forked from hpc203/yolo-fastestv2-opencv
-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.cpp
145 lines (130 loc) · 4.97 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace dnn;
using namespace std;
class yolo_fast
{
public:
yolo_fast(string modelpath, float objThreshold, float confThreshold, float nmsThreshold);
void detect(Mat& srcimg);
private:
private:
const float anchors[2][6] = { {12.64,19.39, 37.88,51.48, 55.71,138.31}, {126.91,78.23, 131.57,214.55, 279.92,258.87} };
const float stride[3] = { 16.0, 32.0 };
const int inpWidth = 352;
const int inpHeight = 352;
const int num_stage = 2;
const int anchor_num = 3;
float objThreshold;
float confThreshold;
float nmsThreshold;
vector<string> classes;
const string classesFile = "coco.names";
int num_class;
Net net;
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);
};
yolo_fast::yolo_fast(string modelpath, float obj_Threshold, float conf_Threshold, float nms_Threshold)
{
this->objThreshold = obj_Threshold;
this->confThreshold = conf_Threshold;
this->nmsThreshold = nms_Threshold;
ifstream ifs(this->classesFile.c_str());
string line;
while (getline(ifs, line)) this->classes.push_back(line);
this->num_class = this->classes.size();
this->net = readNet(modelpath);
}
void yolo_fast::drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame) // Draw the predicted bounding box
{
//Draw a rectangle displaying the bounding box
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 2);
//Get the label for the class name and its confidence
string label = format("%.2f", conf);
label = this->classes[classId] + ":" + label;
//Display the label at the top of the bounding box
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
//rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 255, 0), 1);
}
void yolo_fast::detect(Mat& frame)
{
Mat blob;
blobFromImage(frame, blob, 1 / 255.0, Size(this->inpWidth, this->inpHeight));
this->net.setInput(blob);
vector<Mat> outs;
this->net.forward(outs, this->net.getUnconnectedOutLayersNames());
/////generate proposals
vector<int> classIds;
vector<float> confidences;
vector<Rect> boxes;
float ratioh = (float)frame.rows / this->inpHeight, ratiow = (float)frame.cols / this->inpWidth;
int n = 0, q = 0, i = 0, j = 0, nout = this->anchor_num * 5 + this->classes.size(), row_ind = 0;
float* pdata = (float*)outs[0].data;
for (n = 0; n < this->num_stage; n++) ///stage
{
int num_grid_x = (int)(this->inpWidth / this->stride[n]);
int num_grid_y = (int)(this->inpHeight / this->stride[n]);
for (i = 0; i < num_grid_y; i++)
{
for (j = 0; j < num_grid_x; j++)
{
Mat scores = outs[0].row(row_ind).colRange(this->anchor_num * 5, outs[0].cols);
Point classIdPoint;
double max_class_socre;
// Get the value and location of the maximum score
minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
for (q = 0; q < this->anchor_num; q++) ///anchor
{
const float anchor_w = this->anchors[n][q * 2];
const float anchor_h = this->anchors[n][q * 2 + 1];
float box_score = pdata[4 * this->anchor_num + q];
if (box_score > this->objThreshold && max_class_socre > this->confThreshold)
{
float cx = (pdata[4 * q] * 2.f - 0.5f + j) * this->stride[n]; ///cx
float cy = (pdata[4 * q+ 1] * 2.f - 0.5f + i) * this->stride[n]; ///cy
float w = powf(pdata[4 * q + 2] * 2.f, 2.f) * anchor_w; ///w
float h = powf(pdata[4 * q + 3] * 2.f, 2.f) * anchor_h; ///h
int left = (cx - 0.5*w)*ratiow;
int top = (cy - 0.5*h)*ratioh; ///���껹ԭ��ԭͼ��
classIds.push_back(classIdPoint.x);
confidences.push_back(box_score * max_class_socre);
boxes.push_back(Rect(left, top, (int)(w*ratiow), (int)(h*ratioh)));
}
}
row_ind++;
pdata += nout;
}
}
}
// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
vector<int> indices;
NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices);
for (size_t i = 0; i < indices.size(); ++i)
{
int idx = indices[i];
Rect box = boxes[idx];
this->drawPred(classIds[idx], confidences[idx], box.x, box.y,
box.x + box.width, box.y + box.height, frame);
}
}
int main()
{
yolo_fast yolo_model("model.onnx", 0.3, 0.3, 0.4);
string imgpath = "img/000148.jpg";
Mat srcimg = imread(imgpath);
yolo_model.detect(srcimg);
static const string kWinName = "Deep learning object detection in OpenCV";
namedWindow(kWinName, WINDOW_NORMAL);
imshow(kWinName, srcimg);
waitKey(0);
destroyAllWindows();
}