-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_matching_all_1_img_1_video.cpp
269 lines (213 loc) · 8.67 KB
/
feature_matching_all_1_img_1_video.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#include <vector>
#include <iostream>
#include <cstdlib>
#include <fstream>
#include <algorithm>
#include <opencv2/opencv.hpp>
#include <opencv2/objdetect.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/xfeatures2d.hpp>
#include <opencv2/xfeatures2d/nonfree.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/core/ocl.hpp>
using std::cout;
using std::cerr;
using std::vector;
using std::string;
using cv::Mat;
using cv::Point2f;
using cv::KeyPoint;
using cv::Scalar;
using cv::Ptr;
using cv::FastFeatureDetector;
using cv::SimpleBlobDetector;
using cv::DMatch;
using cv::BFMatcher;
using cv::DrawMatchesFlags;
using cv::Feature2D;
using cv::ORB;
using cv::BRISK;
using cv::AKAZE;
using cv::KAZE;
using cv::xfeatures2d::BriefDescriptorExtractor;
using cv::xfeatures2d::SURF;
using cv::xfeatures2d::SIFT;
using cv::xfeatures2d::DAISY;
using cv::xfeatures2d::FREAK;
const double kDistanceCoef = 4.0;
const int kMaxMatchingSize = 50;
const double subsamplingRatio = 0.45;
void detect_and_compute(string type, Mat& img, vector<KeyPoint>& kpts, Mat& desc) {
if (type.find("fast") == 0) {
type = type.substr(4);
Ptr<FastFeatureDetector> detector = FastFeatureDetector::create(10, true);
detector->detect(img, kpts);
}
if (type.find("blob") == 0) {
type = type.substr(4);
Ptr<SimpleBlobDetector> detector = SimpleBlobDetector::create();
detector->detect(img, kpts);
}
if (type == "surf") {
Ptr<Feature2D> surf = SURF::create(800.0);
surf->detectAndCompute(img, Mat(), kpts, desc);
}
if (type == "sift") {
Ptr<Feature2D> sift = SIFT::create();
sift->detectAndCompute(img, Mat(), kpts, desc);
}
if (type == "orb") {
Ptr<ORB> orb = ORB::create();
orb->detectAndCompute(img, Mat(), kpts, desc);
}
if (type == "brisk") {
Ptr<BRISK> brisk = BRISK::create();
brisk->detectAndCompute(img, Mat(), kpts, desc);
}
if (type == "kaze") {
Ptr<KAZE> kaze = KAZE::create();
kaze->detectAndCompute(img, Mat(), kpts, desc);
}
if (type == "akaze") {
Ptr<AKAZE> akaze = AKAZE::create();
akaze->detectAndCompute(img, Mat(), kpts, desc);
}
if (type == "freak") {
Ptr<FREAK> freak = FREAK::create();
freak->compute(img, kpts, desc);
}
if (type == "daisy") {
Ptr<DAISY> daisy = DAISY::create();
daisy->compute(img, kpts, desc);
}
if (type == "brief") {
Ptr<BriefDescriptorExtractor> brief = BriefDescriptorExtractor::create(64);
brief->compute(img, kpts, desc);
}
}
void match(string type, Mat& desc1, Mat& desc2, vector<DMatch>& matches) {
matches.clear();
if (type == "bf") {
BFMatcher desc_matcher(cv::NORM_L2, true);
desc_matcher.match(desc1, desc2, matches, Mat());
}
if (type == "knn") {
BFMatcher desc_matcher(cv::NORM_L2, true);
vector< vector<DMatch> > vmatches;
desc_matcher.knnMatch(desc1, desc2, vmatches, 1);
for (int i = 0; i < static_cast<int>(vmatches.size()); ++i) {
if (!vmatches[i].size()) {
continue;
}
matches.push_back(vmatches[i][0]);
}
}
std::sort(matches.begin(), matches.end());
while (matches.front().distance * kDistanceCoef < matches.back().distance) {
matches.pop_back();
}
while (matches.size() > kMaxMatchingSize) {
matches.pop_back();
}
}
int main(int argc, char** argv) {
// Program expects at least four arguments:
// - descriptors type ("surf", "sift", "orb", "brisk", "kaze", "akaze", "freak", "daisy", "brief").
//
// For "brief", "freak" and "daisy" you also need a prefix that is either "blob" or "fast" (e.g. "fastbrief", "blobdaisy")
if (argc != 5) {
cerr << "\nError: wrong (you had: " << argc << ") number of arguments (should be 5).\n";
cerr << "Examples:\n"
<< argv[0] << " surf knn ../box.png ../box_in_scene.png\n"
<< argv[0] << " fastfreak bf ../box.png ../box_in_scene.png\n"
<< "\nNOTE: Not all of these methods are free, check licensing conditions!\n\n"
<< std::endl;
exit(1);
}
string desc_type(argv[1]);
string match_type(argv[2]);
string img_file1(argv[3]);
string img_file2(argv[4]);
Mat img1 = cv::imread(img_file1, CV_LOAD_IMAGE_COLOR);
Mat img2 = cv::imread(img_file2, CV_LOAD_IMAGE_COLOR);
if (img1.channels() != 1) {
cvtColor(img1, img1, cv::COLOR_RGB2GRAY);
}
if (img2.channels() != 1) {
cvtColor(img2, img2, cv::COLOR_RGB2GRAY);
}
// Read input video
cv::VideoCapture cap(img_file2);
vector<KeyPoint> kpts1;
vector<KeyPoint> kpts2;
Mat desc1;
Mat desc2;
detect_and_compute(desc_type, img1, kpts1, desc1);
Mat last_T;
for (;;)
{
// Start timer
double timer = cv::getTickCount();
// Define variable for storing frames
Mat curr, curr_gray;
// Read next frame
bool success = cap.read(curr);
if(!success) break;
// Convert frame to grayscale
cv::cvtColor(curr, curr_gray, cv::COLOR_BGR2GRAY);
detect_and_compute(desc_type, curr_gray, kpts2, desc2);
vector<DMatch> matches;
match(match_type, desc1, desc2, matches);
vector<char> match_mask(matches.size(), 1);
vector<Point2f> obj;
vector<Point2f> scene;
for (int i = 0; i < static_cast<int>(matches.size()); ++i) {
obj.push_back(kpts1[matches[i].queryIdx].pt);
scene.push_back(kpts2[matches[i].trainIdx].pt);
}
Mat T = cv::findHomography(obj, scene, cv::RANSAC, 4, match_mask);
// We'll just use the last known good transform.
if(T.data == NULL) last_T.copyTo(T);
T.copyTo(last_T);
// Extract traslation
double dx = T.at<double>(0,2);
double dy = T.at<double>(1,2);
// Extract rotation angle
double da = atan2(T.at<double>(1,0), T.at<double>(0,0));
vector<Point2f> obj_corners(4);
vector<Point2f> scene_corners(4);
obj_corners[0] = cvPoint(0,0);
obj_corners[1] = cvPoint( img1.cols, 0 );
obj_corners[2] = cvPoint( img1.cols, img1.rows ); // img.shape[0] shows the row of the image, img.shape[1] shows the column of the image
obj_corners[3] = cvPoint( 0, img1.rows );
cv::perspectiveTransform( obj_corners, scene_corners, T);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( res, scene_corners[0] + Point2f( img1.cols, 0), scene_corners[1] + Point2f( img1.cols, 0), Scalar(0, 255, 0), 4 );
line( res, scene_corners[1] + Point2f( img1.cols, 0), scene_corners[2] + Point2f( img1.cols, 0), Scalar( 0, 255, 0), 4 );
line( res, scene_corners[2] + Point2f( img1.cols, 0), scene_corners[3] + Point2f( img1.cols, 0), Scalar( 0, 255, 0), 4 );
line( res, scene_corners[3] + Point2f( img1.cols, 0), scene_corners[0] + Point2f( img1.cols, 0), Scalar( 0, 255, 0), 4 );
Mat res;
cv::drawMatches(img1, kpts1, img2, kpts2, matches, res, Scalar::all(-1), Scalar::all(-1), match_mask, DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
int fps = cv::getTickFrequency() / (cv::getTickCount()-timer);
// Display Decsriptor Type on the frame
putText(res, "Decsriptor Type : " + desc_type, cvPoint(10,20), FONT_HERSHEY_SIMPLEX, 0.75, cvScalar(0,0,0), 2);
// Display FPS on the frame
string dsp = to_string(fps)
putText(res, "FPS : " + fps, cvPoint(10,50), FONT_HERSHEY_SIMPLEX, 0.75, cvScalar(0,0,0), 2);
// Display Good Matches Size on the frame
string GoodMatches = to_string(matches.size())
putText(res, "Good Matches : " + GoodMatches, cvPoint(10,50), FONT_HERSHEY_SIMPLEX, 0.75, cvScalar(0,0,0), 2);
// Display Transfprmations on the frame
string dX = to_string(cv::round(dx))
string dY = to_string(cv::round(dy))
string dA = to_string(cv::round(da))
putText(res, "Transfprmations = [dx] : " + dX + " " + "[dy] : " + dY, cvPoint(10,50), FONT_HERSHEY_SIMPLEX, 0.75, cvScalar(0,0,0), 2);
cv::imshow("result", res);
cv::waitKey(0);
}
return 0;
}