This repository has been archived by the owner on Sep 30, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
2_modformscongruence.tex
434 lines (397 loc) · 22.7 KB
/
2_modformscongruence.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
\section{Congruence subgroups}
\label{sec:congruence-subgroups}
Let $N\geq 1$ be an integer. In this section we will consider subgroups of $\SL_2(\ZZ)$ that are especially nice to work with. There are other subgroups that are interesting but beyond the scope of this course.
\begin{definition}
The \emphh{principal congruence subgroup} of level $N$ is
\[
\Gamma(N)=\{ \gamma\in\SL_2(\ZZ)~|~ \gamma\equiv \smtx 1001 \pmod{N}\}.
\]
\end{definition}
Note that $\Gamma(1)=\SL_2(\ZZ)$, so we are strictly generalizing Chapter~\ref{chap:modforms-full-level}. Note also that $\Gamma(N)$ can be defined as the kernel of the group homomorphism induced by the reduction map $\ZZ\to \ZZ/N\ZZ$:
\[
\pi_N\colon \SL_2(\ZZ)\to \SL_2(\ZZ/N\ZZ).
\]
Therefore, $\Gamma(N)$ is a normal subgroup of $\SL_2(\ZZ)$, of finite index.
\begin{proposition}
The map $\pi_N$ is surjective.
\end{proposition}
\begin{proof}
Exercise.
\end{proof}
There are too few principal congruence subgroups (only one for each $N\geq 1$), so it is desirable to consider more general subgroups.
\begin{definition}
A subgroup $\Gamma\subseteq \SL_2(\ZZ)$ is a \emphh{congruence subgroup} if there is some $N\geq 1$ such that
\[
\Gamma(N)\subseteq \Gamma \subseteq \SL_2(\ZZ).
\]
The \emphh{level} of a congruence subgroup $\Gamma$ is the minimum $N$ such that $\Gamma(N)\subseteq \Gamma$.
\end{definition}
One can think of many different ways to construct congruence subgroups. There are two families that arise so frequently that have special notation for them:
\begin{example}
For each $N\geq 1$, define
\[
\Gamma_1(N)=\{\smtx{1}{*}{0}{1}\pmod N\},
\]
and also
\[
\Gamma_0(N)=\{\smtx{*}{*}{0}{*}\pmod N\}.
\]
\end{example}
\begin{lemma}
For each $N\geq 1$ there are inclusions
$\Gamma(N) \subseteq \Gamma_1(N) \subseteq \Gamma_0(N) \subseteq \SL_2(\ZZ)$,
and
\[
[\Gamma_1(N)\colon \Gamma(N)] = N,\quad [\Gamma_0(N)\colon \Gamma_1(N)] = N\prod_{p\mid N} \left(1-\frac 1p\right),\quad [\SL_2(\ZZ)\colon \Gamma_0(N)] = N\prod_{p\mid N} \left(1+\frac 1p\right).
\]
\end{lemma}
\begin{proof}
Exercise.
\end{proof}
\begin{remark}
The inclusions are strict except for $N=1$ (where all groups coincide) and for $\Gamma_0(2)=\Gamma_1(2)$.
\end{remark}
%Recall the slash operator introduced in Section~\ref{sec:upper-half-plane}.
\begin{definition}
A function $f\colon\HH\to\CC$ is \emphh{weakly modular} of weight $k$ with respect to $\Gamma$ if it is meromorphic on $\HH$ and it satisfies
\[
f|_k\gamma = f,\quad \forall \gamma\in\Gamma.
