This repository has been archived by the owner on Sep 30, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
5_eisenstein.tex
245 lines (220 loc) · 13.3 KB
/
5_eisenstein.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
The conclusion of the previous chapter has been that $S_k(\Gamma_1(N))$ has a
basis of eigenforms each of them new at some level dividing $N$. For a general congruence
subgroup $\Gamma$, recall that
the Petersson inner product allowed us to define an ``orthogonal complement'' to
$S_k(\Gamma)$, the Eisenstein subspace
\[
\cE_k(\Gamma)=\{f\in M_k(\Gamma) ~|~ \langle f,g\rangle_\Gamma=0\quad \forall g\in S_k(\Gamma)\}.
\]
The goal for this chapter is to find a natural basis for $\cE_k(\Gamma)$.
\section{Eisenstein series for congruence subgroups}
Recall the Eisenstein series for $\SL_2(\ZZ)$ that we saw at the beginning:
\[
G_k(z)=\sumprime_{(m,n)\in\ZZ^2} \frac{1}{(mz+n)^k}.
\]
In order to generalize this construction, we need to put it in a more intrinsic form. Recall that the stabilizer of the cusp $\infty$ is
\[
P_\infty = \SL_2(\ZZ)_\infty = \{\pm \smtx 1b01 ~|~ b\in\ZZ\}.
\]
Write also $P_\infty^+=\{\smtx 1b01 ~|~ b\in\ZZ\}$.
\begin{lemma}
The map $\smtx abcd\mapsto (c,d)$ induces a bijection
\[
P_\infty^+\backslash \SL_2(\ZZ)\tto{\sim} \{(c,d)\in\ZZ^2~|~\gcd(c,d)=1\}.
\]
\end{lemma}
\begin{proof}
Surjectivity of the map follows from B\'ezout: given $(c,d)$ with $\gcd(c,d)=1$ we can find $a,b\in\ZZ$ such that $ad-bc = 1$. Moreover, any solution to the equation $xd-yc = 1$ is of the form
\[
x = a+tc, y = b+td,\quad t\in \ZZ.
\]
That is, the preimage of $(c,d)$ consists of the set of matrices of the form
\[
\mtx{a+tc}{b+td}{c}{d} = \mtx{1}{t}{0}{1}\mtx abcd,\quad t\in\ZZ.
\]
\end{proof}
This lemma allows us to rewrite $G_k(z)$ in a different way.
\begin{proposition}
We have
\[
G_k(z)=\zeta(k)\sum_{\gamma\in P_\infty^+\backslash \SL_2(\ZZ)} j(\gamma,z)^{-k}.
\]
\end{proposition}
\begin{proof}
Write a pair $(m,n)\in\ZZ^2\smallsetminus \{(0,0)\}$ as $(gc,gd)$, with $g=\gcd(m,n)$ and $(c,d)$ coprime. Therefore
\begin{align*}
G_k(z)&=\sum_{g=1}^\infty \sum_{\substack{(c,d)\in\ZZ^2\\\gcd(c,d)=1}} \frac{1}{g^k(cz+d)^k}=\sum_{g=1}^\infty \frac{1}{g^k} \sum_{\substack{(c,d)\in\ZZ^2\\\gcd(c,d)=1}} \frac{1}{(cz+d)^k}=\zeta(k) \sum_{\gamma\in P_\infty^+\backslash\SL_2(\ZZ)} j(\gamma,z)^{-k}.
\end{align*}
\end{proof}
Let now $\Gamma$ be an arbitrary congruence subgroup, and define $\Gamma_\infty=\Gamma\cap P_\infty$ and $\Gamma_\infty^+=\Gamma\cap P_\infty^+$.
\begin{definition}
The \emphh{Eisenstein series} of weight $k$ attached to $\Gamma$ and to the cusp $\infty$ is
\[
G_{k,\Gamma,\infty}(z)=\sum_{\gamma\in \Gamma^+_\infty\backslash\Gamma} j(\gamma,z)^{-k}.
