forked from pytorch/serve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregression_utils.py
82 lines (70 loc) · 2.89 KB
/
regression_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import sys
import tempfile
import urllib.request
from ts_scripts.shell_utils import rm_file
REPO_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..")
sys.path.append(REPO_ROOT)
ROOT_DIR = f"{tempfile.gettempdir()}/workspace/"
def generate_densenet_test_model_archive():
print("## Started densenet mar creation")
model_store_dir = os.path.join(ROOT_DIR, "model_store")
model_name = "densenet161_v1"
version = "1.1"
model_file = os.path.join(
REPO_ROOT, "examples", "image_classifier", "densenet_161", "model.py"
)
serialized_model_file_name = "densenet161-8d451a50.pth"
serialized_model_file_url = (
f"https://download.pytorch.org/models/{serialized_model_file_name}"
)
serialized_file_path = os.path.join(model_store_dir, serialized_model_file_name)
extra_files = os.path.join(
REPO_ROOT, "examples", "image_classifier", "index_to_name.json"
)
handler = "image_classifier"
os.makedirs(model_store_dir, exist_ok=True)
os.chdir(model_store_dir)
# Download & create DenseNet Model Archive
urllib.request.urlretrieve(serialized_model_file_url, serialized_model_file_name)
# create mar command
cmd = f"torch-model-archiver \
--model-name {model_name} \
--version {version} \
--model-file {model_file} \
--serialized-file {serialized_file_path} \
--extra-files {extra_files} \
--handler {handler} \
--force"
print(f"## In directory: {os.getcwd()} | Executing command: {cmd}")
sys_exit_code = os.system(cmd)
os.remove(serialized_file_path)
os.chdir(REPO_ROOT)
return sys_exit_code
def run_pytest():
print("## Started regression pytests")
os.chdir(os.path.join(REPO_ROOT, "test", "pytest"))
cmd = (
"python -m grpc_tools.protoc -I ../../third_party/google/rpc --proto_path=../../frontend/server/src/main/resources/proto/"
" --python_out=. --grpc_python_out=. ../../frontend/server/src/main/resources/proto/inference.proto"
" ../../frontend/server/src/main/resources/proto/management.proto"
)
status = os.system(cmd)
if status != 0:
print("Could not generate gRPC client stubs")
sys.exit(1)
cmd = "python -m pytest -v ./"
print(f"## In directory: {os.getcwd()} | Executing command: {cmd}")
status = os.system(cmd)
rm_file("*_pb2*.py", True)
return status
def test_regression():
print("## Started regression tests")
# generate_densenet_test_model_archive $MODEL_STORE
model_creation_exit_code = generate_densenet_test_model_archive()
py_test_exit_code = run_pytest()
# If any one of the steps fail, exit with error
if model_creation_exit_code != 0:
sys.exit("## Densenet mar creation failed !")
if py_test_exit_code != 0:
sys.exit("## TorchServe Regression Pytests Failed")