\]
\end{definition}
\newcommand{\Cusps}{\operatorname{Cusps}}
\section{Cusps}
\label{sec:cusps}
Of course we will need to understand fundamental domains for the action of congruence subgroups on $\HH$. Here is for example a fundamental domain for $\Gamma_0(2)$:
\begin{figure}[h]
\centering
\includegraphics{fundomGamma02.pdf}
\caption{A fundamental domain for $\Gamma_0(2)$}
\label{fig:fundom-gamma02}
\end{figure}
In this case, the fundamental domain contains two points in its closure which do not belong to $\HH$: the cusp $\infty$ as before, but also $0$. The following result gives a construction of a fundamental domain for any congruence subgroup, using translates of the fundamental domain $\cD$ of $\SL_2(\ZZ)$ seen in Chapter~\ref{ch:modforms-full-level}.
\begin{proposition}
Let $\Gamma$ be a congruence subgroup of $\SL_2(\ZZ)$. If there is a decomposition
\[
\Gamma\backslash \SL_2(\ZZ)=\bigcup_{h\in R} \Gamma h,\quad R\text{ finite,}
\]
then the set $\cD_\Gamma=\cup_{h\in R} h\cD$ is a (possibly non-connected) fundamental domain for $\Gamma$.
\end{proposition}
\begin{proof}
If $z\in\HH$, then there exists $g\in\SL_2(\ZZ)$ and $z_0\in\cD$ such that $z = gz_0$. The coset decomposition implies that there is some $\gamma\in R$ and some $h\in \Gamma$ such that $g=h\gamma$. Therefore
\[
z = h\gamma z_0.
\]
Since $z_0'=\gamma z_0\in \gamma\cD\subset \cD_\Gamma$ we have written $z=h z_0'$ with $h\in\Gamma$.
It remains to be shown that if $z\in\stackrel{\circ}{\cD_\Gamma}$ and $\gamma z \in\stackrel{\circ}{\cD_\Gamma}$ for some $\gamma\in\Gamma$, then $\gamma = 1$. For that, let $\eps>0$ be small enough so that the ball $B_\eps(z)$ of radius $\eps$ around $z$ is fully contained in $\stackrel{\circ}{\cD_\Gamma}$. The ball $B_\eps(z)$ intersects some translates of $\cD$, say:
\[
B_\eps(z)\cap h\cD \neq \emptyset\iff h\in R'\subseteq R.
\]
Consider the translated ball $\gamma B_\eps(z)=B_\eps(\gamma z)$. Since $\gamma z$ is also in the interior of $\cD_\Gamma$, we deduce that $\gamma B_\eps(z)$ must intersect the interior of some translate of $\cD$, say $h\stackrel{\circ}{\cD}$, for some $h\in R$. Therefore:
\[
\gamma B_\eps(z)\cap h\stackrel{\circ}{\cD}\neq \emptyset \implies B_\eps(z)\cap \gamma^{-1}h\stackrel{\circ}{\cD}\neq \emptyset.
\]
Since we listed all the translates whose interior intersected with $B_\eps(z)$, we must have that $\gamma^{-1}h = h_0$. But now $\Gamma h = \Gamma \gamma^{-1}h = \Gamma h_0$, and since both $h$ and $h_0$ belong to $R$, we must have $h=h_0$. Therefore $\gamma^{-1}=1$, or $\gamma=1$ as we wanted.
\end{proof}
In order to further study the cusps, we consider the \emphh{rational projective line} $\PP^1(\QQ)=\QQ \cup\{\infty\}$. Note that $\SL_2(\ZZ)$ (in fact $\GL_2(\QQ)$) acts on $\PP^1(\QQ)$ by fractional linear transformations:
\[
\gamma x = \frac{ax +b}{cx+d},\quad \gamma = \mtx abcd\in\SL_2(\ZZ),x\in\PP^1(\QQ).
\]
Here we understand that $\gamma\infty = \frac ac$, and $\gamma x = \infty$ if $cx = -d$.
\begin{proposition}
The action of $\SL_2(\ZZ)$ on $\PP^1(\QQ)$ is transitive, and it induces a bijection
\[
\SL_2(\ZZ)/\SL_2(\ZZ)_\infty\cong \PP^1(\QQ),\quad \SL_2(\ZZ)_\infty = \langle \pm T\rangle.
\]
\end{proposition}
\begin{proof}
We will see that the orbit of $\infty$ is all of $\PP^1(\QQ)$, where we note that $\smtx abcd \infty = \frac ac$. Given $\frac ac\in\PP^1(\QQ)$ in reduced terms (that is, such that $(a,c)=1$), then B\'ezout's identity asserts the
existence of integers $b$ and $d$ such that $ad-bc=1$. Then the matrix $\smtx abcd$ belongs to $\SL_2(\ZZ)$ and takes $\infty$ to $\frac ac$.