\]
\end{definition}
\begin{remark}
Since $j(h\gamma,z)=j(\gamma,z)$ whenever $h\in \Gamma_\infty^+$, the terms in the above sum are well-defined. Moreover, since $\Gamma_\infty^+\backslash\Gamma$ injects in $P_\infty^+\backslash\SL_2(\ZZ)$, the series above is a sub-series of $G_k(z)$ and therefore it converges. So in particular, $G_{k,\Gamma,\infty}$ is holomorphic on $\HH$.
\end{remark}
\begin{proposition}
If either
\begin{enumerate}
\item $k$ is even, or
\item $k$ is odd, $-I\not\in\Gamma$ and $\infty$ is a regular cusp of $\Gamma$
\end{enumerate}
then $G_{k,\Gamma,\infty}$ belongs to $M_k(\Gamma)$. Moreover, $G_{k,\Gamma,\infty}(\infty)\neq 0$ and $G_{k,\Gamma,\infty}$ vanishes at all cusps $s\neq \infty$.
If $k$ is odd and either $-I\in\Gamma$ or $\infty$ is an irregular cusp of $\Gamma$, then $G_{k,\Gamma,\infty}=0$.
\end{proposition}
\begin{proof}
It is easy to show that $G_{k,\Gamma,\infty}=0$ if the conditions stated in the proposition are satisfied. The computation showing that $G_{k,\Gamma,\infty}$ is weakly-modular of weight $k$ for $\Gamma$ is also straightforward, using the cocycle condition of $j(\gamma,z)$.
Next we compute the value $G_{k,\Gamma,\infty}(\infty)$. We need to understand how $j(\gamma,z)^{-k}$ behaves when $\Im z\to\infty$. Suppose that $\gamma=\smtx abcd$. Then
\[
\lim_{\Im z\to\infty} j(\gamma,z)^{-k}=\lim_{\Im z\to \infty} (cz+d)^{-k} = \begin{cases}
d^{-k}&\text{if }c=0,\\
0&\text{if }c\neq 0.
\end{cases}
\]
Note also that $c=0\iff \gamma\in\Gamma_\infty$. Therefore we may calculate
\begin{align*}
\lim_{\Im z\to \infty} G_{k,\Gamma,\infty}(z)&=\lim_{\Im z\to \infty} \sum_{\gamma\in\Gamma_\infty^+\backslash \Gamma} j(\gamma,z)^{-k}=\sum_{\gamma\in\Gamma_\infty^+\backslash\Gamma_\infty} j(\gamma,z)^{-k}=\begin{cases}
1&\text{if }\Gamma_\infty^+=\Gamma_\infty,\\
1+(-1)^k&\text{if }[\Gamma_\infty\colon\Gamma_\infty^+]=2.
\end{cases}\\
&=\begin{cases}
1&\text{if } \Gamma_\infty^+=\Gamma_\infty,\\
2&\text{if } [\Gamma_\infty\colon\Gamma_\infty^+]=2\text{ and } k\text{ is even,}\\
0&\text{if } [\Gamma_\infty\colon\Gamma_\infty^+]=2\text{ and } k\text{ is odd.}
\end{cases}
\end{align*}
The last case does not occur, by assumption. Hence $G_{k,\Gamma,\infty}(\infty)\in \{1,2\}$ is nonzero.
Consider now a cusp $s$ of $\Gamma$, different from $\infty$. Let $\gamma_s\in \SL_2(\ZZ)$ satisfy $\gamma_s \infty = s$, so that $G_{k,\Gamma,\infty}(s) = (G_{k,\Gamma,\infty}|_k\gamma_s)(\infty)$. Note that
\[
(G_{k,\Gamma,\infty}|_k\gamma_s)(z) = \sum_{\gamma\in\Gamma_\infty^+\backslash\Gamma} j(\gamma,\gamma_s z)^{-k}j(\gamma_s,z)^{-k}=\sum_{\gamma\in\Gamma_\infty^+\backslash\Gamma} j(\gamma\gamma_s,z)^{-k}.
