-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEmbeddingList.py
133 lines (106 loc) · 4.86 KB
/
EmbeddingList.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import bisect
import os
from audioop import error
import torch
import webcolors
import random
COLORS = list(webcolors.names())
class SortedList:
def __init__(self,file_path = "learned_speakers.pth"):
self.elements = [] # List to hold (value, tensor) tuples
# Get a list of named colors from matplotlib
# Get a list of named colors from webcolors
self.file_path = file_path
def add(self, key ,embedding, gptEncoding, name = None):
# Insert the tensor in sorted order based on value
#bisect.insort(self.elements, (value, tensor)) #ascending
if name is None:
# Pick a random color and remove it from the list
name = random.choice(COLORS)
COLORS.remove(name)
bisect.insort(self.elements, (key, embedding, gptEncoding, name), key=lambda x: -x[0]) #decending
return name
def update_by_index(self,idx, embedding, gptEncoding, value):
# Find the tensor and remove it
name = self.elements[idx][3]
del self.elements[idx]
# Add the tensor back with the new value
self.add(value,embedding, gptEncoding, name)
def update_by_name(self,name , embedding = None, gptEncoding = None, key = None):
# Find the tensor and remove it
for i,(key1, embedding1, gptEncoding1,name1) in enumerate(self.elements):
if name1 == name:
self.elements[i] = (key1 if key is None else key, embedding1 if embedding is None else embedding , gptEncoding1 if gptEncoding is None else gptEncoding , name)
break
def delete_by_name(self,name ):
# Find the tensor and remove it
for i,(_, _, _,name1) in enumerate(self.elements):
if name1 == name:
del self.elements[i]
COLORS.append(name1)
def delete(self,index):
del self.elements[index]
def get(self,index):
return self.elements[index]
def getByName(self,name):
for i,(value1, embedding1, gptEncoding1,name1) in enumerate(self.elements):
if name1 == name:
return self.elements[i]
def len(self):
return len(self.elements)
def save(self):
# Save the sorted list to a file
# Get the directory name from the file path
dir_name = os.path.dirname(self.file_path)
# Save the sorted list to a file
if dir_name and not os.path.exists(dir_name):
os.makedirs(dir_name, exist_ok=True)
torch.save(self.elements, self.file_path)
def load(self):
if os.path.exists(self.file_path):
# Load the sorted list from a file
self.elements = torch.load(self.file_path)
for (_,_,_,name) in self.elements:
if name not in COLORS:
print(name)
else:
COLORS.remove(name)
else:
print(f"could not find learned speaker voices. Creating new file {self.file_path}")
return self
def __iter__(self):
return iter(self.elements)
def __reversed__(self):
return reversed(self.elements)
# Example usage
if __name__ == "__main__":
sorted_list = SortedList()
# Adding tensors to the sorted list
sorted_list.add(torch.tensor([1, 2, 3]),torch.tensor([1]), 5)
sorted_list.add(torch.tensor([4, 5, 6]),torch.tensor([2]), 3)
sorted_list.add(torch.tensor([7, 8, 9]),torch.tensor([3]), 8)
print("Sorted elements:")
for i, (value, tensor,gpt,name) in enumerate(sorted_list):
print(f"Tensor {name} at rank {i}: {tensor.numpy()},{gpt.numpy()}, Value: {value}")
print("Sorted elements:")
for i, (value, tensor,gpt,name) in enumerate(sorted_list.elements):
print(f"Tensor {name} at rank {i}: {tensor.numpy()},{gpt.numpy()}, Value: {value}")
# Update the value of a tensor
ids= 0
sorted_list.update_by_index( ids , torch.tensor([9, 9, 9]),torch.tensor([4]), 2)
print(f"\nAfter updating tensor index {ids}, {sorted_list.get(ids)}")
for i, (value, tensor,gpt,name) in enumerate(sorted_list):
print(f"Tensor {name} at rank {i}: {tensor.numpy()}, {gpt.numpy()}, Value: {value}")
for i, (value, tensor,gpt,name) in enumerate(sorted_list.elements):
print(f"Tensor {name} at rank {i}: {tensor.numpy()}, {gpt.numpy()}, Value: {value}")
print(f"Reverse")
for i, (value, tensor,gpt,name) in enumerate(reversed(sorted_list)):
print(f"Tensor {name} at rank {i}: {tensor.numpy()}, {gpt.numpy()}, Value: {value}")
# Save the sorted list to a file
sorted_list.save()
# Create a new SortedList and load the saved data
new_sorted_list = SortedList("test.pth")
new_sorted_list.load()
print("\nLoaded elements from file:")
for i, (value, tensor, gpt, name) in enumerate(sorted_list):
print(f"Tensor {name} at rank {i}: {tensor.numpy()}, {gpt.numpy()}, Value: {value}")