-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathProgram.cs
258 lines (216 loc) · 11.4 KB
/
Program.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
using System;
using System.Security.Cryptography;
using System.Text;
namespace Moserware.AesIllustrated
{
internal class Program
{
/// <summary>
/// Entry point to demonstration of the Advanced Encryption Standard (aka "Rijndael")
/// </summary>
private static void Main()
{
// Hopefully this class makes it easier for you to understand how AES/Rijndael work.
// The idea is that you can step through each of these functions in the debugger
// and take a look at the console window while you do it.
// Good luck!
ShowExamplesOfRijndaelMath();
ShowSBox();
ShowWorkedExample();
ShowRijndaelBookTestVectors();
ShowWikipediaTestVectors();
ShowNistTestVectorComparison();
ShowCapiComparison();
}
private static void ShowExamplesOfRijndaelMath()
{
WriteHeader("Rijndael Math");
string m = "x^8 + " + ByteUtilities.ToPolynomial(0x1B);
Console.WriteLine("Rijndael involves math in a finite field modulo m(x) = {0} where bytes are treated as polynomials", m);
Console.WriteLine();
Console.WriteLine("Some examples:");
const byte left = 0x1B;
const byte right = 0xAA;
Console.WriteLine("({0}) * ({1}) = {2:X2} * {3:X2}", left.ToPolynomial(), right.ToPolynomial(), left, right);
byte logLeft = FiniteFieldMath.Log(left);
byte logRight = FiniteFieldMath.Log(right);
byte logAddition = (byte) (logLeft + logRight);
Console.WriteLine("Log({0:X2}) + Log({1:X2}) = {2:X2} ^ {3:X2} = {4:X2}", left, right, logLeft, logRight, logAddition);
Console.WriteLine("AntiLog({0:X2}) = Log^-1 ({0:X2}) = {1:X2}", logAddition, FiniteFieldMath.AntiLog(logAddition));
Console.WriteLine("So {0:X2} * {1:X2} = {2:X2}", left, right, FiniteFieldMath.Multiply(left, right));
Console.WriteLine();
byte accumulator = 0x01;
for (int i = 0; i < 0x10; i++)
{
const byte multiplier = 0x03;
byte newResult = FiniteFieldMath.Multiply(accumulator, multiplier);
Console.WriteLine(
"({0}) * ({1}) = {2} => {3:X2} * {4:X2} = {5:X2}",
multiplier.ToPolynomial(),
accumulator.ToPolynomial(),
newResult.ToPolynomial(),
multiplier,
accumulator,
newResult);
accumulator = newResult;
}
Random weakRng = new Random();
Console.WriteLine();
Console.WriteLine("Rijndael's substitution box uses the \"g\" function that gives inverses in the field: g(a) = a^-1 mod m");
Console.WriteLine();
Console.WriteLine("Examples of a * g(a):");
for(int i = 0; i < 5; i++)
{
byte currentByte = (byte)weakRng.Next(2, 256);
byte inverseByte = FiniteFieldMath.G(currentByte);
byte resultByte = FiniteFieldMath.Multiply(currentByte, inverseByte);
Console.WriteLine(
"({0}) * ({1}) = {2} => {3:X2} * {4:X2} = {5:X2}",
currentByte.ToPolynomial(),
inverseByte.ToPolynomial(),
resultByte.ToPolynomial(),
currentByte,
inverseByte,
resultByte);
}
Console.WriteLine();
Console.WriteLine("The actual s-box values is f(g(a)) where \"f\" is an affine transform");
Console.WriteLine();
Console.WriteLine("Some examples:");
for(int i = 0; i < 5; i++)
{
byte currentByte = (byte)weakRng.Next(2, 256);
byte resultByte = FiniteFieldMath.F(FiniteFieldMath.G(currentByte));
Console.WriteLine("f(g({0:X2})) = {1:X2}", currentByte, resultByte);
}
}
private static void ShowSBox()
{
WriteHeader("S-Boxes");
WriteBox("Rijndael S-Box (SRD[x]):", SubstitutionBox.Value);
WriteBox("Rijndael Inverse S-Box (SRD^1[x]):", SubstitutionBox.Inverse);
const byte val = 0x42;
byte srdVal = SubstitutionBox.Value(val);
byte srdInvVal = SubstitutionBox.Inverse(srdVal);
Console.WriteLine("Notice how SRD[{0:X2}] = {1:X2} and SRD^-1[{1:X2}] = {2:X2}", val, srdVal, srdInvVal);
}
private static void WriteBox(string title, Func<int, byte> boxRetriever)
{
Console.WriteLine(title);
Console.WriteLine();
Console.Write(" ");
for (int col = 0; col < 16; col++)
{
Console.Write("{0:X2} ", col);
}
Console.WriteLine();
Console.Write(" +" + new String('-', 48));
Console.WriteLine();
for (int row = 0; row < 16; row++)
{
Console.Write("{0:X2} | ", row * 16);
for (int col = 0; col < 16; col++)
{
Console.Write(boxRetriever((row * 16) + col).ToString("X2") + " ");
}
Console.WriteLine();
}
Console.WriteLine();
}
private static void ShowWorkedExample()
{
WriteHeader("Worked Example");
using (Debugging.CreateDebuggingScope())
{
// The debugging scope will show debug information for key setup and each round.