The stabilizer of $\infty$, written $\SL_2(\ZZ)_\infty$, is:
\[
\SL_2(\ZZ)_\infty = \left\{\mtx abcd ~|~ \mtx abcd \infty = \infty\right\} = \left\{\mtx abcd ~|~ \frac ac = \infty\right\} = \left\{\mtx ab0d\right\} = \langle \pm T\rangle.
\]
\end{proof}
\begin{definition}
The set of \emphh{cusps} of a congruence subgroup $\Gamma$ is the set $\Cusps(\Gamma)$ of $\Gamma$-orbits of $\PP^1(\QQ)$. Equivalently,
\[
\Cusps(\Gamma) = \Gamma\backslash \SL_2(\ZZ) / \SL_2(\ZZ)_\infty.
\]
\end{definition}
If $P = [\frac ac]$ is a cusp of $\Gamma$, set $\Gamma_P$ for the \emphh{stabilizer} of $P$ in $\Gamma$, the elements of $\Gamma$ fixing $P$.
\begin{lemma}
If $\gamma_P(\infty) = P$, then
\[
\Gamma_P = \Gamma\cap \gamma_P\SL_2(\ZZ)_\infty \gamma_P^{-1}.
\]
\end{lemma}
\begin{proof}
Let $\gamma\in\Gamma$. Then observe that
\begin{align*}
\gamma\in\Gamma_P&\iff \gamma P = P\iff \gamma \gamma_P\infty=\gamma_P\infty\\
&\iff \gamma_P^{-1}\gamma\gamma_P\infty=\infty\\
&\iff \gamma_P^{-1}\gamma\gamma_P\in \SL_2(\ZZ)_\infty\\
&\iff \gamma\in \gamma_P\SL_2(\ZZ)_\infty \gamma_P^{-1}.
\end{align*}
This concludes the proof.
\end{proof}
\begin{lemma}
The subgroup $H_P = \gamma_P^{-1}\Gamma\gamma_P\cap \SL_2(\ZZ)_\infty \subseteq \SL_2(\ZZ)_\infty$
does not depend on the choice of the representative for $P$, and has finite index in $\SL_2(\ZZ)_\infty$.
\end{lemma}
\begin{proof}
Just note that if $\frac{a'}{c'}$ is another representative for $P$, then $\gamma_P$ gets modified into $\gamma\gamma_P$ for some $\gamma\in\Gamma$. Then $(\gamma\gamma_P)^{-1}\Gamma(\gamma\gamma_P) = \gamma_P^{-1}\Gamma\gamma_P$.
\end{proof}
\begin{lemma}
Let $H$ be a subgroup of finite index in $\SL_2(\ZZ)_\infty$, and let $h$ be the index of $\{\pm 1\}H$ in $\SL_2(\ZZ)_\infty$. Then $H$ is one of he following:
\[
H = \begin{cases}
\langle \smtx 1h01\rangle&\\
\langle \smtx{-1}{h}{0}{-1}\rangle&\\
\{\pm 1\}\times \langle \smtx 1h01\rangle&
\end{cases}
\]
\end{lemma}
\begin{proof}
Exercise.
\end{proof}
\begin{definition}
The integer $h_\Gamma(P)=h$ in the above lemma is called \emphh{width of a cusp} $P$ for $\Gamma$. A cusp is an \emphh{irregular cusp} if $\gamma_P^{-1}\Gamma_P\gamma_P$ is of the form $\langle \smtx{-1}{h}{0}{-1}\rangle$, and it is \emphh{regular cusp} otherwise.
\end{definition}
\begin{example}
In this example we show that if $p$ is any prime, then $\Cusps(\Gamma_0(p)) = \{ \infty, 0\}$.
Write an element $\gamma\in\Gamma_0(p)$ as $\smtx{a}{b}{pc}{d}$, with $a,b,c,d\in\ZZ$ satisfying $ad-pbc =1$. The orbit of $\infty$ is:
\[
\Gamma_0(p)\cdot \infty = \left\{\mtx{a}{b}{pc}{d}\infty\right\} = \left\{\frac{a}{pc}~\colon~ a,c\in\ZZ,\gcd(a,pc) = 1\right\} = \left\{ \frac{r}{s}~\colon~ p\mid s, \gcd(r,s)=1\right\}.
\]
We thus see the orbit of the cusp $\infty$ consists of infinity together with all the rationals which when expressed in reduced terms have a denominator which is divisible by $p$. One element which is not in this orbit is $0=\frac{0}{1}$. Let us study then the orbit of $0$.
\[
\Gamma_0(p) \cdot 0 = \{\mtx{a}{b}{pc}{d} 0\} = \{\frac{b}{d}~\colon~ b,d\in\ZZ, \gcd(b,d)=1, p\nmid d\}.
\]
\end{example}
As we have seen in the example above, each cusp may have a different width. However, if $\Gamma$ is a normal congruence subgroup of $\SL_2(\ZZ)$, the subgroup $H_P$ does not depend on the cusp $P$ and hence all cusps have the same width and regularity.
Although one can have more cusps than the index of $\Gamma$, the last result of this section says that this is basically right, once one counts in a proper way. To prove it, we will need a group-theoretic result.
\begin{lemma}[orbit--stabilizer for infinite groups]
\label{lemma:orbit-stabilizer}
Let $G$ be a group acting transitively on a set $X$ and let $H$ be a finite index subgroup of $G$. Then for any $x\in X$ the stabilizer of $x$ in $H$ has finite index in the stabilizer of $x$ in $G$, and the following formula holds:
\[
\sum_{x\in H\backslash X} [G_x\colon H_x]=[G\colon H].
\]
\end{lemma}
\begin{proof}
Let $x\in X$, and consider the inclusion map $G_x\to G$. By taking the quotient by $H$ we get $G_x\to H\backslash G$. Suppose $g_1, g_2$ are mapped to the same element $Hg$ in $H\backslash G$. This means that $Hg_1 = Hg_2$, or that $g_2g_1^{-1}$ belongs to $H$. Since $g_2g_1^{-1}$ stabilizes $x$ as well, we deduce that $H_x g_1 = H_x g_2$. Therefore there is an injection of $H_x\backslash G_x\injects H\backslash G$. Since by assumption the latter set is finite, so is the first. Note also that the image of the map is precisely $H\backslash HG_x$, and thus we also obtain $[G_x\colon H_x] = [H G_x\colon H]$.
To prove the second assertion, fix an element $x_0\in X$, and consider the map
\[
H\backslash G\tto H\backslash X,\quad Hg\mapsto Hgx_0
\]
which is surjective because $G$ acts transitively on $X$. The fibre $T_{Hx}$ of an orbit $Hx$ consists of the set of classes $Hg$ such that $Hgx_0 = Hx$. Let $g_x\in G$ be such that $g_x x_0 = x$. Write $Hg = Hg'g_x$ and then we have:
\begin{align*}
T_{Hx}&\cong \{Hg'\in H\backslash G\colon Hg'g_xx_0 = Hx\} = \{Hg'\in H\backslash G\colon Hg'x=Hx\}= H\backslash(H G_x)\cong H_x\backslash G_x.
\end{align*}
This allows us to find a formula for $[G\colon H]$:
\begin{align*}
[G\colon H]&=\# (H\backslash G) = \sum_{x\in R} \# T_{Hx} = \sum_{x\in R} [G_x\colon H_x].
\end{align*}
\end{proof}
\begin{theorem}
Let $\Gamma$ be a congruence subgroup. Then we have
\[
\sum_{P\in \Cusps(\Gamma)} h_\Gamma(P) = [\SL_2(\ZZ)\colon \{\pm 1\}\Gamma].