\]
Since $\gamma\gamma_s$ has nonzero bottom-left entry (otherwise $\gamma\gamma_s$ would stabilize infinity, which does not), then each of the terms approaches $0$ as $\Im z\to \infty$ and we obtain the desired vanishing.
\end{proof}
The next goal is to construct Eisenstein series that are non-vanishing at each of the other cusps $s$ of $\Gamma$ (and vanish at the cusps $s'\neq s$). This is done by translating $G_{k,\Gamma,\infty}$ by the matrices $\gamma_s$.
\begin{lemma}
Let $s$ be a cusp of $\Gamma$ and let $\gamma_s\in\SL_2(\ZZ)$ be a matrix such that $\gamma_s \infty = s$. Define
\[
G_{k,\Gamma,s} = G_{k,\gamma_s^{-1}\Gamma\gamma_s,\infty}|_k \gamma_s^{-1} = \sum_{\gamma\in\Gamma_s^+\backslash \Gamma} j(\gamma_s^{-1}\gamma,z),\quad\text{where }\Gamma_s^+=\{\gamma\in\Gamma~|~ \gamma_s^{-1}\gamma\gamma_s = \smtx 1 {*} 0 1\}.
\]
If $k$ is odd, suppose that $-I\not\in\Gamma$, and $s$ is a regular cusp of $\Gamma$. Then $G_{k,\Gamma,s}$ belongs to $\cE_k(\Gamma)$, does not vanish at $s$ and vanishes at all other cusps $s'\neq s$ of $\Gamma$.
\end{lemma}
\begin{remark}
Although there is a choice of $\gamma_s$ involved, the form $G_{k,\Gamma,s}$ is well defined when $k$ is even, and well-defined up to sign when $k$ is odd.
\end{remark}
We next show that the Eisenstein series we have just introduced belong in fact to the Eisenstein subspace $\cE_k(\Gamma$).
\begin{proposition}
Let $\Gamma$ be a congruence subgroup, let $k\geq 3$ be an integer and let $s$ be a cusp of $\Gamma$. Then $G_{k,\Gamma,s}$ belongs to $\cE_k(\Gamma)$.
\end{proposition}
\begin{proof}
We need to prove that for each $f\in S_k(\Gamma)$ we have $\langle f,G_{k,\Gamma,s}\rangle_\Gamma = 0$. From the definition of the Petersson inner product there is an equality
\[
\langle f,g\rangle_\Gamma = \langle f|_k\gamma,g|_k\gamma\rangle_{\gamma^{-1}\Gamma\gamma}.
\]
Thus we may reduce to showing $\langle f,G_{k,\Gamma,\infty}\rangle_\Gamma=0$ for all $f\in S_k(\Gamma)$. Writing the definition of the pairing and exchanging the sum with the integral gives
\[
\langle f,G_{k,\Gamma,\infty}\rangle_\Gamma = \sum_{\gamma\in \Gamma_\infty^+\backslash \Gamma} \int_{D_\Gamma} f(z)\ol{j(\gamma,z)^{-k}} \Im(z)^kd\mu(z).
\]
Make the change of variables $w=\gamma z$, so
\[
f(w)=j(\gamma,z)^kf(z),\quad \Im(w)=|j(\gamma,z)|^{-2}\Im(z).
\]
This gives
\[
\langle f,G_{k,\Gamma,\infty}\rangle_\Gamma = \sum_{\gamma\in\Gamma_\infty^+\backslash \Gamma}\int_{w\in \gamma D_\Gamma} f(w) y^k\frac{dxdy}{y^2} = \int_{w\in\Gamma_\infty^+\backslash\HH} f(w)y^{k-2}dxdy.
\]
Suppose now that $\infty$ has width $h$ and that the $q$-expansion of $f$ is $\sum a_n q_h^n$. Then
\begin{align*}
\langle f,G_{k,\Gamma,\infty}\rangle_\Gamma &= \int_{\Gamma_\infty^+\backslash \HH}\left(\sum_{n=1}^\infty a_n e^{2\pi i nw/h}\right)y^{k-2}dxdy= \int_{x=0}^h\int_{y=0}^\infty\left(\sum_{n=1}^\infty a_n e^{2\pi i nx/h}e^{-2\pi ny/h}\right)y^{k-2}dxdy\\
&=\sum_{n=1}^\infty a_n \int_{x=0}^h e^{2\pi i nx/h} dx\int_{y=0}^\infty e^{-2\pi ny/h} y^{k-2}dy.
\end{align*}
Since $n\geq 1$, the integrals on $x$ vanish and thus we get the result.
\end{proof}
We end the section by stating essentially that the Eisenstein series give a basis for $\cE_k(\Gamma)$. We do this by giving the dimension of the Eisenstein space, and then exhibiting a the explicit basis.
\begin{theorem}
Let $\Gamma$ be a congruence subgroup, let $k$ be an integer, let $\eps_\Gamma$ be the number of cusps of $\Gamma$ and let $\eps^\text{reg}_\Gamma\leq\eps_\Gamma$ be the number of regular cusps. Then:
\[
\dim_\CC \cE_k(\Gamma)=\begin{cases}
0&\text{ if }k<0,\text{ or }k\text{ odd and }-I\in\Gamma,\\
1&\text{ if }k=0,\\
\eps_\Gamma^\text{reg}/2&\text{ if }k=1\text{ and } -I\not\in\Gamma,\\
\eps_\Gamma-1&\text{ if }k=2,\\
\eps_\Gamma&\text{ if }k\text{ even, and } k\geq 4,\\
\eps_\Gamma^\text{reg}&\text{ if }k\text{ odd, }k\geq 3\text{, and } -I\not\in\Gamma.\\
\end{cases}
\]
\end{theorem}
\section{Eisenstein series for $\Gamma_1(N)$}
We now specialize the above construction in the case where $\Gamma=\Gamma_1(N)$ for any positive integer $N$. In fact, we will construct a basis of Hecke eigenforms.
Recall that in Chapter~\ref{chap:hecke} we introduced Dirichlet characters modulo $N$. Let $M$ and $N$ be positive integers with $M\mid N$. A Dirichlet character $\chi$ modulo $M$ can be lifted to a Dirichlet character $\chi^{(N)}$ modulo $N$, by
\[
\chi^{(N)}(m)=\begin{cases}
\chi(m)&\text{ if }\gcd(m,N)=1,\\
0&\text{ if }\gcd(m,N)>1.
\end{cases}
\]
\begin{definition}
Let $\chi\colon \ZZ\to\CC$ be a Dirichlet character modulo $N$. The \emphh{conductor} of $\chi$ is the smallest divisor $M$ of $N$ such that $\chi$ is the lift of a Dirichlet character modulo $M$. A Dirichlet character modulo $N$ is \emphh{primitive} if it has conductor $N$.
\end{definition}
\begin{example}
The only character modulo one is $1\colon \ZZ\to\CC$, the constant function $1$. If $N$ is any positive integer, the lift of $1$ to a Dirichlet character modulo $N$ is the function
\[
1^{(N)}\colon\ZZ\to\CC,\quad m\mapsto \begin{cases}1&\gcd(m,N)=1,\\0&\gcd(m,N)>1.
\end{cases}
\]
\end{example}
\begin{example}
For each prime number $p$, and each integer $a$ we define the \emphh{Legendre symbol}
\[
\left(\frac a p\right)=\begin{cases}
0&\text{ if }p\mid a,\\
1&\text{ if }p\mid a\text{ and $a$ is a square modulo $p$},\\
-1&\text{ if }p\mid a\text{ and $a$ is not a square modulo $p$},\\
\end{cases}
\]
Then $\left(\frac\bullet p\right)$ is a Dirichlet character modulo $p$. Its conductor is $p$ if $p\neq 2$, and $1$ if $p=2$.
\end{example}
\begin{example}
Let $\chi_1$ be a Dirichlet character modulo $N_1$ and let $\chi_2$ be a Dirichlet character modulo $N_2$. If $M$ is a common multiple of $N_1$ and $N_2$, one may consider the product $\chi=\chi_1\chi_2 = \chi_1^{(M)}\chi_2^{(M)}$. This is a character with modulus $M$. Note however that the conductor is not multiplicative: if $\chi$ is a quadratic character of conductor $N$, say, then $\chi^2$ is the trivial character which will have conductor $1$.
\end{example}
In order to give the $q$-expansions of the Eisenstein series attached to a pair of characters, we need some new notation. We will need the folloing generalization of the divisor function. If $\chi_1$ and $\chi_2$ are Dirichlet characters, define
\[
\sigma_{k-1}^{\chi_1,\chi_2}(n)=\sum_{d\mid n}\chi_1(n/d)\chi_2(d)d^{k-1}.
\]
The following theorem gives the $q$-expansions of Eisenstein series that will form a basis of eigenforms for the Eisenstein space.
\begin{theorem}
\label{th:eisenstein-gamma1}
Let $\chi_1,\chi_2$ be primitive Dirichlet characters modulo $N_1$ and $N_2$, respectively. Let $\chi=\chi_1\chi_2$ be the product as a character modulo $N_1N_2$ (not necessarily primitive). Let $k\geq 3$ be such that $\chi(-1)=(-1)^k$. Define
\[
\delta(\chi_1)=\begin{cases}
1&\text{if } \chi_1=1_1,\\
0&\text{else.}
\end{cases}
\]
and let $L(\chi_2,s)=\sum_{n=1}^\infty \chi_2(n)n^{-s}$ be the $L$-series of $\chi_2$. Then the function $E_k^{\chi_1,\chi_2}$ defined by
\[
E_k^{\chi_1,\chi_2}(z) = \delta(\chi_1)L(\chi_2,1-k) + 2\sum_{n=1}^\infty\sigma_{k-1}^{\chi_1,\chi_2}(n)q^n
\]
belongs to $\cE_k(\Gamma_1(N_1N_2))$. Moreover, it is a Hecke eigenform with character $\chi$.
\end{theorem}
The modular form $E_k^{\chi_1,\chi_2}$ is called the \emph{Eisenstein series of weight $k$ associated to $(\chi_1,\chi_2)$}.
\begin{remark}
When $k=1$ the theorem remains true, although in this case $E_1^{\chi_1,\chi_2} = E_1^{\chi_2,\chi_1}$. When $k=2$, then we must require in addition that $\chi_1$ and $\chi_2$ must not be both trivial. If both $\chi_1$ and $\chi_2$ are trivial, then we know that $E_2(z)=1-24\sum_{n\geq 1} \sigma_1(n)q^n$ is not a modular form. However, for any $N>1$ the function
\[
E_2^{(N)}(z)=E_2(z)-NE_2(Nz)
\]
belongs to $M_2(\Gamma_1(N))$.
\end{remark}
\begin{theorem}
Let $k\geq 3$, let $N\geq 1$ and let $\chi$ be a Dirichlet character modulo $N$ such that $\chi(-1) = (-1)^k$. Then there is a decomposition
\[
\cE_k(\Gamma_0(N),\chi) = \bigoplus_{d\mid N}\bigoplus_{N_1N_2 \mid\frac Nd} \bigoplus_{\chi_1\chi_2=\chi}\CC V_d(E_k^{\chi_1,\chi_2}),
\]
where the inner sum runs through factorizations of $\chi$ into primitive Dirichlet characters $\chi_1$ and $\chi_2$ modulo $N_1$ and $N_2$.
\end{theorem}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End: