-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnested_cv.py
444 lines (300 loc) · 15 KB
/
nested_cv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
from __future__ import division
import numpy as np
import copy
import pandas as pd
import math
class Data(object):
__class_description__ = """Abstract class for a binary tree data container"""
__version__ = 0.1
def __init__(self, df, class_var, var_types, var_limits={}):
self.df = copy.deepcopy(df)
self.class_var = class_var
self.var_types = var_types
self.var_limits = var_limits
if var_limits == {}:
for var_name in [name for name in self.df.columns if name != class_var]:
self.var_limits[var_name] = (float("-inf"), float("inf"))
def circular_criteria(master_data, split_var):
data = copy.deepcopy(master_data)
if data.var_limits[split_var] == (float("-inf"), float("inf")):
def min_indices(list_of_lists):
return min((value, (i, j)) for i, inner_list in enumerate(list_of_lists) for j, value in enumerate(inner_list))
data.df = data.df.sort([split_var])
values, indices = np.unique(data.df[split_var], return_index=True)
# scores_prime = [(idx/data.df.shape[0] * np.var(data.df[data.class_var].iloc[:idx])) + ((data.df.shape[0]-idx)/data.df.shape[0] * np.var(data.df[data.class_var].iloc[idx:])) for idx in indices[1:]]
index_lists = [sorted(
[indice2 - indice if indice2 - indice >= 0 else indice2 - indice + data.df.shape[0] for indice2 in indices])
for indice in indices]
dfs = [copy.deepcopy(data.df).iloc[index:].append(copy.deepcopy(data.df).iloc[:index]) for index in indices]
score, min_index = min_indices([[(idx / data.df.shape[0] * np.var(dfs[index][data.class_var].iloc[:idx])) + (
(data.df.shape[0] - idx) / data.df.shape[0] * np.var(dfs[index][data.class_var].iloc[idx:]))
for idx in index_list[1:]] for (index, index_list) in enumerate(index_lists)])
return_df_uncut = dfs[min_index[0]]
return_indexes_uncut = index_lists[min_index[0]]
left_data = Data(dfs[min_index[0]].iloc[:return_indexes_uncut[min_index[1] + 1]], copy.deepcopy(data.class_var),
copy.deepcopy(data.var_types), copy.deepcopy(data.var_limits))
right_data = Data(dfs[min_index[0]].iloc[return_indexes_uncut[min_index[1] + 1]:], copy.deepcopy(data.class_var),
copy.deepcopy(data.var_types), copy.deepcopy(data.var_limits))
left_data.var_limits[split_var] = (dfs[min_index[0]][split_var].iloc[0],
dfs[min_index[0]][split_var].iloc[index_lists[min_index[0]][min_index[1] + 1]])
right_data.var_limits[split_var] = (dfs[min_index[0]][split_var].iloc[index_lists[min_index[0]][min_index[1] + 1]],
dfs[min_index[0]][split_var].iloc[0])
return score, left_data, right_data
else:
data.df = data.df.sort([split_var])
# If dataset crosses origin, it has to be reordered
if data.var_limits[split_var][1] < data.var_limits[split_var][0]:
data.df = copy.deepcopy(
data.df[(data.df[split_var] >= data.var_limits[split_var][0]) & (data.df[split_var] <= 360)]).append(
copy.deepcopy(
data.df[(data.df[split_var] >= 0) & (data.df[split_var] <= data.var_limits[split_var][1])]))
return splitter(data, split_var)
def linear_criteria(master_data, split_var):
data = copy.deepcopy(master_data)
data.df = data.df.sort([split_var])
return splitter(data, split_var)
def splitter(data, split_var):
values, indices = np.unique(data.df[split_var], return_index=True)
# In case indices are not ordered we need to sort both to leave 0 index at position 0
values = [val for (ind, val) in sorted(zip(indices, values))]
indices = sorted(indices)
if len(indices) == 1:
return float("inf"), None, None
scores = [(idx / data.df.shape[0] * np.var(data.df[data.class_var].iloc[:idx])) + (
(data.df.shape[0] - idx) / data.df.shape[0] * np.var(data.df[data.class_var].iloc[idx:])) for idx in indices[1:]]
left_data = Data(copy.deepcopy(data.df.iloc[:indices[np.argmin(scores) + 1]]), copy.deepcopy(data.class_var),
copy.deepcopy(data.var_types), copy.deepcopy(data.var_limits))
right_data = Data(copy.deepcopy(data.df.iloc[indices[np.argmin(scores) + 1]:]), copy.deepcopy(data.class_var),
copy.deepcopy(data.var_types), copy.deepcopy(data.var_limits))
left_data.var_limits[split_var] = (data.var_limits[split_var][0], values[np.argmin(scores) + 1])
right_data.var_limits[split_var] = (values[np.argmin(scores) + 1], data.var_limits[split_var][1])
return np.min(scores), left_data, right_data
class Node(object):
__class_description__ = """Abstract class for a binary tree node"""
__version__ = 0.1
def __init__(self, node_data):
self.split_var = None
self.data = node_data
self.left_child = None
self.right_child = None
def split(self):
best_right = None
best_left = None
best_score = float("inf")
for idx, split_var in enumerate(self.data.df.columns):
if split_var != self.data.class_var:
if self.data.var_types[idx] == "circular":
score, left, right = circular_criteria(self.data, split_var)
elif self.data.var_types[idx] == "linear":
score, left, right = linear_criteria(self.data, split_var)
else:
raise NotImplementedError('Other types need to be implemented!')
