement,
learn_args=dict(alpha=args.alpha, lambda_=args.lambda_, rng=rng),
)
rounds = r.many_rounds(
args.rounds, stochastic_inflow=lambda: np.random.choice(5)
)
CSV_prep = (
[r.initial]
+ last_welfare(rounds)
+ last_probabilities(r, 0)
+ last_probabilities(r, 1)
+ last_probabilities(r, 2)
+ last_probabilities(r, 3)
)
print(",".join(map(str, CSV_prep)))