-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFinal_submission.py
executable file
·279 lines (237 loc) · 8.12 KB
/
Final_submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import spacy
from spacy.tokens import Doc
import nltk
from collections import defaultdict
import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.linear_model import LogisticRegression
from score import score
import pickle
import os
FILE_DIRECTORY = "./CONLL_NAME_CORPUS_FOR_STUDENTS"
dev_file_name = os.path.join(FILE_DIRECTORY,"CONLL_dev.pos-chunk")
train_file_name = os.path.join(FILE_DIRECTORY,"CONLL_train.pos-chunk-name")
test_file_name = os.path.join(FILE_DIRECTORY,"CONLL_test.pos-chunk")
train_feature_file = "./train_features"
test_feature_file = "./test_features"
dev_feature_file = "./dev_features"
dev_generated_tags = "./dev_gen_tags"
test_generated_file = "./test_gen_tags"
cluster_file = "./cluster_file"
countries_file = "./Countries"
model_file_name = "./maxent_model"
"""
Change Mode; ['train','dev','test']
"""
mode = 'train'
modes = {
'train': {
'data': train_file_name,
'features': train_feature_file
},
'dev': {
'data': dev_file_name,
'features': dev_feature_file,
'output': dev_generated_tags,
'key': os.path.join(FILE_DIRECTORY,"CONLL_dev.name"),
},
'test': {
'data': test_file_name,
'features': test_feature_file,
'output': test_generated_file,
'key': ""
},
'combine': {
'features': "./combine_feature_file",
'output': "./combine_output"
}
}
nlp = spacy.load('en_core_web_sm')
unique_ner_tags = {'O': 0, 'I-ORG': 1, 'I-MISC': 2, 'I-PER': 3, 'I-LOC': 4, 'B-LOC': 5, 'B-MISC': 6, 'B-ORG': 7}
ner_tags_index = {0: 'O', 1: 'I-ORG', 2: 'I-MISC', 3: 'I-PER', 4: 'I-LOC', 5: 'B-LOC', 6: 'B-MISC', 7: 'B-ORG',-1: ''}
feature_list = ['title','shape','orth','prefix','suffix','norm','is_digit']
word_cluster_map = {}
window_size = 2
countries = set()
"""
Build Features:
1. Length
2. Token
3. is_digit
4. is_country
5. Shape
6. Lemma
7. Prefix
8. Suffix
9. Ortho
10. Lower
11. Context Features
12. Cluster-ID
"""
def build_features(sentence,feature_set):
sentence_features = []
doc = Doc(nlp.vocab,words=sentence)
nlp.tagger(doc)
nlp.parser(doc)
for token in doc:
feature_set[token.i]['length'] = len(token.text)
feature_set[token.i]['title'] = token.is_title
feature_set[token.i]['is_digit'] = token.is_digit
feature_set[token.i]['norm'] = token.norm_
feature_set[token.i]['country'] = (feature_set[token.i]['token'] in countries)
feature_set[token.i]['shape'] = token.shape_
feature_set[token.i]['orth'] = token.orth_
feature_set[token.i]['lemma'] = token.lemma_
feature_set[token.i]['prefix'] = token.prefix_
feature_set[token.i]['suffix'] = token.suffix_
feature_set[token.i]['lower'] = token.lower_
if(feature_set[token.i]['token'] in word_cluster_map):
feature_set[token.i]['cluster'] = word_cluster_map[feature_set[token.i]['token']]
else:
feature_set[token.i]['cluster'] = -1
for token in doc:
for i in range(1,window_size+1):
for x in feature_list:
if(token.i - i < 0):
if(x == 'cluster' or x == 'brown'): feature_set[token.i]['prev-'+str(i)+x] = -1
else: feature_set[token.i]['prev-'+str(i)+x] = '--START--'
else:
feature_set[token.i]['prev-'+str(i)+x] = feature_set[token.i-i][x]
if(token.i + i > len(feature_set)-1):
if(x == 'cluster' or x == 'brown'): feature_set[token.i]['next-'+str(i)+x] = -1
else: feature_set[token.i]['next-'+str(i)+x] = '--END--'
else:
feature_set[token.i]['next-'+str(i)+x] = feature_set[token.i+i][x]
return feature_set
"""
Write Features to File
"""
def write_feature_file(data,file_name):
print("Writing features to file")
coloumn_names = data[0].keys()
data_frame = pd.DataFrame(data,columns=coloumn_names)
data_frame.to_csv(file_name,index = False)
def build_sentences(file_name):
train_data = []
i = 0
with open(file_name,'r') as file:
sentence = []
temp_sentence = []
for line in file:
if not line.split():
if(len(sentence) > 0):
feat = build_features(sentence=temp_sentence,feature_set=sentence)
train_data.extend(feat)
sentence = []
temp_sentence = []
new_line = {}
for keys in train_data[0].keys():
if(keys != "token"):
new_line[keys] = -1
else:
new_line[keys] = "NEW-LINE"
train_data.append(new_line)
else:
i += 1
token, pos, bio, ner = line.strip("\n").split("\t")
ner = unique_ner_tags[ner]
tok = {'token': token,'pos':pos,'bio': bio,'ner':ner}
sentence.append(tok)
temp_sentence.append(token)
if(i % 10000 == 0): print("{0}\t word processed".format(i))
file.close()
return train_data
def build_dev_train_data_features(file_name):
print("Buildign Features for DEV/TEST Dataset")
test_dev_data = []
i = 0
with open(file_name,'r') as file:
sentence = []
temp_sentence = []
for line in file:
if not line.split():
if(len(sentence) > 0):
feat = build_features(sentence=temp_sentence,feature_set=sentence)
test_dev_data.extend(feat)
sentence = []
temp_sentence = []
new_line = {}
for keys in test_dev_data[0].keys():
if(keys != "token"):
new_line[keys] = -1
else:
new_line[keys] = "NEW-LINE"
test_dev_data.append(new_line)
else:
i += 1
token, pos, bio = line.strip("\n").split("\t")
tok = {'token': token,'pos':pos,'bio': bio}
sentence.append(tok)
temp_sentence.append(token)
if(i % 10000 == 0): print("{0}\t word processed".format(i))
file.close()
return test_dev_data
"""
Train MaxEnt Tagger
"""
def train_tagger():
data_frame = pd.read_csv(modes[mode]['features'],keep_default_na=False)
features = list(data_frame)
features.remove('ner')
X_TRAIN = data_frame[features].to_dict("records")
Y_TRAIN = data_frame['ner'].values
len(X_TRAIN)
training_data = tuple(zip(X_TRAIN, Y_TRAIN))
print("Training Data Samples: ",len(training_data))
print("Training Started")
classifier = nltk.classify.MaxentClassifier.train(training_data, 'IIS', trace=10, max_iter=2)
print("Saving Classifier")
save_classifier = open(model_file_name, "wb")
pickle.dump(classifier, save_classifier)
save_classifier.close()
"""
Tag Words
"""
def tag_words(file_name):
sentences = build_dev_train_data_features(file_name)
write_feature_file(sentences,modes[mode]['features'])
classifier_saved = open(model_file_name, "rb")
classifier = pickle.load(classifier_saved)
classifier_saved.close()
data_frame = pd.read_csv(modes[mode]['features'],keep_default_na=False)
features = list(data_frame)
X_TEST = data_frame[features].to_dict("records")
words = data_frame['token'].values
OUTPUT_TAGS = []
for index,feature in enumerate(X_TEST):
tag = classifier.classify(feature)
OUTPUT_TAGS.append((words[index],ner_tags_index[tag]))
with open(modes[mode]['output'],"w") as output:
for word,tag in OUTPUT_TAGS:
if(word=="NEW-LINE"): output.write("\n")
else: output.write("{0}\t{1}\n".format(word, tag))
output.close()
"""
Load External Cluster and Countries File
"""
def load_cluster_countries__file():
with open(cluster_file,'r') as file:
for line in file:
word,cluster = line.strip("\n").split("\t")
word_cluster_map[word] = cluster
file.close()
with open(countries_file,'r') as file:
for line in file:
line = line.rstrip("\n").split()[0]
countries.add(line)
file.close()
def main():
load_cluster_countries__file()
if(mode == "train"):
train_data = build_sentences(modes[mode]['data'])
write_feature_file(train_data,modes[mode]['features'])
train_tagger()
if(mode == 'dev' or mode == 'test'):
tag_words(modes[mode]['data'])
score(modes[mode]['key'],modes[mode]['output'])
main()