\]
\end{theorem}
\begin{proof}
Consider the group $G=\PSL_2(\ZZ)=\SL_2(\ZZ)/\{\pm 1\}$, which acts transitively on the set $X=\PP^1(\QQ)$. Let $H$ be the image of $\Gamma$ in $G$. Note that $H\backslash X=\Cusps(\Gamma)$. Also, $G_\infty$ is the image in $G$ of $\SL_2(\ZZ)_\infty$. For each $x\in X$, let $\gamma\in G$ be such that $\gamma \infty = x$. Then
\[
G_x=\gamma G_\infty\gamma^{-1},\text{ and}\quad H_x= \gamma \left(\gamma^{-1}H\gamma\right)_\infty \gamma^{-1}.
\]
Therefore
\[
[G_x\colon H_x] = [\bar\SL_2(\ZZ)\colon \bar \Gamma_P] = h_\Gamma(P),
\]
where by $\ol{(\cdot)}$ we write the image of the group inside $G$. Then applying Lemma~\ref{lemma:orbit-stabilizer} to this setting gives
\[
\sum_{P\in \Cusps(\Gamma)} h_\Gamma(P) = [G\colon H] = [\SL_2(\ZZ)\colon \{\pm 1\}\Gamma].
\]
\end{proof}
\section{Fourier expansion at infinity}
\label{sec:fourier-expansion-at-infinity}
Let $\Gamma$ be a congruence subgroup of level $N$. Note that the matrix $\smtx 1N01$ belongs to $\Gamma(N)$, and thus there is a minimum $h>0$ with the property that $\smtx 1h01 \in\Gamma$.
\begin{definition}
The \emphh{fan width} of $\Gamma$ is the minimum $h>0$ such that $\smtx 1h01\in\Gamma$.
\end{definition}
\begin{remark}
The fan width of a congruence subgroup of level $N$ is a divisor of $N$.
\end{remark}
Write
\[
q_h =q_h(z)= e^{\frac{2\pi i z}{h}},
\]
and note that $z\mapsto q_h(z)$ is periodic with period $h$. Define $g$ by $g = f\circ q_h^{-1}$.
That is, $g(q_h) = f(z)$. Although $q_h$ is not invertible, the above definition makes sense, and $g$ has
a Laurent expansion.
\begin{definition}
The $q$-expansion of $f$ at infinity is the Laurent expansion:
\[
f(z) = g(q_h)=\sum_{n=-\infty}^\infty a(n)q_h^n.
\]
\end{definition}
\section{Expansions at cusps}
\label{sec:expansions-at-cusps}
Let $s$ be a cusp, $s\neq \infty$. Write $s =\alpha\infty$ for some $\alpha\in\SL_2(\ZZ)$, and consider the equation:
\[
f(\alpha z) = j(\alpha,z)^{k}(f|_k\alpha)(z).
\]
Since $j(\alpha,z)\neq 0,\infty$ when $z$ is near $\infty$, the behavior of $f(z)$ near $s$ is related to the behavior of $(f|_k\alpha)(z)$ near $\infty$. Assume that $f$ is weakly modular for the congruence subgroup $\Gamma$. Since\[
(f|_k\alpha)|_k(\alpha^{-1}\gamma\alpha) = (f|_k\gamma)|_k\alpha = f|_k\alpha,
\]
the new function $f|_k\alpha$ is invariant under the group $\Gamma'=\alpha^{-1}\Gamma\alpha$. Since $\Gamma(N)$ is normal inside $\SL_2(\ZZ)$, we deduce that $\Gamma'$ is also a congruence subgroup of level $N$. Hence $f|_k\alpha$ has a Fourier expansion at infinity as in Section~\ref{sec:fourier-expansion-at-infinity} in powers of $q_N$.
\begin{definition}
The \emphh{expansion of $f$ at a cusp} $s$ is the expansion:
\[
f|_k\alpha = \sum_{n=-\infty}^\infty b(n)q_N^n.
\]
\end{definition}
\section{Definition of modular forms}
The expansions at different cusps allow us to define modular forms for arbitrary congruence subgroups.
\begin{definition}
\label{def:modforms-congruence}
A function $f\colon\HH\to\CC$ is a \emphh{modular form} of weight $k$ for a congruence subgroup $\Gamma$ if:
\begin{enumerate}
\item $f$ is holomorphic on $\HH$,
\item $f|_k\gamma = f$ for all $\gamma\in\Gamma$, and
\item $f|_k\alpha$ is holomorphic at infinity for all $\alpha\in\SL_2(\ZZ)$.
