forked from spmallick/learnopencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreatePCAModel.cpp
147 lines (114 loc) · 3.57 KB
/
createPCAModel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#include <opencv2/opencv.hpp>
#include <dirent.h>
#include <stdlib.h>
#include <time.h>
using namespace cv;
using namespace std;
// Read jpg files from the directory
void readImages(string dirName, vector<Mat> &images)
{
cout << "Reading images from " << dirName;
// Add slash to directory name if missing
if (!dirName.empty() && dirName.back() != '/')
dirName += '/';
DIR *dir;
struct dirent *ent;
int count = 0;
//image extensions
string imgExt = "jpg";
vector<string> files;
if ((dir = opendir (dirName.c_str())) != NULL)
{
/* print all the files and directories within directory */
while ((ent = readdir (dir)) != NULL)
{
if(strcmp(ent->d_name,".") == 0 || strcmp(ent->d_name,"..") == 0 )
{
continue;
}
string fname = ent->d_name;
if (fname.find(imgExt, (fname.length() - imgExt.length())) != std::string::npos)
{
string path = dirName + fname;
Mat img = imread(path);
if(!img.data)
{
cout << "image " << path << " not read properly" << endl;
}
else
{
// Convert images to floating point type
img.convertTo(img, CV_32FC3, 1/255.0);
images.push_back(img);
// A vertically flipped image is also a valid face image.
// So lets use them as well.
Mat imgFlip;
flip(img, imgFlip, 1);
images.push_back(imgFlip);
}
}
}
closedir (dir);
}
// Exit program if no images are found
if(images.empty())exit(EXIT_FAILURE);
cout << "... " << images.size() / 2 << " files read"<< endl;
}
// Create data matrix from a vector of images
static Mat createDataMatrix(const vector<Mat> &images)
{
cout << "Creating data matrix from images ...";
// Allocate space for all images in one data matrix.
// The size of the data matrix is
//
// ( w * h * 3, numImages )
//
// where,
//
// w = width of an image in the dataset.
// h = height of an image in the dataset.
// 3 is for the 3 color channels.
Mat data(static_cast<int>(images.size()), images[0].rows * images[0].cols * 3, CV_32F);
// Turn an image into one row vector in the data matrix
for(unsigned int i = 0; i < images.size(); i++)
{
// Extract image as one long vector of size w x h x 3
Mat image = images[i].reshape(1,1);
// Copy the long vector into one row of the destm
image.copyTo(data.row(i));
}
cout << " DONE" << endl;
return data;
}
int main(int argc, char **argv)
{
// Directory containing images
string dirName = "images/";
// Read images in the directory
vector<Mat> images;
readImages(dirName, images);
// Size of images. All images should be the same size.
Size sz = images[0].size();
Mat szMat = (Mat_<double>(3,1) << sz.height, sz.width, 3);
// Create data matrix for PCA.
Mat data = createDataMatrix(images);
// Calculate PCA of the data matrix
cout << "Calculating PCA ...";
cout.flush();
PCA pca(data, Mat(), PCA::DATA_AS_ROW);
cout << " DONE"<< endl;
// Copy mean vector
Mat meanVector = pca.mean;
// Copy eigen vectors.
Mat eigenVectors = pca.eigenvectors;
// Write size, mean and eigenvectors to file
string filename("pcaParams.yml");
cout << "Writing size, mean and eigenVectors to " << filename << " ... ";
cout.flush();
FileStorage file = FileStorage(filename, FileStorage::WRITE);
file << "mean" << meanVector;
file << "eigenVectors" << eigenVectors;
file << "size" << szMat;
file.release();
cout << "DONE" << endl;
}