-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScheduler.hpp
574 lines (479 loc) · 20.7 KB
/
Scheduler.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
#pragma once
#include <chrono>
#include <iomanip>
#include <map>
#include <vector>
#include <cstring>
#include <memory>
#include <ctime>
#include <utility>
#include <string>
#include "ctpl_stl.h"
#include "croncpp.h"
namespace Cppsched {
using Clock = std::chrono::system_clock;
class BadDateFormat : public std::exception {
public:
explicit BadDateFormat(std::string msg) : msg_(std::move(msg)) {}
const char *what() const noexcept override { return (msg_.c_str()); }
private:
std::string msg_;
};
class TaskAlreadyExists : public std::exception {
public:
explicit TaskAlreadyExists(std::string msg) : msg_(std::move(msg)) {}
const char *what() const noexcept override { return (msg_.c_str()); }
private:
std::string msg_;
};
class BadCronExpression : public std::exception {
public:
explicit BadCronExpression(std::string msg) : msg_(std::move(msg)) {}
const char *what() const noexcept override { return (msg_.c_str()); }
private:
std::string msg_;
};
struct TaskReport {
TaskReport( std::string id, std::string time_str, std::string next_run_str, bool enabled): id(id), time_str(time_str), next_run_str(next_run_str), enabled(enabled)
{}
std::string id;
std::string time_str;
std::string next_run_str;
bool enabled;
};
class Task {
public:
explicit Task(const std::string &task_id, const std::string &time_str, std::function<void()> &&f, bool recur = false, bool interval = false, bool enabled = true) :
id(task_id), time_str(time_str), f(std::move(f)), recur(recur), interval(interval), enabled(enabled) {}
virtual Clock::time_point get_new_time() const = 0;
std::string id; // Unique ID or user-defined name for the task
std::string time_str; // String represention of the time trigger
std::function<void()> f;
bool recur;
bool interval;
bool enabled; // Flag to indicate if the task is enabled
bool removed {false}; // Flag to indicate if the task is removed. Helps dealing with interval removal.
};
class InTask : public Task {
public:
explicit InTask(const std::string &task_id, const std::string &time_str, std::function<void()> &&f) : Task(task_id, time_str, std::move(f)) {}
// dummy time_point because it's not used
Clock::time_point get_new_time() const override { return Clock::time_point(Clock::duration(0)); }
};
class AtTask : public Task { // Basically same as in
public:
explicit AtTask(const std::string &task_id, const std::string &time_str, std::function<void()> &&f) : Task(task_id, time_str, std::move(f)) {}
// dummy time_point because it's not used
Clock::time_point get_new_time() const override { return Clock::time_point(Clock::duration(0)); }
};
class EveryTask : public Task {
public:
EveryTask(const std::string &task_id, const std::string &time_str, Clock::duration time, std::function<void()> &&f, bool interval = false) :
Task(task_id, time_str, std::move(f), true, interval), time(time) {}
Clock::time_point get_new_time() const override {
return Clock::now() + time;
};
Clock::duration time;
};
class CronTask : public Task {
public:
CronTask(const std::string &task_id, const std::string &time_str, std::string expression, std::function<void()> &&f) : Task(task_id, time_str, std::move(f), true),
exp(std::move(expression)) {}
Clock::time_point get_new_time() const override {
Clock::time_point next;
try
{
auto cron = cron::make_cron(exp);
next = cron::cron_next(cron, Clock::now());
}
catch (cron::bad_cronexpr const & e)
{
throw BadCronExpression(std::string(e.what()));
}
return next;
};
std::string exp;
};
inline bool try_parse(std::tm &tm, const std::string &expression, const std::string &format) {
std::stringstream ss(expression);
return !(ss >> std::get_time(&tm, format.c_str())).fail();
}
class InterruptableSleep {
using Clock = std::chrono::system_clock;
// InterruptableSleep offers a sleep that can be interrupted by any thread.
// It can be interrupted multiple times
// and be interrupted before any sleep is called (the sleep will immediately complete)
// Has same interface as condition_variables and futures, except with sleep instead of wait.
// For a given object, sleep can be called on multiple threads safely, but is not recommended as behaviour is undefined.
public:
InterruptableSleep() : interrupted(false) {
}
InterruptableSleep(const InterruptableSleep &) = delete;
InterruptableSleep(InterruptableSleep &&) noexcept = delete;
~InterruptableSleep() noexcept = default;
InterruptableSleep &operator=(const InterruptableSleep &) noexcept = delete;
InterruptableSleep &operator=(InterruptableSleep &&) noexcept = delete;
void sleep_for(Clock::duration duration) {
std::unique_lock<std::mutex> ul(m);
cv.wait_for(ul, duration, [this] { return interrupted; });
interrupted = false;
}
void sleep_until(Clock::time_point time) {
std::unique_lock<std::mutex> ul(m);
cv.wait_until(ul, time, [this] { return interrupted; });
interrupted = false;
}
void sleep() {
std::unique_lock<std::mutex> ul(m);
cv.wait(ul, [this] { return interrupted; });
interrupted = false;
}
void interrupt() {
std::lock_guard<std::mutex> lg(m);
interrupted = true;
cv.notify_one();
}
private:
bool interrupted;
std::mutex m;
std::condition_variable cv;
};
class Scheduler {
public:
explicit Scheduler(unsigned int max_n_tasks = 4) : done(false), threads(max_n_tasks + 1) {
threads.push([this](int) {
while (!done) {
if (tasks.empty()) {
sleeper.sleep();
} else {
auto time_of_first_task = (*tasks.begin()).first;
sleeper.sleep_until(time_of_first_task);
}
manage_tasks();
}
});
}
Scheduler(const Scheduler &) = delete;
Scheduler(Scheduler &&) noexcept = delete;
Scheduler &operator=(const Scheduler &) = delete;
Scheduler &operator=(Scheduler &&) noexcept = delete;
~Scheduler() {
done = true;
sleeper.interrupt();
}
template<typename _Callable, typename... _Args>
void in(const std::string &task_id, const Clock::duration time, _Callable &&f, _Args &&... args) {
std::string time_str {"in: " + format_duration(time)};
std::shared_ptr<Task> t = std::make_shared<InTask>(task_id, time_str,
std::bind(std::forward<_Callable>(f), std::forward<_Args>(args)...));
add_task(task_id, Clock::now() + time, std::move(t));
}
template<typename _Callable, typename... _Args>
void at(const std::string &task_id, const Clock::time_point time, _Callable &&f, _Args &&... args) {
std::string time_str {"at: " + format_time_point("%F %T %z", time)};
std::shared_ptr<Task> t = std::make_shared<AtTask>(task_id, time_str,
std::bind(std::forward<_Callable>(f), std::forward<_Args>(args)...));
add_task(task_id, time, std::move(t));
}
template<typename _Callable, typename... _Args>
void at(const std::string &task_id, const std::string &time, _Callable &&f, _Args &&... args) {
// get current time as a tm object
auto time_now = Clock::to_time_t(Clock::now());
std::tm tm = *std::localtime(&time_now);
// our final time as a time_point
Clock::time_point tp;
if (try_parse(tm, time, "%H:%M:%S")) {
// convert tm back to time_t, then to a time_point and assign to final
tp = Clock::from_time_t(std::mktime(&tm));
// if we've already passed this time, the user will mean next day, so add a day.
if (Clock::now() >= tp)
tp += std::chrono::hours(24);
} else if (try_parse(tm, time, "%Y-%m-%d %H:%M:%S")) {
tp = Clock::from_time_t(std::mktime(&tm));
} else if (try_parse(tm, time, "%Y/%m/%d %H:%M:%S")) {
tp = Clock::from_time_t(std::mktime(&tm));
} else {
// could not parse time
throw BadDateFormat("Cannot parse time string: " + time);
}
// std::string time_str {"at: " + time};
std::string time_str {"at: " + format_time_point("%F %T %z", tp)};
std::shared_ptr<Task> t = std::make_shared<AtTask>(task_id, time_str,
std::bind(std::forward<_Callable>(f), std::forward<_Args>(args)...));
add_task(task_id, tp, std::move(t));
}
template<typename _Callable, typename... _Args>
void every(const std::string &task_id, const Clock::duration time, _Callable &&f, _Args &&... args) {
std::string time_str {"every: " + format_duration(time)};
std::shared_ptr<Task> t = std::make_shared<EveryTask>(task_id, time_str, time, std::bind(std::forward<_Callable>(f),
std::forward<_Args>(args)...));
auto next_time = t->get_new_time();
add_task(task_id, next_time, std::move(t));
}
template<typename _Callable, typename... _Args>
void cron(const std::string &task_id, const std::string &expression, _Callable &&f, _Args &&... args) {
std::string time_str {"cron: " + expression};
std::shared_ptr<Task> t = std::make_shared<CronTask>(task_id, time_str, expression, std::bind(std::forward<_Callable>(f),
std::forward<_Args>(args)...));
auto next_time = t->get_new_time();
add_task(task_id, next_time, std::move(t));
}
template<typename _Callable, typename... _Args>
void interval(const std::string &task_id, const Clock::duration time, _Callable &&f, _Args &&... args) {
std::string time_str {"interval: " + format_duration(time)};
std::shared_ptr<Task> t = std::make_shared<EveryTask>(task_id, time_str, time, std::bind(std::forward<_Callable>(f),
std::forward<_Args>(args)...), true);
auto next_time = t->get_new_time();
add_task(task_id, Clock::now(), std::move(t));
}
// Method to remove a task by ID or name
bool remove_task(const std::string& task_id)
{
std::lock_guard<std::mutex> l(lock);
// Find the task in the tasks_map
auto task_iterator = tasks_map.find(task_id);
if (task_iterator != tasks_map.end()) {
task_iterator->second->second->removed = true;;
tasks_map.erase(task_iterator);
return true;
}
return false;
}
// Method to disable a task by ID or name
bool disable_task(const std::string& task_id)
{
std::lock_guard<std::mutex> l(lock);
// Find the task in the tasks_map
auto task_map_iterator = tasks_map.find(task_id);
if (task_map_iterator != tasks_map.end()) {
// Disable the task
auto &task_pair {task_map_iterator->second};
auto &task {task_pair->second};
task->enabled = false;
return true;
}
return false;
}
// Method to enable a task by ID or name
bool enable_task(const std::string& task_id)
{
std::lock_guard<std::mutex> l(lock);
// Find the task in the tasks_map
auto task_map_iterator = tasks_map.find(task_id);
if (task_map_iterator != tasks_map.end()) {
// Enable the task
auto &task_pair {task_map_iterator->second};
auto &task {task_pair->second};
task->enabled = true;
return true;
}
return false;
}
std::vector<TaskReport> get_tasks_list()
{
std::vector<TaskReport> v;
{
std::lock_guard<std::mutex> l(lock);
for (auto &map_pair : tasks_map)
{
auto &task_pair {map_pair.second};
auto &task {task_pair->second};
auto next_run {task->get_new_time()};
// We'll have next_run precission of just 1 sec for now, we might
// increase this in the future if needed. We just need to figure
// out how.
v.push_back(TaskReport(task->id, task->time_str, format_time_point("%F %T %z", next_run), task->enabled));
}
}
return v;
}
private:
std::atomic<bool> done;
InterruptableSleep sleeper;
std::multimap<Clock::time_point, std::shared_ptr<Task>> tasks;
std::multimap<Clock::time_point, std::shared_ptr<Task>> completed_interval_tasks;
std::map<std::string, std::multimap<Clock::time_point, std::shared_ptr<Task>>::iterator> tasks_map;
std::mutex lock;
ctpl::thread_pool threads;
void add_task(const Clock::time_point time, std::shared_ptr<Task> t) {
std::lock_guard<std::mutex> l(lock);
const std::string &task_id {t->id};
auto inserted_task = tasks.emplace(time, std::move(t));
tasks_map[task_id] = inserted_task; // Map task ID to its iterator in tasks multimap
sleeper.interrupt();
}
void add_task(const std::string& task_id, const Clock::time_point time, std::shared_ptr<Task> t) {
std::lock_guard<std::mutex> l(lock);
if (tasks_map.find(task_id) == tasks_map.end()) {
auto inserted_task = tasks.emplace(time, std::move(t));
tasks_map[task_id] = inserted_task; // Map task ID to its iterator in tasks multimap
sleeper.interrupt();
} else {
throw TaskAlreadyExists("Task with id <" + task_id + "> already exists");
}
}
void manage_tasks() {
std::lock_guard<std::mutex> l(lock);
auto end_of_tasks_to_run = tasks.upper_bound(Clock::now());
// if there are any tasks to be run and removed
if (end_of_tasks_to_run != tasks.begin()) {
// keep track of tasks that will be re-added
decltype(tasks) recurred_tasks;
// keep track of tasks that will be removed
std::vector<std::shared_ptr<Task>> non_recurred_tasks;
// for all tasks that have been triggered
for (auto i = tasks.begin(); i != end_of_tasks_to_run; ++i) {
auto &task = (*i).second;
if (task->interval) {
// if it's an interval task, only add the task back after f() is completed
if (task->enabled && ! task->removed) {
// Temporarily save task until completed
auto inserted_task = completed_interval_tasks.insert(*i);
tasks_map[task->id] = inserted_task;
// Run
threads.push([this, task, inserted_task](int) {
task->f();
// no risk of race-condition,
// add_task() will wait for manage_tasks() to release lock
add_task(task->get_new_time(), task);
completed_interval_tasks.erase(inserted_task);
});
}
else
{
recurred_tasks.emplace(task->get_new_time(), std::move(task));
}
} else {
if (task->enabled && ! task->removed) {
threads.push([task](int) {
task->f();
});
}
if (task->recur) {
// calculate time of next run and add the new task to the tasks to be recurred
recurred_tasks.emplace(task->get_new_time(), std::move(task));
} else {
// save non recurred to remove from tasks_map
non_recurred_tasks.push_back(task);
}
}
}
// remove the completed tasks
tasks.erase(tasks.begin(), end_of_tasks_to_run);
// re-add the tasks that are recurring
for (auto &task_pair : recurred_tasks)
{
if (! task_pair.second->removed)
{
// tasks.emplace(task_pair.first, std::move(task_pair.second));
auto &time {task_pair.first};
auto &task {task_pair.second};
const std::string &task_id {task->id};
auto inserted_task = tasks.emplace(time, std::move(task));
tasks_map[task_id] = inserted_task; // Map task ID to its iterator in tasks multimap
}
}
// remove from tasks_map
for (auto &task : non_recurred_tasks) {
auto task_map_iterator = tasks_map.find(task->id);
if (task_map_iterator != tasks_map.end()) {
tasks_map.erase(task_map_iterator);
}
}
}
}
inline std::string format_time_point(const std::string &format, const Clock::time_point date) const
{
char buffer[80] = "";
std::time_t date_c = std::chrono::system_clock::to_time_t(date);
std::tm *date_tm = std::localtime(&date_c);
if (strftime(buffer, sizeof(buffer), format.c_str(), date_tm) == 0)
{
throw BadDateFormat("Error in given format <" + format + ">");
}
return std::string(buffer);
}
inline std::string format_duration(std::chrono::nanoseconds timeunit) const
{
std::chrono::nanoseconds ns =
std::chrono::duration_cast<std::chrono::nanoseconds>(timeunit);
std::ostringstream os;
bool foundNonZero = false;
os.fill('0');
typedef std::chrono::duration<int, std::ratio<86400 * 365>> years;
const auto y = std::chrono::duration_cast<years>(ns);
if (y.count())
{
foundNonZero = true;
os << y.count() << "y";
ns -= y;
}
typedef std::chrono::duration<int, std::ratio<86400>> days;
const auto d = std::chrono::duration_cast<days>(ns);
if (d.count())
{
if (foundNonZero)
os << ":";
foundNonZero = true;
os << d.count() << "d";
ns -= d;
}
const auto h = std::chrono::duration_cast<std::chrono::hours>(ns);
if (h.count())
{
if (foundNonZero)
os << ":";
foundNonZero = true;
os << h.count() << "h";
ns -= h;
}
const auto m = std::chrono::duration_cast<std::chrono::minutes>(ns);
if (m.count())
{
if (foundNonZero)
os << ":";
foundNonZero = true;
os << m.count() << "m";
ns -= m;
}
const auto s = std::chrono::duration_cast<std::chrono::seconds>(ns);
if (s.count())
{
if (foundNonZero)
os << ":";
foundNonZero = true;
os << s.count() << "s";
ns -= s;
}
const auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(ns);
if (ms.count())
{
if (foundNonZero)
os << ":";
foundNonZero = true;
os << ms.count() << "ms";
ns -= ms;
}
const auto us = std::chrono::duration_cast<std::chrono::microseconds>(ns);
if (us.count())
{
if (foundNonZero)
os << ":";
os << us.count() << "us";
ns -= us;
}
if (ns.count())
{
if (foundNonZero)
os << ":";
foundNonZero = true;
os << ns.count() << "ns";
}
if (! foundNonZero)
{
os << "0s";
}
return os.str();
}
};
} // namespace Cppsched