\end{enumerate}
A function is a \emphh{cusp form} of weight $k$ for a congruence subgroup $\Gamma$ if instead of $3$ is satisfies:
\begin{enumerate}[resume]
\item[3'.] $f|_k\alpha$ vanishes at infinity for all $\alpha\in\SL_2(\ZZ)$.
\end{enumerate}
The \emphh{space of modular forms} of weight $k$ for a congruence subgroup $\Gamma$ is written $M_k(\Gamma)$; the \emphh{space of cusp forms} of weight $k$ for a congruence subgroup $\Gamma$ is written $S_k(\Gamma)$.
\end{definition}
\begin{proposition}
Suppose that $f\colon\HH\to\CC$ satisfies $1$ and $2$ above. Suppose that $f$ is holomorphic at infinity. That is,
\[
f(z) = \sum_{n=0}^\infty a(n)q_N^n.
\]
Furthermore, suppose that there exists constants $C>0$ and $r>0$ such that:
\[
|a(n)|< Cn^r,\quad \forall n > 0.
\]
Then $f$ satisfies $3$, and thus $f\in M_k(\Gamma)$.
\end{proposition}
\begin{proof}
Exercise.
\end{proof}
\begin{remark}
In fact, the converse is also true: if the Fourier coefficients of $f$ grow as $Cn^r$ as above, then condition $3$ in Definition~\ref{def:modforms-congruence} is satisfied. The proof of this fact uses Eisenstein series for congruence subgroups, and thus will be postponed until we introduce those.
\end{remark}
\begin{example}
Let $f$ be a weakly-modular form of weight $k$ for the full modular subgroup. Consider the function $g(z) = f(Nz)$. If $\gamma\in\Gamma_0(N)$ is of the form $\gamma=\smtx abcd$, then since $N\mid c$ the matrix
\[
\gamma'=\mtx a{bN}{c/N}{d}
\]
is in $\SL_2(\ZZ)$. Therefore we may compute:
\begin{align*}
g(\gamma z) &= f(N(\gamma z)) = f(\frac{Naz+bN}{cz+d}) \\
&= f(\frac{a(Nz)+bN}{c/N (Nz) + d}) = f(\gamma'(Nz))\\
&=(c/N(Nz) + d)^{k}f(Nz) = j(\gamma,z)^k g(z).
\end{align*}
Therefore the function $g$ is weakly-modular of weight $k$ for the congruence subgroup $\Gamma_0(N)$. In fact, this operation defines injections
\[
M_k(\SL_2(\ZZ))\to M_k(\Gamma_0(N))
\]
which will play an important role later in the course, in the Atkin-Lehner-Li theory of old/new forms.
\end{example}
We end this section by realizing that the definition of modular forms can be checked by finitely many computations. Suppose that $\sigma=\alpha\infty$ and $\tau=\beta\infty$ are two cusps (here $\alpha$ and $\beta$ are in $\SL_2(\ZZ)$). Suppose that $\sigma=\gamma\tau$ with $\gamma\in\Gamma$.
\begin{proposition}
If
\[
f|_k\alpha = \sum_{n=-\infty}^\infty a(n)q_h^n,
\]
then
\[ f|_k\beta = \sum_{n=-\infty}^\infty b(n)q_h^n,\quad b(n) = (\pm 1)^k e^{\frac{2\pi i n j}{h}} a(n), j\in \ZZ.
\]
\end{proposition}
\begin{proof}
By assumption $\alpha\infty=\gamma\beta\infty$, so $\alpha^{-1}\gamma\beta\infty=\infty$, and therefore since the only matrices that fix infinity are of the form $\pm \smtx 1j01$ we have:
\[
\alpha^{-1}\gamma\beta = \pm\mtx 1j01,\quad j\in\ZZ.
\]
This means that
\[
\beta = \pm \gamma^{-1}\alpha\mtx 1j01,
\]
and therefore:
\begin{align}
f|_k\beta &= f|_k\pm I |_k \gamma^{-1} |_k\alpha |_k \mtx 1j01 = (\pm 1)^k\sum a(n)e^{\frac{2\pi i n z}{h}} |_k \mtx 1j01\\
&=(\pm 1)^k\sum a(n) e^{\frac{2\pi i n (z+j)}{h}}.
