-
Notifications
You must be signed in to change notification settings - Fork 113
/
Kruskal Algorithm
93 lines (82 loc) · 1.41 KB
/
Kruskal Algorithm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#include <bits/stdc++.h>
using namespace std;
class DSU {
int* parent;
int* rank;
public:
DSU(int n)
{
parent = new int[n];
rank = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = -1;
rank[i] = 1;
}
}
// Find function
int find(int i)
{
if (parent[i] == -1)
return i;
return parent[i] = find(parent[i]);
}
void unite(int x, int y)
{
int s1 = find(x);
int s2 = find(y);
if (s1 != s2) {
if (rank[s1] < rank[s2]) {
parent[s1] = s2;
rank[s2] += rank[s1];
}
else {
parent[s2] = s1;
rank[s1] += rank[s2];
}
}
}
};
class Graph {
vector<vector<int> > edgelist;
int V;
public:
Graph(int V) { this->V = V; }
void addEdge(int x, int y, int w)
{
edgelist.push_back({ w, x, y });
}
void kruskals_mst()
{
sort(edgelist.begin(), edgelist.end());
DSU s(V);
int ans = 0;
cout << "Following are the edges in the "
"constructed MST"
<< endl;
for (auto edge : edgelist) {
int w = edge[0];
int x = edge[1];
int y = edge[2];
// Take this edge in MST if it does
// not forms a cycle
if (s.find(x) != s.find(y)) {
s.unite(x, y);
ans += w;
cout << x << " -- " << y << " == " << w
<< endl;
}
}
cout << "Minimum Cost Spanning Tree: " << ans;
}
};
int main()
{
Graph g(4);
g.addEdge(0, 1, 10);
g.addEdge(1, 3, 15);
g.addEdge(2, 3, 4);
g.addEdge(2, 0, 6);
g.addEdge(0, 3, 5);
g.kruskals_mst();
return 0;
}