if best_score > score:
best_score = score
self.split_var = split_var
best_left = left
best_right = right
else:
pass
# print best_score
self.left_child = Node(best_left)
self.right_child = Node(best_right)
def tree_grower(tree_data, min_leaf):
node = Node(tree_data)
node.split()
if node.left_child.data.df.shape[0] > min_leaf:
node.left_child = tree_grower(node.left_child.data, min_leaf)
if node.right_child.data.df.shape[0] > min_leaf:
node.right_child = tree_grower(node.right_child.data, min_leaf)
return node
def tree_walk_printer(tree, level=0):
if tree.split_var is not None:
print level*" " + tree.split_var
tree_walk_printer(tree.left_child, level+1)
tree_walk_printer(tree.right_child, level+1)
else:
print level*" " + "LEAF!"
def tree_walk_count_var(tree, var_name):
if tree.split_var is not None:
if tree.split_var == var_name:
return 1 + tree_walk_count_var(tree.left_child, var_name) + tree_walk_count_var(tree.right_child, var_name)
else:
return tree_walk_count_var(tree.left_child, var_name) + tree_walk_count_var(tree.right_child, var_name)
else:
return 0
"""*************************
*********Evaluation*********
*************************"""
def evaluate_value_mean(anode, data_row):
if anode.split_var is not None:
#try on left limits
if anode.left_child.data.var_limits[anode.split_var][0] > anode.left_child.data.var_limits[anode.split_var][1]:
if anode.left_child.data.var_limits[anode.split_var][0] <= data_row[anode.split_var] <= 360 or \
0 <= data_row[anode.split_var] < anode.left_child.data.var_limits[anode.split_var][1]:
return evaluate_value_mean(anode.left_child, data_row)
else:
if anode.left_child.data.var_limits[anode.split_var][0] <= data_row[anode.split_var] < \
anode.left_child.data.var_limits[anode.split_var][1]:
return evaluate_value_mean(anode.left_child, data_row)
#try on right limits
if anode.right_child.data.var_limits[anode.split_var][0] > anode.right_child.data.var_limits[anode.split_var][1]:
if anode.right_child.data.var_limits[anode.split_var][0] <= data_row[anode.split_var] <= 360 or \
0 <= data_row[anode.split_var] < anode.right_child.data.var_limits[anode.split_var][1]:
return evaluate_value_mean(anode.right_child, data_row)
else:
if anode.right_child.data.var_limits[anode.split_var][0] <= data_row[anode.split_var] < \
anode.right_child.data.var_limits[anode.split_var][1]:
return evaluate_value_mean(anode.right_child, data_row)
else:
#print anode.data.df
return anode.data.df[anode.data.class_var].mean()
def evaluate_dataset_rmse(node, df_to_eval):
err = 0
n = df_to_eval.shape[0]
for _, row in df_to_eval.iterrows():
pred_val = evaluate_value_mean(node, row)
err += (pred_val - row[node.data.class_var]) ** 2
return math.sqrt(err / n)
def list_rmse(pairs):
err = 0
for pair in pairs:
err += (pair[1] - pair[0]) ** 2
return math.sqrt(err / len(pairs))
def evaluate_dataset_mae(node, df_to_eval):
err = 0
n = df_to_eval.shape[0]
for _, row in df_to_eval.iterrows():
pred_val = evaluate_value_mean(node, row)
err += pred_val - row[node.data.class_var]
return err / n
def list_mae(pairs):
err = 0
for pair in pairs:
err += pair[1] - pair[0]
return err / len(pairs)
def evaluate_dataset_cc(node, df_to_eval):
sum_x_sqr = 0
sum_y_sqr = 0
sum_x = 0
sum_y = 0
sum_x_y = 0
n = df_to_eval.shape[0]
for _, row in df_to_eval.iterrows():
sum_x_sqr += row[node.data.class_var] ** 2
sum_y_sqr += evaluate_value_mean(node, row) ** 2
sum_x += row[node.data.class_var]
sum_y += evaluate_value_mean(node, row)
sum_x_y += row[node.data.class_var] * evaluate_value_mean(node, row)
return (sum_x_y - (sum_x * sum_y)/n) / math.sqrt((sum_x_sqr - (sum_x ** 2) / n) * (sum_y_sqr - (sum_y ** 2) / n))
def list_cc(pairs):
sum_x_sqr = 0
sum_y_sqr = 0
sum_x = 0
sum_y = 0
sum_x_y = 0
n = len(pairs)
for pair in pairs:
sum_x_sqr += pair[0] ** 2
sum_y_sqr += pair[1] ** 2
sum_x += pair[0]
sum_y += pair[1]
sum_x_y += pair[0] * pair[1]
return (sum_x_y - (sum_x * sum_y)/n) / math.sqrt((sum_x_sqr - (sum_x ** 2) / n) * (sum_y_sqr - (sum_y ** 2) / n))
def evaluate_dataset_raw(results_list, node, df_to_eval):
# This function appends to list (x, y) tuples
# where x is the raw value and y is the tree result
for _, row in df_to_eval.iterrows():
results_list.append((row[node.data.class_var], evaluate_value_mean(node, row)))
return results_list
"""*************************
******Cross Validation******
*************************"""
import random
def cxval_k_folds_split(df, k_folds):
dataframes = []
group_size = int(round(df.shape[0]*(1.0/k_folds)))
for i in range(k_folds-1):
rows = random.sample(df.index, group_size)
dataframes.append(df.ix[rows])
df = df.drop(rows)
dataframes.append(df)
return dataframes
def cxval_select_fold(i_fold, df_folds):
df_folds_copy = copy.deepcopy(df_folds)
if 0 <= i_fold < len(df_folds):
test_df = df_folds_copy[i_fold]
del df_folds_copy[i_fold]
train_df = pd.concat(df_folds_copy)
return train_df, test_df
else:
raise Exception('Group not in range!')
def cxval_test(df, class_var, var_types, bin_size, k_folds):
df_folds = cxval_k_folds_split(df, k_folds)
results = []
for i in range(k_folds):
print("Cross Validation: {}".format(i+1))
train_df, test_df = cxval_select_fold(i, df_folds)
train_data = Data(train_df, class_var, var_types)
tree = tree_grower(test_data, bin_size)
print("Cross Correlation: {}".format(evaluate_dataset_cc(tree, test_df)))
print("Root Mean Square Error: {}".format(evaluate_dataset_rmse(tree, test_df)))
print("Mean Absolute Error: {}".format(evaluate_dataset_mae(tree, test_df)))
def cxval_test2(df, class_var, var_types, bin_size, k_folds):
df_folds = cxval_k_folds_split(df, k_folds)
results = []
for i in range(k_folds):
train_df, test_df = cxval_select_fold(i, df_folds)
train_data = Data(train_df, class_var, var_types)
tree = tree_grower(train_data, bin_size)
evaluate_dataset_raw(results, tree, test_df)
print("Cross Correlation: {}".format(list_cc(results)))
print("Root Mean Square Error: {}".format(list_rmse(results)))
print("Mean Absolute Error: {}".format(list_mae(results)))
def cxval_test3(df_folds, class_var, var_types, bin_size):
results_test = []
results_train = []
for i_fold, _ in enumerate(df_folds):
train_df, test_df = cxval_select_fold(i_fold, df_folds)
train_data = Data(train_df, class_var, var_types)
tree = tree_grower(train_data, bin_size)
evaluate_dataset_raw(results_test, tree, test_df)
evaluate_dataset_raw(results_train, tree, train_df)
print("gfs_wind_dir: {} times".format(tree_walk_count_var(tree, 'gfs_wind_dir')))
print("date: {} times".format(tree_walk_count_var(tree, 'date')))
print("time: {} times".format(tree_walk_count_var(tree, 'time')))
return list_cc(results_test), list_rmse(results_test), list_cc(results_train), list_rmse(results_train)
if __name__ == "__main__":
from datetime import datetime
import calendar
import csv
import collections
import os
print os.getcwd()
def time_to_angle(a_time):
#return 360.0*(a_time.hour*3600+a_time.minute*60+a_time.second)/86400.0
# Limit time values to 24
return 360.0*a_time.hour/24.0
def date_to_angle(a_date):
# Limit time values to 36
if calendar.isleap(a_date.year):
#return 360.0*(a_date.timetuple().tm_yday-1)/366.0
return 10*int(a_date.timetuple().tm_yday/10.0)
else:
#return 360.0*(a_date.timetuple().tm_yday-1)/365.0
return 10*int(a_date.timetuple().tm_yday/10.0)
airports = ['eddt', 'lebl', 'lfpg', 'limc', 'yssy', 'egll', 'zbaa']
for airport in airports:
print airport
df = pd.read_csv("./web/static/data/" + airport + ".csv")
df.drop([u'metar_press', u'metar_rh', u'metar_temp', u'metar_wind_dir'], axis=1, inplace=True)
df['gfs_wind_dir'] = df['gfs_wind_dir'].apply(lambda x: round(x / 10) * 10)
df['gfs_press'] = df['gfs_press'].apply(lambda x: round(x))
df['gfs_rh'] = df['gfs_rh'].apply(lambda x: round(x))
df['gfs_temp'] = df['gfs_temp'].apply(lambda x: round(x))
df['gfs_wind_spd'] = df['gfs_wind_spd'].apply(lambda x: 0.5 * round(x / 0.5))
df['date'] = df['date'].apply(lambda x: date_to_angle(datetime.strptime(x, "%Y-%m-%d").date()))
df['time'] = df['time'].apply(lambda x: time_to_angle(datetime.strptime(x, "%H:%M").time()))
class_var = 'metar_wind_spd'
df_folds = cxval_k_folds_split(df, 5)
for i in len(df_folds):
print i