\end{align}
\end{proof}
\begin{corollary}
For each $n\in\ZZ$, we have $a(n)=0$ if and only if $b(n)=0$. In particular, it is enough to check $3$ or $3'$ for one representative from each of the equivalence classes of cusps.
\end{corollary}
\section{Valence formula for congruence subgroups}
Let $\Gamma$ be a congruence subgroup of level $N$. In order to state the next result we need to define the order of a weakly-modular function at a cusps $P\in\Cusps(\Gamma)$.
\begin{definition}
Let $f$ be a weakly-modular form of weight $k$ for $\Gamma$, and let $P$ be a cusp of $\Gamma$ of width $h_\Gamma(P)$. Since $f(z+N)=f(z)$, we can write $f$ as a Laurent series in $q_N=e^{\frac{2\pi i z}{N}}$, say
\[
f(q_N) = \sum_{n\geq n_0} a_n q_N^n,\quad a_{n_0}\neq 0.
\]
The \emphh{order of vanishing} of $f$ at $P$ is $v_P(f) = \frac{h_\Gamma(P)}{N}n_0$.
\end{definition}
Here is a generalization of Theorem~\ref{thm:valence-formula} to arbitrary congruence subgroups.
\begin{theorem}[valence formula for congruence subgroups]
Let $\Gamma$ be a congruence subgroup, and let $k$ be an integer. Let $f$ be a non-zero meromorphic function on $\HH\cup\{\infty\}$, which is weakly-modular of weight $k$ for $\Gamma$. Then we have
\[
\sum_{z\in\Gamma\backslash\HH} \frac{v_z(f)}{\#\ol\Gamma_z} +\sum_{P\in\Cusps(\Gamma)} v_P(f)=\frac{k}{12}[\PSL_2(\ZZ)\colon\ol\Gamma].
\]
\end{theorem}
\begin{proof}
Write $d_\Gamma=[\PSL_2(\ZZ)\colon\ol\Gamma]$, let $R$ be a set of coset representatives for $\ol\Gamma\backslash\PSL_2(\ZZ)$, and define $F=\prod_{\gamma\in R} f|_k\gamma$. Note that $F$ is weakly-modular of weight $kd_\Gamma$ for $\SL_2(\ZZ)$, and it is meromorphic at $\infty$. By Theorem~\ref{thm:valence-formula} we have
\[
v_\infty(F)+\frac 12 v_i(F) + \frac 13 v_\rho(F) +\sum_{w\in W} v_w(F) = \frac{k}{12} d_\Gamma.
\]
Another way to write the above is:
\[
v_\infty(F) + \sum_{z\in\PSL_2(\ZZ)\backslash\HH} \frac{v_z(F)}{\#\PSL_2(\ZZ)_z} = \frac{k}{12} d_\Gamma.
\]
We may now compute:
\begin{align*}
v_z(F) &= \sum_{\gamma\in\ol\Gamma\backslash\PSL_2(\ZZ)} v_z(f|_k\gamma) = \sum_{\gamma\in\ol\Gamma\backslash\PSL_2(\ZZ)} v_{\gamma z}(f)=\sum_{w\in\ol\Gamma\backslash \PSL_2(\ZZ)z} [\PSL_2(\ZZ)_w\colon\ol\Gamma_w] v_w(f).
\end{align*}
The last equality follows by grouping all elements $\gamma$ such that $\gamma z=w$, for each possible $w$. Now, since $\PSL_2(\ZZ)_w$ is finite and independent of $w\in \ol\Gamma\backslash\PSL_2(\ZZ)z$, we get
$[\PSL_2(\ZZ)_w\colon\ol\Gamma_w]=\frac{\# \PSL_2(\ZZ)_z}{\#\ol\Gamma_w}$.