const string plaintext = "ATTACK AT DAWN!";
byte[] plaintextBytes = Encoding.UTF8.GetBytes(plaintext);
byte[] paddedBytes = PaddingUtilities.ApplyPadding(PaddingMode.PKCS7, plaintextBytes,
Constants.AesBlockSize / Constants.BitsPerByte);
const string key = "SOME 128 BIT KEY";
byte[] keyBytes = Encoding.UTF8.GetBytes(key);
Debugging.Trace("Encrypting \"{0}\" with the key \"{1}\"", plaintext, key);
var encryptedBytes = Aes.Encrypt(paddedBytes, keyBytes);
}
}
private static void ShowRijndaelBookTestVectors()
{
WriteHeader("Rijndael Book Test");
Console.WriteLine("Here are the test vectors from Appendix D of \"The Design of Rijndael\" book.");
Console.WriteLine("(Note how there are more variants than AES allows)");
Console.WriteLine();
for (int keyLength = 128; keyLength <= 256; keyLength += 32)
{
for (int blockLength = 128; blockLength <= 256; blockLength += 32)
{
Console.WriteLine("block length {0} key length {1}", blockLength, keyLength);
byte[] blockBytes = new byte[blockLength / Constants.BitsPerByte];
byte[] keyBytes = new byte[keyLength / Constants.BitsPerByte];
var encrypted = Rijndael.Encrypt(blockBytes, keyBytes);
ByteUtilities.WriteBytes(encrypted);
var decrypted = Rijndael.Decrypt(encrypted, keyBytes);
for (int i = 0; i < decrypted.Length; i++)
{
if(decrypted[i] != 0)
{
throw new CryptographicException("The decrypted Rijndael book values were not all zero.");
}
}
var encryptedAgain = Rijndael.Encrypt(encrypted, keyBytes);
ByteUtilities.WriteBytes(encryptedAgain);
var decryptedAgain = Rijndael.Decrypt(encryptedAgain, keyBytes);
ByteUtilities.AssertBytesEqual(decryptedAgain, encrypted);
Console.WriteLine();
}
}
Console.WriteLine();
}
private static void ShowWikipediaTestVectors()
{
WriteHeader("Wikipedia Test Vectors Comparison");
// Test vectors came from http://en.wikipedia.org/wiki/Advanced_Encryption_Standard#Test_vectors on 7 Sep 2009
byte[] input = ByteUtilities.GetBytes("4EC137A426DABF8AA0BEB8BC0C2B89D6");
byte[] aes128Key = ByteUtilities.GetBytes("95A8EE8E89979B9EFDCBC6EB9797528D");
byte[] cipheredOutput128 = Aes.Encrypt(input, aes128Key);
byte[] decipheredOutput128 = Aes.Decrypt(input, aes128Key);
byte[] wikipediaExpectedCipheredOutput128 = ByteUtilities.GetBytes("D9B65D1232BA0199CDBD487B2A1FD646");
byte[] wikipediaExpectedDecipheredOutput128 = ByteUtilities.GetBytes("9570C34363565B393503A001C0E23B65");
ByteUtilities.AssertBytesEqual(wikipediaExpectedCipheredOutput128, cipheredOutput128);
ByteUtilities.AssertBytesEqual(wikipediaExpectedDecipheredOutput128, decipheredOutput128);
byte[] aes192Key = ByteUtilities.GetBytes("95A8EE8E89979B9EFDCBC6EB9797528D432DC26061553818");
byte[] cipheredOutput192 = Aes.Encrypt(input, aes192Key);
byte[] decipheredOutput192 = Aes.Decrypt(input, aes192Key);
byte[] wikipediaExpectedCipheredOutput192 = ByteUtilities.GetBytes("B18BB3E7E10732BE1358443A504DBB49");
byte[] wikipediaExpectedDecipheredOutput192 = ByteUtilities.GetBytes("29DFD75B85CEE4DE6E26A808CDC2C9C3");
ByteUtilities.AssertBytesEqual(wikipediaExpectedCipheredOutput192, cipheredOutput192);
ByteUtilities.AssertBytesEqual(wikipediaExpectedDecipheredOutput192, decipheredOutput192);
byte[] aes256Key = ByteUtilities.GetBytes("95A8EE8E89979B9EFDCBC6EB9797528D432DC26061553818EA635EC5D5A7727E");
byte[] cipheredOutput256 = Aes.Encrypt(input, aes256Key);
byte[] decipheredOutput256 = Aes.Decrypt(input, aes256Key);
byte[] wikipediaExpectedCipheredOutput256 = ByteUtilities.GetBytes("2F9CFDDBFFCDE6B9F37EF8E40D512CF4");
byte[] wikipediaExpectedDecipheredOutput256 = ByteUtilities.GetBytes("110A3545CE49B84BBB7B35236108FA6E");
ByteUtilities.AssertBytesEqual(wikipediaExpectedCipheredOutput256, cipheredOutput256);
ByteUtilities.AssertBytesEqual(wikipediaExpectedDecipheredOutput256, decipheredOutput256);
Console.WriteLine("6 vectors passed");
}
private static void ShowNistTestVectorComparison()
{
WriteHeader("NIST Test Vectors Comparison");
NistKnownAnswerTestVectors.VerifyAllTestVectors();
}
private static void ShowCapiComparison()
{
WriteHeader("CAPI Comparison Test");
Console.WriteLine("Checking output with the Windows Cryptographic API (CAPI) AES implementation");
int totalTests = RandomizedCapiTests.PerformRandomizedTests();
Console.WriteLine("Passed {0} randomized tests!", totalTests);
}
private static void WriteHeader(string headerName)
{
int dashesNeededPerSide = (Console.BufferWidth - headerName.Length - (" ".Length*2))/2;
string dashes = new string('-', dashesNeededPerSide);
Console.WriteLine();
Console.WriteLine("{0} {1} {0}", dashes, headerName);
}
}
}