Dividing by $\#\PSL_2(\ZZ)_z$ we obtain
\[
\frac{v_z(F)}{\#\PSL_2(\ZZ)_z} = \sum_{w\in \ol\Gamma\backslash \PSL_2(\ZZ)z} \frac{v_w(f)}{\#\ol\Gamma_w}.
\]
By summing over a set of representatives for $\PSL_2(\ZZ)\backslash \HH$ we finally obtain
\begin{align*}
\sum_{z\in\PSL_2(\ZZ)\backslash\HH} \frac{v_z(F)}{\#\PSL_2(\ZZ)_z} &=\sum_{z\in\PSL_2(\ZZ)\backslash \HH}\sum_{w\in\ol\Gamma\backslash \PSL_2(\ZZ)z} \frac{v_w(f)}{\#\ol\Gamma_w}=\sum_{w\in\ol\Gamma\backslash\HH} \frac{v_w(f)}{\#\ol\Gamma_w}.
\end{align*}
In order to conclude the proof it remains to be shown that $v_\infty(F) = \sum_{P\in\Cusps(\Gamma)} v_P(f)$. We first prove it assuming that $\ol \Gamma$ is normal in $\PSL_2(\ZZ)$. In this case, we have
\begin{align*}
d_\Gamma v_\infty(F) &= \sum_{P\in\Cusps(\Gamma)} h_\Gamma(P)v_\infty(F)\\
&=\sum_{P\in\Cusps(\Gamma)} v_P(F)\\
&=\sum_{P\in\Cusps(\Gamma)} \sum_{\gamma\in R} v_{\gamma P}(f)\\
&=\sum_{P\in\Cusps(\Gamma)} \sum_{P'\in\Cusps(\Gamma)} \#\{\gamma\in R ~|~ \gamma P = P'\} v_{P'}(f)\\
&=\sum_{P'\in\Cusps(\Gamma)} \sum_{P\in\Cusps(\Gamma)} \#\{\gamma\in R ~|~ \gamma P = P'\} v_{P'}(f)\\
&=d_\Gamma\sum_{P'\in\Cusps(\Gamma)} v_{P'}(f).
\end{align*}
Note that any congruence subgroup $\Gamma$ contains a subgroup (for instance $\Gamma(N)$) which is normal in $\SL_2(\ZZ)$, and such that it is of finite index. Therefore it is enough to show that, if $\Gamma'\subset \Gamma$ have finite index and $g$ is weakly modular of weight $k$ for $\Gamma$, then
\[
\sum_{P'\in \Cusps(\Gamma')} v_{P'}(f) = \frac{d_{\Gamma'}}{d_\Gamma} \sum_{P'\in \Cusps(\Gamma')} v_{P'}(f).
\]
Let $P\in\Cusps(\Gamma)$ and $P'\in\Cusps(\Gamma')$ be such that $[P]=[P']$ inside $\Cusps(\Gamma)$. Pick $\sigma\in\SL_2(\ZZ)$ such that $\sigma\infty = [P]$ in $\Cusps(\Gamma)$. Write also $n_0 = v_P^\Gamma(g)$, and $m = \frac{h_{\Gamma'}}{h_\Gamma}$. Then:
\[
(g|_k\sigma)(z) = \sum_{n\geq n_0} a_n(g) e^{\frac{2\pi i n z}{h_\Gamma}} = \sum_{n\geq n_0} a_n(g)e^{\frac{2\pi i nmz}{h_{\Gamma'}}} = \sum_{n\geq mn_0} a_n(g)e^{\frac{2\pi i nz}{h_{\Gamma'}}}.
\]
Hence we have $v_{P'}(g) = m v_P(g)$, as we wanted. This concludes the proof of the valence formula.
\end{proof}
As for level $1$, the valence formula gives a criterion for equality of modular forms:
\begin{corollary}
Let $f$ and $g$ be two modular forms in $M_k(\Gamma)$, whose $q$-expansions (at one cusp of $\Gamma$) coincide up to the term $\frac{k}{12}[\PSL_2(\ZZ)\colon\ol\Gamma]$. Then $f$ and $g$ are equal.
\end{corollary}
There are dimension formulas for congruence subgroups (see~\cite[Chapter 3]{diamond-shurman}) but we will not see them in this course.
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End: