This repository has been archived by the owner on Sep 30, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
1_modformslevelone.tex
1068 lines (979 loc) · 49.5 KB
/
1_modformslevelone.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\section{Introduction}
\label{sec:introduction}
Modular forms have been for a while a central object in number theory. They have connections to many research areas: arithmetic, combinatorics, analysis, geometry, representation theory,\ldots Since they appear essentially everywhere you look at, it is quite reasonable to wish to understand them.
Here is a not too serious reason: have you ever tried to calculate $e^{\pi\sqrt{163}}$? It turns out that it is
\[
e^{\pi\sqrt{163}} = 262537412640768743.999999999999250072597\ldots
\]
which seems \emph{too close} to an integer to be a coincidence. That is, until you learn about modular forms: it turns out that this number is related to a value of a modular funtion (the $j$-function), which is known to be an integer.
In this introduction I give two more examples that hopefully convince the reader of the importance of modular forms in number theory. You can find many more examples in Zagier's chapter of~\cite{book123modforms}.
\subsection{Partitions and Ramanujan's \texorpdfstring{$\tau$}{tau}-function}
For each $n\geq 0$, define the \emphh{partition function} $p(n)$ as
\[
p(n)=\#\{\text{ways of representing $n$ as a sum of natural numbers }\}.
\]
As a convention, $p(0)=1$. Also, note that:
\begin{align*}
p(1) &= 1\\
p(2) &= 2 = \#\{1+1,2\}\\
p(3) &= 3 = \#\{1+1+1, 1+2, 3\}\\
p(4) &= 5 = \#\{1+1+1+1,1+1+2,1+3,2+2,4\}\\
p(5) &= 7 = \#\{1+1+1+1+1,1+1+1+2,1+1+3,1+4,1+2+2,2+3,5\}\\
\ldots&
\end{align*}
In order to package all these numbers we may consider the following formal powers series:
\[
P(q) = \sum_{n=0}^\infty p(n)q^n,
\]
where we think of $q$ as a formal variable.
\begin{lemma}
There is an infinite product decomposition
\[
P(q) = \prod_{m=1}^\infty \frac{1}{1-q^m}.
\]
\end{lemma}
\begin{proof}
We need to look at the right-hand side. Each of the factors can be written as
$\sum_{k=0}^\infty q^{km}$, so the right-hand side looks like
\[
\prod_{m=1}^\infty\sum_{k=0}^\infty q^{km}.
\]
Now we collect the terms contributing to $q^n$, for a fixed $n$. These come from taking $1$ from all but finitely many of the infinite sums, and then collecting $q^{k_1m_1}$, $q^{k_2m_2}$, \ldots, $q^{k_rm_r}$ from $r$ other factors. This is subject to the condition
\[
k_1m_1+k_2m_2+\cdots+k_rm_r = n,
\]
and note that the $m_i$ are all different because they are taken from different factors. There are exactly $p(n)$ such choices, as we wanted to show.
\end{proof}
In view of the previous lemma, a convenient way to study the partition function is through another
very popular function, defined by the following infinite product:
\[
\Delta(q) = q\prod_{n=1}^\infty (1-q^n)^{24}.
\]
Note that we have:
\[
\Delta(q) = q\prod_{n=1}^\infty (1-q^n)^{24} = \frac{q\prod(1-q^n)^{25}}{\prod 1-q^n} = \left(\prod_{n=1}^\infty(1-q^n)^{25}\right) \sum_{n=0}^\infty p(n)q^{n+1}.
\]
We define \emphh{Ramanujan's tau} function via:
\[
\Delta(q)=\sum_{n=1}^{\infty} \tau(n)q^n.
\]
Later in this course you will be able to prove the following striking result.
\begin{theorem}[Ramanujan]
For each $n\geq 1$, we have:
\[
\tau(n)\equiv \sum_{d\mid n} d^{11}\pmod{691}.
\]
Moreover, the partition function satisfies the following congruences:
\[
p(5n+4) \equiv 0\pmod{5},\quad \forall n,
\]
\[
p(7n+5) \equiv 0\pmod{7},\quad \forall n,
\]
\[
p(11n+6) \equiv 0\pmod{11},\quad \forall n.
\]
\end{theorem}
\subsection{A modular form of level \texorpdfstring{$11$}{11} that knows about congruences}
Consider another modular form:
\[
f(z)=q\prod_{n=1}^\infty (1-q^n)^2(1-q^{11n})^2 = q-2q^2-q^3+2q^4+q^5+2q^6+\cdots = \sum_{n=1}^\infty a(n)q^n.
\]
\begin{theorem}
\begin{enumerate}
\item $a(nm) = a(n)a(m)$ whenever $(n,m)=1$.
\item $|a(p)|\leq 2\sqrt{p}$ for all prime $p$.
\end{enumerate}
\end{theorem}
Consider the equation:
\[
E\colon Y^2+Y=X^3-X^2-10X-20,
\]
and let $N(p)$ be the number of solutions in $\FF_p$. Heuristically we should think that $N(p)\simeq p$.
\begin{theorem}[Hasse]
$|p-N(p)|\leq 2\sqrt{p}$.
\end{theorem}
The theory of modular forms allows to prove that the $E$ and $f$ ``correspond'' to each other:
\begin{theorem}
For all primes $p$, we have $a(p) = p - N(p)$.
\end{theorem}
This allows us to easily calculate (from $f$) what is $N(p)$ for all $p$. We say in this case that $E$ ``is modular''. The book~\cite{diamond-shurman} (but not this course) explains how to attach an elliptic curve to a modular form (this is called ``Eichler--Shimura''). It is \textbf{much} harder to reverse this process, and this is what A.~Wiles did in order to prove Fermat's Last Theorem.
\section{The upper half-plane}
\label{sec:upper-half-plane}
This section introduces the seemingly innocuous upper half-plane $\HH$.
\begin{definition}
The \emphh{upper half-plane} $\HH$ is the set of complex numbers with positive imaginary part:
\[
\HH = \{ z=x+iy ~|~ \Im(z)>0\}.
\]
\end{definition}
The upper half-plane appears in the classification of Riemann surfaces: there are only three of them which are simply connected which are the complex plane, the complex sphere, and $\HH$.
The \emphh{general linear group} $\GL_2(\RR)$ consists of all $2\times 2$ invertible matrices with entries in $\RR$. It contains the subgroup $\GL_2^+(\RR)$ of matrices with positive determinant. The \emphh{special linear group} $\SL_2(\RR)\subset \GL_2^+(\RR)$ consists of those matrices with determinant $1$. For $\gamma=\smtx abcd\in \GL_2(\RR)$ and $z\in\HH$, define $\gamma z$ as:
\begin{equation}
\label{eq:fractional-linear-transformation}
\gamma z = \mtx abcd z = \frac{az+b}{cz+d}.
\end{equation}
\begin{lemma}
Let $\gamma=\smtx abcd\in\GL_2(\RR)$. Then:
\[
\Im(\gamma\tau) = \frac{\det(\gamma)}{|c\tau+d|^2}\Im(\tau),\quad \gamma=\mtx abcd.
\]
\end{lemma}
\begin{proof}
One just needs to compute
\begin{align*}
\Im(\gamma\tau) &= \Im(\frac{a\tau + b}{c\tau+d}) = \Im\left(\frac{(a\tau+b)(c\bar\tau + d)}{|c\tau+d|^2}\right)\\
&= \frac{\Im(ac|\tau|^2 +ad\tau + bc\bar\tau +bd)}{|c\tau+d|^2}=\frac{ad\Im(\tau) - bc\Im(\tau)}{|c\tau+d|^2}.
\end{align*}
\end{proof}
\begin{corollary}
$\GL_2^+(\RR)$ acts on the left on $\HH$.
\end{corollary}
Note that the determinant gives a decomposition
\[
\GL_2^+(\RR) = \SL_2(\RR) \times \RR,
\]
and since the scalar matrices (those of the form $\smtx{\lambda}{0}{0}{\lambda}$) act trivially on $\HH$, from now on we will restrict our attention to $\SL_2(\RR)$. In fact, since the scalar matrix $\smtx{-1}{0}{0}{-1}$ belongs to $\SL_2(\RR)$, the above action on $\HH$ factors through $\PSL_2(\RR)=\SL_2(\RR)/\{\pm 1\}$, which is called the \emphh{projective special linear group}.
From this action we can deduce a right action on functions on $\HH$, by precomposing:
\[
(f\cdot \gamma)(z) = f(\gamma z).
\]
However, we will need slightly more general actions on functions, but before we introduce a piece of notation that will later prove useful.
\begin{definition}
The \emphh{automorphy factor} is the function
\[
j\colon \GL_2^+(\RR)\times \HH \to \CC
\]
given by:
\[
j(\gamma,z) = cz+d,\quad \gamma = \mtx abcd.
\]
\end{definition}
The following lemma gives a very interesting property of the automorphy factor.
\begin{lemma}[cocycle relation]
For every $\gamma_1$, $\gamma_2$ in $\GL_2^+(\RR)$ and for every $z\in\HH$ we have:
\[
j(\gamma_1\gamma_2,z) = j(\gamma_1,\gamma_2z)j(\gamma_2,z).
\]
\end{lemma}
Finally, we define an action of $\GL_2^+(\RR)$ on functions $f\colon\HH\to\CC$, for each $k\in\ZZ$.
\begin{definition}
The \emphh{weight-$k$ slash operator} is defined as
\begin{equation}
(f|_k\gamma)(z) = (\det \gamma)^{k-1} j(\gamma,z)^{-k}f(\gamma z).
\end{equation}
\end{definition}
The cocycle property and the multiplicativity of the determinant implies that if $f$ is a function, then:
\[
f|_k(\gamma_1\gamma_2) = (f|_k\gamma_1)|_k\gamma_2, \quad \forall \gamma_1,\gamma_2\in\GL_2^+(\RR).
\]
That is, for each $k$ the weight-$k$ slash operator defines an action of $\GL_2^+(\RR)$ on functions on the upper-half plane.
\subsection{Group-theoretic description of \texorpdfstring{$\HH$}{HH}}
Recall that $\SL_2(\RR)$ acts on $\HH$. If $\tau=x+iy\in\HH$, then define
\[
s_\tau =\mtx{y^{1/2}}{xy^{-1/2}}{0}{y^{-1/2}}.
\]
Note that $s_\tau i = \tau$, and therefore $\SL_2(\RR)$ acts transitively on $\HH$.
\begin{lemma}
The stabilizer in $\SL_2(\RR)$ of $i$ is the compact subgroup of $\SL_2(\RR)$:
\[
\SO_2(\RR)=\left\{\mtx{\cos\theta}{-\sin\theta}{\sin\theta}{\cos\theta} ~|~ \theta\in [0,2\pi]\right\}
\]
\end{lemma}
\begin{proof}
Let $g=\smtx abcd \in\SL_2(\RR)$ stabilize $i$. That means that:
\[
\frac{ai + b}{ci +d} = i,
\]
or equivalently that
\[
ai+b = -c+di.
\]
Since the entries of $g$ are real, this means that $a=d$ and $b=-c$. Therefore $g=\smtx{a}{b}{-b}{a}$. Since moreover $\det(g)=a^2+b^2=1$, we deduce that $g\in \SO_2(\RR)$.
\end{proof}
The lemma gives a bijection:
\[
\HH\to \SL_2(\RR)/\SO_2(\RR),\quad \tau\mapsto s_\tau\SO_2(\RR),
\]
whose inverse maps $g\SO_2(\RR)\mapsto g\cdot i$.
\subsection{The quotient \texorpdfstring{$\SL_2(\ZZ)\backslash \HH$}{SL2\H} as a topological space}
We end this section by showing that the quotient $\SL_2(\ZZ)\backslash \HH$ is a Hausdorff space.
\begin{lemma}
Let $U_1$ and $U_2$ be two open sets in $\HH$. Then the set
\[
S = \{\gamma\in \SL_2(\ZZ) ~|~ \gamma U_1 \cap U_2 \neq \emptyset\}
\]
is finite.
\end{lemma}
\begin{proof}
First observe that the matrices $s_{\gamma\tau}$ and $\gamma s_\tau$ both send $i$ to $\gamma\tau$. By the identification $\HH = \SL_2(\RR)/\SO_2(\RR)$ we deduce that $\gamma s_\tau\SO_2(\RR)=s_{\gamma\tau}\SO_2(\RR)$. Given two points $\tau_1$ and $\tau_2$ of $\HH$, we have $\gamma\tau_1 =\tau_2$ if and only if $s_{\gamma\tau_1}\SO_2(\RR) = s_{\tau_2}\SO_2(\RR)$. We have just seen that the left hand side equals $\gamma s_{\tau_1}\SO_2(\RR)$. We deduce that $\gamma\tau_1=\tau_2$ if and only if $\gamma$ belongs to the conjugate: $s_{\tau_2}\SO_2(\RR) s_{\tau_1}^{-1}$. Therefore the set $S$ is a subset of the set
\[
\{\gamma\in\SL_2(\ZZ) ~|~ \gamma \ol U_1 \cap \ol U_2 \neq \emptyset\}
\]
which in turn can be written as
\[
\SL_2(\ZZ)\cap s_{\ol U_2} \SO_2(\RR) s_{\ol U_1}^{-1}.
\]
Since $\SL_2(\ZZ)$ is discrete and the other term is compact, the intersection, and hence $S$, is finite.
\end{proof}
\begin{proposition}
The action of $\SL_2(\ZZ)$ on $\HH$ is proper discontinuous. That is, given any $\tau_1$, $\tau_2$ in $\HH$, there are neighborhoods $U_1$ and $U_2$ such that for each $\gamma\in \SL_2(\ZZ)$ either
\begin{enumerate}
\item $\gamma\tau_1=\tau_2$, or
\item $\gamma U_1\cap U_2 = \emptyset$.
\end{enumerate}
\end{proposition}
\begin{proof}
Let $U_1$ and $U_2$ be any two neighborhoods of $\tau_1$ and $\tau_2$, and let $\gamma\in S$. If $\gamma\tau_1=\tau_2$ then we do not need to do anything. Otherwise, if $\gamma U_1\cap U_2\neq \emptyset$ then we may replace $U_2$ with $V_2$ and $U_1$ with $\gamma^{-1} V_1$ if $V_1\cap V_2=\emptyset$, $\tau_2\in V_2$ and $\gamma\tau_1\in V_1$:
\begin{figure}[h]
\centering
\includegraphics[height=3cm]{Pictures/shrinking-neighborhoods.pdf}
\caption{Shrinking the neighborhoods}
\label{fig:shriking-neighborhoods}
\end{figure}
Since the set of $\gamma$ such that these intersections are nonempty is finite, this process terminates after a finite number of steps and will leave us with the right neighborhoods.
\end{proof}
\begin{corollary}
The quotient $Y(1) = \SL_2(\ZZ)\backslash\HH$ is Hausdorff.
\end{corollary}
\begin{proof}
Pick $\pi(\tau_1)\neq \pi(\tau_2)$ in $Y(1)$, and let $U_1$ and $U_2$ be neighborhoods as in the Proposition. For every $\gamma\in\SL_2(\ZZ)$ we have $\gamma\tau_1\neq \tau_2$ by the choice of $\tau_1$ and $\tau_2$. Therefore for every $\gamma\in\SL_2(\ZZ)$ we have $\gamma U_1\cap U_2=\emptyset$. Therefore $\pi(U_1)\cap\pi(U_2)=\emptyset$. It remains to show that $\pi(U_i)$ is an open set. Indeed, if $U\subseteq\HH$ is an open set, then
\[
\pi^{-1}(\pi(U)) = \cup_{\gamma\in\SL_2(\ZZ)} \gamma U
\]
is a union of open sets. Therefore it is open. We have showed that $\pi(U)$ is open (because of the quotient topology). Therefore each of the $\pi(U_i)$ is open, as we wanted to show.
\end{proof}
\section{Basic definitions of modular forms}
\label{sec:the-modular-group}
Let $\SL_2(\ZZ)\subset\SL_2(\RR)$ be the subgroup of matrices with entries in $\ZZ$ (and determinant $1$), which of course still acts on functions as we have seen.
\begin{definition}
A holomorphic function $f\colon \HH\to\CC$ is called \emphh{weakly-modular} of weight $k\in\ZZ$ for $\SL_2(\ZZ)$ if $f|_k\gamma = f$ for all $\gamma\in\SL_2(\ZZ)$. Explicitly:
\begin{equation}
\label{eq:modular-transformation}
f(\gamma\cdot z) = j(\gamma,z)^k f(z),\quad\forall \gamma\in\SL_2(\ZZ).
\end{equation}
\end{definition}
Note that since $-I\in\SL_2(\ZZ)$, then there are no non-zero weakly-modular functions of odd weight:
\[
f(z)=(-1)^kf(z)\implies f=0.
\]
We will need an extra analytic property to define modular forms for $\SL_2(\ZZ)$. For now, note that:
\[
\frac{d(\gamma\cdot z)}{dz} = j(\gamma,z)^{-2},
\]
so we can rewrite the weakly-modular property by asking that the differential $f(z)(dz)^{k/2}$ is invariant under $\SL_2(\ZZ)$. It also shows that if~\eqref{eq:modular-transformation} holds for $\gamma_1$ and $\gamma_2$, then it also holds for $\gamma_1\gamma_2$.
We will see later (see Corollary~\ref{cor:STgenerate}) that $\SL_2(\ZZ)$ is generated by the matrices $T=\smtx 1101$ and $S=\smtx{0}{-1}{1}{0}$. Together with the previous observation, this implies that for $f$ to be weakly-modular it is enough to check~\eqref{eq:modular-transformation} for $T$ and $S$:
\[
f(z+1)=f(z),\quad f(-1/z) = z^k f(z).
\]
The transformation property (rather, the fact that $f(z+1)=f(z)$) implies that $f$ has a Fourier expansion. Another way to think about it is that there is a holomorphic map:
\[
\exp\colon \HH\to \{0<|q|<1\},\quad z\mapsto q=e^{2\pi i z}.
\]
If $f$ is holomorphic and $1$-periodic, then we can define $g(q)=f(z)$. That is, we may define:
\[
g(q)=f\left(\frac{\log q}{2\pi i}\right),
\]
where we may choose any branch of the logarithm because of the periodicity of $f$. The function $g$ is holomorphic on $D'$, and thus it has a Laurent expansion
\[
g(q)=\sum_{n=-\infty}^\infty a(n)q^n.
\]
Therefore $f$ has an expansion
\[
f(z) = \sum_{n=-\infty}^\infty a(n)e^{2\pi i nz}.
\]
\begin{definition}
We say that $f$ is \emphh{meromorphic at infinity} (respectively \emphh{holomorphic at infinity}) if $f(z)=\sum_{n\geq n_0} a(n)q^n$ (respectively if in addition $n_0=0$).
\end{definition}
Note that checking that $f$ is holomorphic at infinity is the same as checking that $f(z)$ is bounded as $z$ approaches $i\infty$. If $f$ is holomorphic at infinity, then the value of $f$ at infinity is defined to be $f(\infty)=a(0)$.
\begin{definition}
We say that $f$ \emphh{vanishes at infinity} if $n_0=1$. Equivalently, if $f(\infty)=0$.
\end{definition}
\begin{definition}
Let $k\in \ZZ$ and let $f\colon\HH\to\CC$. We say that $f$ is a \emphh{modular form} of weight $k$ for $\SL_2(\ZZ)$ if:
\begin{enumerate}
\item $f$ is holomorphic,
\item $f(\gamma z) = (cz+d)^kf(z)$ for all $\gamma=\smtx abcd\in\SL_2(\ZZ)$, and
\item $f$ is holomorphic at infinity.
\end{enumerate}
A \emphh{cusp form} is a modular form which vanishes at infinity.
The space of modular forms of weight $k$ is written $M_k=M_k(\SL_2(\ZZ))$, and it contains the space of cusp forms of weight $k$, which in turn is written $S_k=S_k(\SL_2(\ZZ))$.
\end{definition}
\begin{remark}
If we replace ``holomorphic'' with ``meromorphic'' above, we obtain
what can be called \emphh{meromorphic modular forms}. Other authors
call them modular functions, but this name is used in different
contexts and we will avoid it.
\end{remark}
Note that both $M_k$ and $S_k$ are $\CC$-vector spaces. Also, multiplication of functions gives $M=\bigoplus_{k\in\ZZ} M_k$ the structure of a \emph{graded ring}. That is, $M_rM_s\subseteq M_{r+s}$. Finally,
for all odd $k$ one has $M_k = \{0\}$.
\section{Eisenstein series}
\label{sec:fourier-expansions-eisenstein}
For $k\geq 3$, define
\[
G_k(z) = \sumprime_{(m,n)\in \ZZ^2} (mz+n)^{-k}.
\]
\begin{lemma}
$G_k$ converges absolutely for all $z$, and uniformly on sets of the form
\[
\Omega=\{z\in\HH~|~|\Re(z)|\leq A,\Im(z)\geq B\}.
\]
\end{lemma}
\begin{proof}[Sketch of proof]
First, show that
there exists a constant $C>0$ such that $|z+\delta|>C\sup\{1,|\delta|\}$ for all $z\in\Omega$ and $\delta\in\RR$.
Now, note that:
\begin{align*}
\sumprime |mz+n|^{-k} &= \sumprime |m|^{-k}|z+n/m|^{-k}<\sumprime C^{-k}|m|^{-k}\sup\{1,|n/m|\}^{-k}\\
&=C^{-k}\sumprime \sup\{|m|,|n|\}^{-k}.
\end{align*}
This last sum is easily seen to converge. For instance, one can sum over squares around the origin, of increasing size and compare to a $p$-series.
\end{proof}
The previous lemma ensures that $G_k(z)$ is a holomorphic function. Moreover, we have:
\begin{theorem}
For each $k\geq 3$, $G_k$ is a modular form.
\end{theorem}
We will first show that $G_k$ is weakly modular.
\begin{proposition}
For each $k\geq 3$ the holomorphic function $G_k$ is weakly modular.
\end{proposition}
\begin{proof}
Let $\gamma = \smtx abcd$ be a matrix in $\SL_2(\ZZ)$. We compute
\begin{align*}
G_k(\gamma z) &= \sumprime_{(m,n)} \left(m\frac{az+b}{cz+d} + n\right)^{-k}\\
&= \sumprime_{(m,n)} (cz+d)^k \left(m(az+b)+n(cz+d)\right)^{-k}\\
&= (cz+d)^k\sumprime_{(m,n)}\left( (am+cn)z + (bm+dn)\right)^{-k}.
\end{align*}
Note that the pair $(am+cn,bm+dn)$ is the result of multiplying the row vector $(m,n)$ by the matrix $\smtx abcd$. Since $\smtx abcd$ is invertible, the pair $(am+cn,bm+dn)$ runs through all values of $\ZZ^2$ as $(m,n)$ does. Therefore, by reordering the sum above we get:
\[
G_k(\gamma z) = (cz+d)^k \sumprime_{(m',n')} \left( m'z+n'\right)^{-k} = (cz+d)^k G_k(z),
\]
as wanted.
\end{proof}
It remains to show that $G_k$ is holomorphic at infinity. In fact, we will compute its Fourier series. We start by introducing the \emphh{Bernoulli numbers}, which appear in the Fourier series for $G_k$.
\begin{definition}
The \emphh{Bernoulli numbers} are defined\footnote{These are called ``first Bernoulli numbers'', and differ by a sign from those defined originally by Bernoulli.} by:
\begin{equation}
\label{eq:bernoulli-numbers}
\frac{x}{e^x -1} = \sum_{k=0}^\infty B_k \frac{x^k}{k!} = 1 -\frac 1 2 x + \frac 1{6} \frac{x^2}{2} - \frac 1{30}\frac{x^4}{24} + \cdots.
\end{equation}
\end{definition}
Recall the definition of Riemann's zeta function
\[
\zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s},\quad \Re(s)>1.
\]
It has a simple pole of residue $1$ at $s=1$, and extends to a meromorphic function on $\CC$, holomorphic on $\CC\setminus \{1\}$. The Bernoulli numbers appear also naturally in the formulas:
\begin{equation}
\label{eq:bernoulli-zeta}
\zeta(k) = \sum_{n=1}^\infty \frac{1}{n^k} = -\frac{(2\pi i)^k}{2}\frac{B_k}{k!},\quad \forall k \geq 2,\quad \zeta(1-n) = -\frac{B_n}{n},\quad \forall n \geq 1.
\end{equation}
An odd prime $p$ is called \emphh{regular} if $p$ does not divide the numerator of $B_2$, $B_4$,\ldots $B_{p-3}$. This is equivalent to $p$ not dividing the class number of $\QQ(\sqrt[p]{1})$. Under this assumption, Fermat's Last Theorem was proved by Kummer around 1850, and probably by Fermat himself. Although Siegel conjectured that about $60\%$ of primes are regular, it is not know even whether there are infinitely many of them.
We will derive the Fourier expansion of $G_k$ from that of the cotangent:
\begin{lemma}
\label{lemma:cotangent}
The following identity of holomorphic functions holds.
\[
\frac 1z + \sum_{d=1}^\infty\left(\frac 1{z-d} + \frac 1{z+d}\right) = \pi\cot(\pi z) = \pi i - 2\pi i\sum_{m=0}^\infty q^m,\quad q = e^{2\pi i z}.
\]
\end{lemma}
\begin{proof}
Consider Euler's product formula for the sine function:
\[
\sin(\pi z) = \pi z \prod_{n=1}^\infty \left(1-\frac{z^2}{n^2}\right).
\]
Taking the logarithmic derivative of this equation yields
\[
\pi\cot(\pi z) = \frac 1 z + \sum_{d=1}^\infty \frac{2z}{z^2-n^2} = \frac 1z + \sum_{d=1}^\infty \left(\frac 1{z-d}+\frac 1{z+d}\right).
\]
On the other hand, we can use the expression of $\sin$ and $\cos$ in terms of the exponential function to write:
\begin{align*}
\pi\cot(\pi z)&=\pi \frac{\cos(\pi z)}{\sin(\pi z)} = \pi \frac{\frac{e^{i\pi z} + e^{-i\pi z}}{2}}{\frac{e^{i\pi z} - e^{-i\pi z}}{2i}}=\pi i\frac{e^{i\pi z} + e^{-i\pi z}}{e^{i\pi z} - e^{-i\pi z}}\\
&=\pi i\left(1 - 2\frac{e^{-i\pi z}}{e^{-i\pi z} - e^{i\pi z}}\right)=\pi i\left(1 - 2\frac{1}{1 - e^{2\pi i z}}\right).
\end{align*}
Finally, write $q=e^{2\pi i z}$ and the formula follows from the identity
\[
\frac{1}{1-q} = \sum_{m=0}^\infty q^m,\quad |q|<1.
\]
\end{proof}
\begin{lemma}
\label{lemma:expansion-latticesum}
For each $k\geq 2$ we have
\[
\sum_{d\in\ZZ}\frac{1}{(z+d)^k} = \frac{(-2\pi i)^k}{(k-1)!}\sum_{n=1}^\infty n^{k-1}q^n.
\]
\end{lemma}
\begin{proof}
From Lemma~\ref{lemma:cotangent} we have
\begin{equation}
\frac 1z + \sum_{d=1}^\infty\left(\frac 1{z-d} + \frac 1{z+d}\right) = \pi i - 2\pi i\sum_{d=0}^\infty q^d,\quad q = e^{2\pi i z}.
\end{equation}
Differentiating both sides with respect to $z$ gives
\[
\frac{-1}{z^2}+\sum_{d=1}^\infty \left(\frac{-1}{(z-d)^2}+\frac{-1}{(z+d)^2}\right) = -(2\pi i)^2 \sum_{d=1}^\infty dq^d.
\]
Since each of the terms in the infinite sum of the left hand side converges absolutely, we can reorder the series and obtain the identity
\[
\sum_{d\in \ZZ} \frac{1}{(z+d)^2} = (2\pi i)^2\sum_{d=1}^\infty dq^d.
\]
This is proves the formula for $k=2$. The identity for general $k$ follows by induction, by differentiating the identity for $k-1$.
\end{proof}
We have finally all the ingredients to prove the sought expansion. As a piece of notation for the next result, for $m\geq 0$ the \emphh{$m$-divisor function} is:
\[
\sigma_{m}(n)=\sum_{d\mid n} d^{m}.
\]
\begin{theorem}
Let $k\geq 4$ be even. Then
\[
G_k(z) = 2\zeta(k) E_k(z), \text{ where } E_k(z) = 1-\frac{2k}{B_k}\sum_{n=1}^\infty \sigma_{k-1}(n)q^n\in\QQ\bbl q\bbr.
\]
\end{theorem}
\begin{proof}
Consider now $k\geq 4$ and calculate
\begin{align*}
G_k(z)=\sumprime_{(m,n)\in\ZZ^2} \frac{1}{(mz+n)^k} &= \sum_{n\neq 0} \frac{1}{n^k} + \sum_{m\neq 0}\sum_{n\in\ZZ} \frac{1}{(mz+n)^k}\\
&=2\zeta(k) + 2\sum_{m=1}^\infty \sum_{n\in\ZZ}\frac{1}{(mz+n)^k}.
\end{align*}
Here we have used the definition of Riemann's zeta function at $k$ and the fact that $k$ is even. Using now the formula of Lemma~\ref{lemma:expansion-latticesum} where $z$ gets substituted by $mz$, we can replace the second term, and obtain the formula
\begin{align*}
G_k(z) &= 2\zeta(k)+2\sum_{m=1}^\infty\left( \frac{(-2\pi i)^k}{(k-1)!}\sum_{d=1}^\infty d^{k-1} q^{dm}\right) = 2\zeta(k) + \frac{2\cdot (-2\pi i)^k}{(k-1)!} \sum_{m=1}^\infty\sum_{d=1}^\infty d^{k-1}q^{md}.
\end{align*}
Finally, group the terms in the inner sum that contribute to $q^n$. These consist of all pairs of positive integers $(m,d)$ such that $md=n$. That is, for each $n$ we must consider all divisors $d'$ of $n$, and we can rewrite:
\[
\sum_{m=1}^\infty\sum_{d=1}^\infty d^{k-1} q^{md} = \sum_{n=1}^\infty \sigma_{k-1}(n)q^n.
\]
This gives the desired expansion, by using the formula of Equation~\eqref{eq:bernoulli-zeta}.
\end{proof}
\begin{example}
Define the \emphh{Eisenstein series}
\[
E_4 = 1 + 240\sum_{n=1}^\infty \sigma_3(n)q^n\in M_4
\]
and
\[
E_6 = 1 - 504\sum_{n=1}^\infty \sigma_5(n)q^n\in M_6.
\]
Since both $E_4^3$ and $E_6^2$ are both in $M_{12}$, its difference is also there. Computing we see that
\[
E_4^3-E_6^2 = (1+720q+\cdots)-(1-1008q+\cdots) = 1728q+\cdots\in S_{12},
\]
and thus we may define
\[
\Delta(z)=\frac{E_4^3-E_6^2}{1728} = q-24q^2+252q^3+\cdots,
\]
which is a cusp form of weight $12$.
\end{example}
\section{Fundamental domains}
\begin{figure}[h]
\centering\includegraphics[scale=0.5]{fundomSL2Z.pdf}
\caption{Fundamental domain for $\SL_2(\ZZ)$}
\end{figure}
\begin{definition}
Let $\Gamma$ be a group acting on $\HH$. A \emphh{fundamental domain} for $\Gamma$ is closed subset $\cD\subset\HH$ such that
\begin{enumerate}
\item The set $\cD$ is the closure of its interior.
\item Every point in $\HH$ is $\Gamma$-equivalent to a point of $\cD$.
\item If $z,z'\in\cD$ are two distinct points which are $\Gamma$-equivalent then they lie on the boundary of $\cD$.
\end{enumerate}
\end{definition}
\begin{theorem}
The subset $\cD$ of $\HH$ as above is a (connected) fundamental domain for $\SL_2(\ZZ)$.
Moreover the stabilizer $H_z$ of a point $z\in\cD$ in $\SL_2(\ZZ)$ is
\[
H_z=\begin{cases}
C_6=\langle ST\rangle = \langle\smtx{0}{-1}{1}{1}\rangle & z = \rho,\\
C_6'=\langle TS\rangle =\langle \smtx{1}{-1}{1}{0}\rangle & z=\rho + 1,\\
C_4=\langle S\rangle =\langle \smtx{0}{-1}{1}{0}\rangle & z=i,\\
C_2=\langle -I\rangle =\langle \smtx{-1}{0}{0}{-1}\rangle&\text{ else.}
\end{cases}
\]
\end{theorem}
\begin{proof}
Let $z\in \HH$. We have seen that, if $\gamma\in\SL_2(\ZZ)$, then
\[
\Im(\gamma z) = \frac{\Im(z)}{|cz+d|^2},\quad \gamma = \mtx abcd.
\]
There are finitely many pairs $(c,d)\in\ZZ^2$ such that $|cz+d|<1$. In particular,
one can choose a matrix $\gamma\in\langle S,T\rangle\subseteq \SL_2(\ZZ)$ such that
\[
\Im(\gamma z)\geq \Im(\gamma' z),\quad \forall \gamma'\in \langle S,T\rangle\subseteq\SL_2(\ZZ).
\]
By premultiplying $\gamma$ by an appropriate power of $T$ (which does not change the imaginary part), we may and do assume that $|\Re(\gamma z)|\leq \frac 12$. We will now show that $|\gamma z|\geq 1$:
\[
\Im(\gamma z)\geq \Im(S\gamma z)=\Im(-1/\gamma z)=\frac{\Im(\gamma z)}{|\gamma z|^2}.
\]
This implies $|\gamma z|\geq 1$, and hence $\gamma z\in \cD$, thus proving $(1)$.
In order to show $(2)$, suppose that $z'=\gamma z$ and both $z$ and $z'$ lie in $\cD$. Without loss of
generality, we may assume that $\Im(\gamma z)\geq \Im(z)$, or equivalently that
\[
|cz+d|^2=|cx+d|^2+|cy|^2\leq 1.\quad\text{ (we write $z=x+iy$).}
\]
Since $y>1/2$, this implies that $|c|\leq 1$. The case $c=0$ gives that $|d|\leq 1$ and since $\smtx abcd\in\SL_2(\ZZ)$ this means that $\gamma=\pm\smtx 1 b01$, a translation matrix. Therefore $z'=z\pm 1$.
Let us suppose that $c=1$ (the case $c=-1$ is completely analogous). Then the condition $|z+d|^2\leq 1$ is only satisfied when $|z|=1$ ($d=0$), when $z=\rho$ ($d=1$), or when $z=\rho+1$ ($d=-1$), giving $(2)$.
To study the stabilizers of points $z\in\cD$, we can use the calculations that we have used to show $(2)$. If $\gamma z = z$, then necessarily $c=\pm 1$, and by changing $\gamma$ to $-\gamma$ we may assume $c=1$. The quadratic equation given by $\gamma z = z$ gives that $|a+d|<2$, so $|a+d|\leq 1$. At the same time, the fact that $z\in\cD$ gives $|a-d|\leq 1$. Together, these two inequalities give $|a|\leq 1$. We obtain the following possibilities:
\begin{table}[h]
\begin{tabular}{cccc}
\toprule
$\gamma$&$z$&$z'=\gamma z$&fixed points\\
\midrule
$\pm \smtx 1001$&all&$z$&all\\[5pt]
$\pm \smtx 1101$&$\Re(z)=-\frac 12$&$z+1$&none\\[5pt]
$\pm \smtx 1{-1}01$&$\Re(z)=\frac 12$&$z-1$&none\\[5pt]
$\pm \smtx 0{-1}10$&$|z|=1$&$-1/z$&$i$\\[5pt]
$\pm \smtx {-1}{-1}{1}{0},\pm \smtx{0}{-1}{1}{1}$&$\rho$&$\rho$&$\rho$\\[5pt]
$\pm \smtx {1}{-1}{1}{0},\pm \smtx{0}{-1}{1}{-1}$&$\rho+1$&$\rho+1$&$\rho+1$
\end{tabular}
\end{table}
By studying this table we conclude the classification of stabilizers.
\end{proof}
\begin{corollary}
\label{cor:STgenerate}
The group $\SL_2(\ZZ)$ is generated by the matrices $T$ and $S$.
\end{corollary}
\begin{proof}
Let $z_0$ be a point in the interior of $\cD$. Given $\gamma\in\SL_2(\ZZ)$, the theorem provides a matrix $\delta\in\langle T,S\rangle$ such that $\delta\gamma^{-1} z_0\in\cD$. Therefore $\delta\gamma^{-1} z_0 = z_0$ and hence $\delta\gamma^{-1} = \pm I$. Since $S^2=-I$, we are done by possibly multiplying $\delta$ by $S^2$.
\end{proof}
\section{Valence formula}
\label{sec:valence-formula}
Let $f$ be a meromorphic function on some open subset of $\HH$. Write $v_p(f)$ for the order (or valuation) of $f$ at $p\in \HH\cup\{\infty\}$. This is the unique integer
$n$ such that $(z-p)^{-n}f(z)$ is holomorphic and non-vanishing at $p$. If $n$ is positive we
say that $f$ has a zero of order $n$, and if $n$ is negative we say that $f$ has a pole of order $-n$. If $f$ is weakly modular and meromorphic at infinity, then also define $v_\infty(f)=n_0$ if
\[
f(q)=\sum_{n\geq n_0} a_n q^n,\quad a_{n_0}\neq 0.
\]
Next, suppose that $f$ has a Laurent expansion of the form
\[
f(z) = \sum_{n\geq n_0} c_n (z-p)^n.
\]
The \emphh{residue} of $f$ at $p$ is $\res_p(f) = c_{-1}\in\CC$. One can calculate
the order of $f$ at $p$ by using residues, using the following lemma.
\begin{lemma} If $f$ is a meromorphic function around a point $p$, then
\[
\res_p(f'/f) = v_p(f).
\]
\end{lemma}
\begin{proof}
If $v_p(f)=n$, write $f(z)=(z-p)^ng(z)$ with $g(z)$ holomorphic and non-vanishing at $p$. Then calculate the residue of $f'/f$ by hand.
\end{proof}
We recall without proof two basic results of complex analysis.
\begin{theorem}[Cauchy's integral formula]
Let $g$ be a holomorphic function on an open subset $U\subseteq\CC$ and let $C$ be a contour in $U$. For each $p\in U$,
\[
\int_C \frac{g(z)}{z-p}dz = 2\pi i g(p).
\]
\end{theorem}
\begin{corollary}
Let $C(p,r,\alpha)$ be an arc of a circle, of radius $r$ and angle $\alpha$ around a point $p$. If $g$ is holomorphic at $p$, then
\[
\lim_{r\to 0}\int_{C(p,r,\alpha)} \frac{g(z)}{z-p}dz = \alpha i g(p).
\]
\end{corollary}
The following result relates the contour integral of the logarithmic derivative of $f$ to the orders of $f$ at the interior points.
\begin{theorem}[argument principle]
Let $f$ be a meromorphic function on an open subset $U\subseteq \CC$ and let $C$ be a contour in $U$ not passing through any zeros or poles of $f$. Then:
\[
\int_C\frac{f'(z)}{f(z)}dz = 2\pi i \sum_{z\in\operatorname{int}(C)} v_z(f).
\]
\end{theorem}
\begin{corollary}
Let $C(p,r,\alpha)$ be an arc of a circle, of radius $r$ and angle $\alpha$ around a point $p$. If $f$ is meromorphic at $p$, then
\[
\lim_{r\to 0}\int_{C(p,r,\alpha)} \frac{f'(z)}{f(z)}dz = \alpha i v_p(f).
\]
\end{corollary}
We will study weakly modular meromorphic functions $f\colon \HH\to \CC$. In this case, the order of vanishing makes sense in $\SL_2(\ZZ)$-orbits: suppose that $f$ has weight $k$. Then an easy computation shows that, for $\gamma\in\SL_2(\ZZ)$,
\[
\lim_{z\to\gamma p} (z-\gamma p)^{-n}f(z) = j(\gamma,p)^{k+2n}\lim_{z\to p} (z-p)^{-n}f(z).
\]
But note now that $j(\gamma,p)$ is nonzero because $p\not\in \QQ\cup\{\infty\}$. We conclude that $v_p(f)=v_{\gamma p}(f)$.
\begin{theorem}[valence formula]
\label{thm:valence-formula}
Let $f$ be a non-zero weakly modular meromorphic form of weight $k$ on $\SL_2(\ZZ)$. Then:
\[
v_\infty(f)+\frac 12 v_i(f)+\frac 13 v_\rho(f) + \sum_{\tau\in \SL_2(\ZZ)\backslash\HH'} v_\tau(f) = \frac{k}{12}.
\]
Here the sum runs through the orbits in $\SL_2(\ZZ)\backslash\HH$ other than those of $i$ and $\rho$.
\end{theorem}
Before proving this theorem we will see how helpful it is in studying the spaces of modular forms.
\begin{theorem}
\begin{enumerate}
\item $M_k=\{0\}$ if $k<0$ or $k = 2$.
\item $S_k=\{0\}$ if $k < 12$.
\item $M_0=\CC$.
\item $S_{12} = \CC\Delta$.
\end{enumerate}
\end{theorem}
\begin{proof}
\begin{enumerate}
\item Since the left-hand side of the valence formula is non-negative, the right hand side must be non-negative too, hence $k\geq 0$. If $k=2$, then we get $1/6$ on the right-hand side. However, the left-hand side is a sum of non-negative multiples of $1$, $1/2$ and $1/3$, thus a contradiction.
\item If $0\neq f\in S_k$, then $v_\infty(f)\geq 1$. Therefore the valence formula gives $k\geq 12$.
\item Let $f\in M_0$. Since the constant function $g=f(\infty)$ also belongs to $M_0$, the difference $f-g$ belongs to $S_0=\{0\}$. Therefore $f=g$ is constant, and $M_0=\CC$ is the space of constant functions on $\HH$.
\item If $f\in S_{12}$, then $v_\infty(f)\geq 1$. Therefore by the valence formula $v_\infty(f)=1$ and $f$ has no other zeros or poles. Define
\[
g(z)=f(z)-\frac{f(i)}{\Delta(i)}\Delta(z).
\]
Then $g(z)\in S_{12}$ and $g(i)=0$. If $g$ is non-zero, then the valence formula applied to $g$ would give a contradiction because $v_\infty(g)\geq 1$ and $v_i(g)\geq 1$. Therefore $g=0$ and $f$ is a multiple of $\Delta$.
\end{enumerate}
\end{proof}
\begin{corollary}
\begin{enumerate}
\item For all $k$, we have $S_{k+12} = \Delta M_{k}$.
\item For $k\geq 4$ we have
\[
M_k = (\CC E_k) \oplus S_k
\]
\item
If $k$ is odd or negative then $M_k = \{0\}$. For each even $k\geq 2$, we have:
\[
\dim(M_k)=\begin{cases}
\lfloor\frac k{12}\rfloor & k\equiv 2\pmod{12},\\
1+ \lfloor\frac k{12}\rfloor & k\not\equiv 2\pmod{12}.
\end{cases}
\]
\end{enumerate}
\end{corollary}
\begin{proof}
For $k<0$ the first statement is trivial, and we just proved it also for $k=0$. Given $f\in S_{k+12}$, the function $g=f/\Delta$ is holomorphic on $\HH$ because $\Delta$ is non-vanishing, and it belongs to $M_k$ because $v_\infty(g)=v_\infty(f)-v_\infty(\Delta)=v_\infty(f)-1\geq 0$.
Consider the linear map
\[
\varphi\colon M_k\to\CC,\quad f\mapsto f(\infty).
\]
Then $S_k=\ker\varphi$. Also $\varphi$ is surjective because $\varphi(E_k)=1$. Therefore $M_k=\CC E_k\oplus S_k$.
Note that this gives a recursive way to obtain $M_k$:
\[
M_k = \CC E_k \oplus S_k = \CC E_k \oplus (\Delta M_{k-12}).
\]
For $k$ odd we know that $M_k=\{0\}$ by the weak-modularity condition. For $k<0$ we also know $M_k=\{0\}$ by the previous part. We prove the remaining formula by induction on $k$. Note that we already know it for $k=0$ and $k=2$. For $k=4, 6, 8, 10$ then since $\dim(M_k)=1+\dim(S_k)=1+\dim(M_{k-12}) = 1$ we get $\dim(M_k)=1$. If $k$ is even and $k\geq 12$, then:
\[
\dim(M_k)=1+\dim(M_{k-12}).
\]
\end{proof}
\begin{corollary}
The space $M_k$ has for basis the following set:
\[
M_k=\langle E_4^aE_6^b~|~ a\geq 0,b\geq 0, 4a+6b=k\rangle.
\]
\end{corollary}
\begin{proof}
We start by showing that the given monomials $E_4^aE_6^b$ generate $M_k$. For $k=2,4,6$ this is clear because we know $M_2=\{0\}$, and $M_4=\CC E_4$ and $M_6=\CC E_6$. For $k\geq 8$ we induct on $k$. Choose some
pair $(a,b)$ such that $4a+6b=k$ (convince yourself that this is always possible). If $f\in M_k$, then since $E_4^aE_6^b (\infty)=1$, the function $g(z)=f(z)-f(\infty)E_4^aE_6^b$ is a cusp form in $S_k$. Therefore $g=\Delta h$, for
some $h\in M_{k-12}$. By induction hypothesis, $h$ is a linear combination of monomials $E_4^xE_6^y$ for appropriate pairs $(x,y)$. Using the expression $\Delta=\frac{1}{1728}(E_4^3-E_6^2)$ we deduce the result for $f$.
Now we show that the given monomials are linearly independent. We can use induction on $k$ in steps of $12$ once more, to show that the number of such monomials agrees with $\dim M_k$. This can be checked by hand for $k\leq 14$. Suppose that $k\geq 14$. Note that each monomial $E_4^aE_6^b$ of weight $k-12$ gives a monomial $E_4^aE_6^{b+2}$ of weight $k$. All such monomials are obtained in this way, except for those of the form $E_4^a$ or $E_4^aE_6$. When $k\equiv 0\pmod 4$ then $E_4^{k/4}$ is of weight $k$, and when $k\equiv 2\pmod 4$ then $E_4^{(k-6)/2}E_6$ is of weight $k$, thus in any case there is exactly one more monomial of weight $k$ than there are of weight $k-12$. This completes the proof.
\end{proof}
\begin{example}
This allows to write down all spaces of modular and cusp forms for $\SL_2(\ZZ)$. For example,
\[
M_{18} = \CC E_{18}\oplus S_{18} = \CC E_{18} \oplus \Delta M_6 = \CC E_{18}\oplus \CC\Delta E_6.
\]
\[
M_{30} = \CC E_{30} \oplus \CC\Delta E_{18} \oplus \CC \Delta^2 E_6.
\]
Another basis for the same space (which is better because it is expressed in terms of $E_4$, $E_6$ and $\Delta$):
\[
M_{30} = \CC E_6^5\oplus \Delta E_6^3 \oplus \Delta^2 E_6.
\]
Note that these forms are linearly independent (why?). Since $\dim M_{30}=3$, they form a basis.
\end{example}
\begin{remark}
Suppose that $f(z)$ is a non-zero weakly-modular form of weight $0$. Then $f(\gamma z)=f(z)$. By the valence formula, $f$ has the same number of zeros as poles. This number is called the \emphh{valence} of $f$, and hence the name for the theorem.
\end{remark}
Another very powerful application of the valence formula is the following:
\begin{theorem}
Let $f$ be a modular form of weight $k$. Suppose that $f$ has a $q$-expansion of the form $\sum_{n\geq 0} a_nq^n$. If $a_j=0$ for all $0\leq j\leq k/12$, then $f=0$.
\end{theorem}
\begin{proof}
The hypothesis means that $v_\infty(f) > k/12$. This is incompatible with the valence formula, and thus $f$ must be zero.
\end{proof}
\begin{corollary}
Let $f$ and $g$ be two modular forms of the same weight $k$, and suppose that their $q$-expansions coincide for the first $\lfloor k/12\rfloor$ coefficients. Then $f=g$.
\end{corollary}
\subsection{The modular invariant \texorpdfstring{$j$}{j}}
Define the function
\[
j(z)=\frac{E_4^3}{\Delta} = \frac{1+\cdots}{q+\cdots} = q^{-1} + 744 + 196884 q + \cdots.
\]
\begin{proposition}
\begin{enumerate}
\item $j$ is a meromorphic weakly-modular form of weight $0$.
\item $j$ is holomorphic on $\HH$ and has a simple pole at infinity.
\item It induces a bijection $\SL_2(\ZZ)\backslash\HH\to \CC$.
\end{enumerate}
\end{proposition}
\begin{proof}
The fact that $j$ it is meromorphic weakly-modular of weight $0$ follows from it being a quotient of two modular forms of weight $12$.
Since $E_4$ is non-vanishing at infinity and $\Delta$ has a simple zero then $j=E_4^3/\Delta$ has a simple pole at infinity (we can also see it from its $q$-expansion, which starts with $q^{-1}$). The valence formula shows that $v_\rho(E_4)=1$, and therefore $j(z)$ has a triple zero at $\rho$. It is holomorphic on $\HH$ because $\Delta$ is non-vanishing on $\HH$.
Fix $c\in\CC$. The function $j(z)-c=q^{-1}+744-c+\cdots$ is another meromorphic weakly-modular function of weight $0$ and has a simple pole at $\infty$. The valence formula gives in this case that $j(z)-c$ has exactly one zero on $\SL_2(\ZZ)\backslash\HH$. This gives the last claim.
\end{proof}
\subsection{Proof of the valence formula}
The proof presented here avoids algebraic geometry, at the cost of some complex analysis. Let
$f$ be a modular function, and consider the following contour:
\begin{figure}[h]
\centering
\includegraphics[height=6cm]{contour.pdf}
\caption{Contour to integrate}
\label{fig:contour}
\end{figure}
The proof consists in integrating $f'(z)/f(z)$ around the indicated contour $C$ in two different ways.
\paragraph{Integral residue formula:} This is the first way in which we calculate the contour integral. For $R$ large enough so that the contour contains all zeros and poles of $\SL_2(\ZZ)\backslash\HH'$ with large imaginary part, we have:
\[
\int_C \frac{f'(z)}{f(z)}dz = 2\pi i \sum_{p\in\operatorname{int}(C)} \res_p\left(\frac{f'}{f}\right) = 2\pi i\sum_{p\in \SL_2(\ZZ)\backslash\HH'} v_p(f).
\]
The rest of the proof consists in computing the integral as the sum of the path integrals along $C_1$,\ldots, $C_8$.
\paragraph{Integral along $C_1$:} Perform the change of variables $q(z)=e^{2\pi i z}$. Note that:
\[
dq = 2\pi i qdz,\quad dz = \frac{1}{2\pi i}\frac{dq}{q}.
\]
Moreover, the path $q(C_1)$ is a clockwise circle of radius $e^{-2\pi R}$ centered around $0$. Finally,
\[
\frac{d}{dz}f(q) = \frac{d}{dz} f(e^{2\pi i z}) = 2\pi i q f'(q).
\]
Putting these together, we obtain:
\[
\int_{C_1}\frac{f'(z)}{f(z)}dz = \int_{q(C_1)} \frac{f'(q)}{f(q)} dq.
\]
Since $f$ is meromorphic around infinity, this last quantity equals $- v_\infty(f)$.
\paragraph{Integral along $C_2$ and $C_8$:} Note that since $f$ is modular it satisfies $f(z+1)=f(z)$. Therefore also $f'(z+1)=f'(z)$, and we get, by changing $w=z+1$:
\begin{align*}
\int_{C_8}\frac{f'(w)}{f(w)}dw &= -\int_{C_2}\frac{f'(z+1)}{f(z+1)}dz = -\int_{C_2}\frac{f'(z)}{f(z)}dz.
\end{align*}
Therefore the contributions of $C_2$ and $C_8$ cancel out.
\paragraph{Integral along $C_4$ and $C_6$:} In the same way that for $C_2$ and $C_8$ we considered the change $z\mapsto z+1$, here we consider the change $z\mapsto s(z)=-z^{-1}$. This change of variables transforms $C_4$ to $-C_6$. Weak-modularity of $f$ implies also that $f(z) = z^{-k}f(s(z))$. Differentiating both sides yields:
\[
f'(z) = -kz^{-k-1}f(s(z)) + z^{-k}f'(s(z))s'(z).%\implies z^{-k}f'(-z^{-1})z^{-2} = -f'(z) - kz^{-k-1}f(-z^{-1}).
\]
This gives
\[
\frac{f'(z)}{f(z)} = \frac{-k}{z} + \frac{f'(s(z))s'(z)}{f(s(z))}.
\]
Therefore we may compute
\begin{align*}
\int_{C_4}\frac{f'(z)}{f(z)}dz &=\int_{C_4} \frac{-k}{z}dz + \int_{C_4}\frac{f'(s(z))s'(z)}{f(s(z))}dz =2\pi i\frac{k}{12} +\int_{-C_6}\frac{f'(s)}{f(s)}ds,
\end{align*}
and hence
\[
\int_{C_4+C_6}\frac{f'(z)}{f(z)}dz \to_{r\to 0} 2\pi i\frac{k}{12}.
\]
\paragraph{Integral along $C_5$:} Using the argument principle we obtain
\[
\int_{C_5} \frac{f'(z)}{f(z)}dz \stackrel[r\to 0]{}\longrightarrow -\frac 12 2\pi i v_i(f).
\]
\paragraph{Integrals along $C_3$ and $C_7$:} Applying again the argument principle we obtain
\[
\int_{C_3} \frac{f'(z)}{f(z)}dz \stackrel[r\to 0]{}\longrightarrow -\frac 16 2\pi i v_\rho(f),\text{ and}\quad
\int_{C_5} \frac{f'(z)}{f(z)}dz \stackrel[r\to 0]{}\longrightarrow -\frac 16 2\pi i v_{\rho+1}(f)=-\frac{1}{6}2\pi i v_\rho(f).
\]
Therefore
\[
\int_{C_3+C_5} \frac{f'(z)}{f(z)}dz \stackrel[r\to 0]{}\longrightarrow -\frac{1}{3}2\pi i v_\rho(f).
\]
\paragraph{Conclusion:} Putting together all the above calculations yields the sought formula.\qed
\section{A product formula for \texorpdfstring{$\Delta(z)$}{Delta(z)}}
\label{sec:a-product-formula-for-Delta}
Consider the weight-$2$ Eisenstein series
\[
G_2(z)=\sum_c\sumprime_d \frac{1}{(cz+d)^2},
\]
which does not converge absolutely. It is \emph{not} a weight-$2$ modular form (there are no such other than $0$), but we still have the formula:
\[
G_2(z)=2\zeta(2)E_2(z),\quad E_2(z)=1-24\sum_{n=1}^\infty \sigma_1(n)q^n.
\]
The function $E_2(z)$ is holomorphic on $\HH$, and $E_2(z+1)=E_2(z)$. However, we are about to see that
\[
z^{-2}E_2(-1/z) = E_2(z)+\frac{12}{2\pi i z}.
\]
Sometimes these functions are called \emphh{quasi-modular}.
\begin{theorem}
The function $G_2$ satisfies $G_2(z+1)=G_2(z)$ and it has the $q$-expansion
\[
G_2(z) = 2\zeta(2) - 8\pi^2\sum_{n=1}^\infty \sigma_1(n)q^n,\quad q=e^{2\pi i z}.
\]
Moreover, $G_2$ satisfies the transformation property:
\begin{equation}
\label{eq:G2}
G_2(\gamma z) = (cz+d)^2G_2(z)- 2\pi i c(cz+d),\quad \gamma=\mtx abcd.
\end{equation}
In particular, the non-holomorphic function $G_2^*(z) = G_2(z)-\pi/\Im(z)$ is weight-$2$-invariant for $\SL_2(\ZZ)$.
\end{theorem}
\begin{proof}
To show that $G_2(z+1)=G_2(z)$, we must show that
\[
\sum_{n\neq 0}\frac{1}{(m(z+1)+n)^2} = \sum_{n\neq 0} \frac{1}{(mz+n)^2}.
\]
This follows from the fact that the sum converges absolutely and $n\mapsto n+m$ is a bijection of $\ZZ$ (for each fixed $m\in\ZZ$).
Next, we compute the $q$-expansion of $G_2$. First, note that
\[
G_2(z)=2\zeta(2)+2\sum_{m=1}^\infty \sum_{n\in\ZZ}\frac{1}{(mz+n)^2}.
\]
Using now Lemma~\ref{lemma:expansion-latticesum} with $z$ substituted by $mz$, we obtain
\[
G_2(z)=2\zeta(2)-8\pi^2\sum_{m=1}^\infty\sum_{d=1}^\infty dq^{md}.
\]
Grouping terms contributing to a given power of $q$ gives the formula.
Next, by expanding $G_2(\gamma_1\gamma_2z)$, using the cocycle property of $j(\gamma,z)$ and calculating the lower left entry of the product of two matrices, we see that if Equation~\ref{eq:G2} is satisfied for matrices $\gamma_1$ and $\gamma_2$ then it is also satisfied for $\gamma_1\gamma_2$ and $\gamma_1^{-1}$. Therefore to prove Equation~\ref{eq:G2} it will be enough to prove it for the matrix $S=\smtx{0}{-1}{1}{0}$.
We next show that
\[
G_2(-1/z) = z^2 \left(2\zeta(2) + \sum_{n\in\ZZ}\sum_{m\neq 0}\frac{1}{(mz+n)^2}\right).
\]
This only differs from $z^2G_2(z)$ in the order of summation! This is done by substituting $-1/z$ in the definition to get:
\[
G_2(-1/z) = \sum_{n\neq 0} \frac 1{n^2} + \sum_{m\neq 0}\sum_{n\in\ZZ}\frac{z^2}{(mz-n)^2} = \sum_{n\neq 0} \frac 1{n^2} + \sum_{m\neq 0}\sum_{n\in\ZZ}\frac{z^2}{(m-nz)^2}
\]
This can be rewritten as
\[
2\zeta(2) + z^2\left(\sum_{n\in\ZZ}\sum_{m\neq 0}\frac{1}{(mz+n)^2}\right)=2\zeta(2)+z^2\left(\sum_{n\neq 0}\sum_{m\neq 0} \frac{1}{(mz+n)^2} + 2\zeta(2)\right).
\]
The outer term $2\zeta(2)$ can be put into the sum corresponding to the term $n=0$, getting the desired formula. The partial fraction decomposition
\[
\frac{1}{(mz+n)(mz+n+1)} = \frac{1}{mz+n}-\frac{1}{mz+n+1}
\]
allows us to show (via a telescoping sum) that
\[
\sum_{m\neq 0} \sum_{n\in\ZZ} \frac{1}{(mz+n)(mz+n+1)} = 0
\]
Subtracting this series from the definition of $G_2(z)$ (which can be done term by term, this only needs conditional convergence) we get the new formula involving an absolutely convergent sum:
\[
G_2(z)=2\zeta(2)+\sum_{\substack{m\neq 0\\n\in\ZZ}} \frac{1}{(mz+n)^2(mz+n+1)}.
\]
Then we compute
\[
z^{-2}G_2(-1/z)-G_2(z) = \sum_{n\in\ZZ}\sum_{m\neq 0}\frac{1}{(mz+n)^2} - \sum_{m\neq 0,n\in\ZZ} \frac{1}{(mz+n)^2(mz+n+1)}.
\]
Subtracting term by term and using that
\[
\frac{1}{(mz+n)^2} - \frac{1}{(mz+n)^2(mz+n+1)} = \frac{1}{(mz+n)(mz+n+1)}
\]
gives an alternative formula for $G_2(z)$:
\[
G_2(z) = z^{-2}G_2(-1/z) - \sum_{n\in\ZZ}\sum_{m\neq 0} \frac{1}{(mz+n)(mz+n+1)}.
\]
Finally, consider the sum
\[
\lim_{N\to\infty} \sum_{n=-N}^{N-1}\sum_{m\neq 0}\left(\frac{1}{mz+n}-\frac{1}{mz+n+1}\right).
\]
For each fixed $N$ we can reverse the sum and calculate, since the inner sum telescopes:
\begin{align*}
\sum_{m\neq 0}\sum_{n=-N}^{N-1} \left(\frac{1}{mz+n}-\frac{1}{mz+n+1}\right) &= \sum_{m\neq 0} \left(\frac{1}{mz-N} - \frac{1}{mz+N}\right)\\
&=\frac{-1}{z}\sum_{m\neq 0}\left( \frac{1}{N/z + m}+\frac{1}{N/z-m}\right)\\
&=\frac{-2\pi}{z}\cot(\pi N/z).
\end{align*}
Taking the sum as $N\to \infty$ and using that
\[
\pi\cot(\pi N/z)=\pi i-2\pi i\sum_{m=0}^\infty e^{2\pi i mN/z}
\]
we get the formula:
\[
\lim_{N\to\infty} \sum_{n=-N}^{N-1}\sum_{m\neq 0}\left(\frac{1}{mz+n}-\frac{1}{mz+n+1}\right)=-\frac{2\pi i}{z}.
\]
This finishes the proof.
\end{proof}
\subsection{The Dedekind-eta function}
\label{sec:dedekind-eta}
Define $\eta(z)$ as through the following product
\[
\eta(z) = q^{1/24}\prod_{n=1}^\infty (1-q^n).
\]
The function $\eta(z)$ is holomorphic and non-vanishing on $\HH$ (to check it, it is enough to check that $\sum q^n$ converges absolutely and uniformly on compact subsets of $\HH$).
\begin{theorem}
The $\eta$ function satisfies the following transformation property:
\[
\eta(-1/z) = \sqrt{z/i} \eta(z).
\]
\end{theorem}
\begin{proof}
Note that:
\begin{align*}
\frac d{dz} \log\eta(z) &= \frac{2\pi i}{24} + \sum_{n=1}^\infty\frac{-2\pi i n q^n}{1-q^n} =\frac{2\pi i}{24}\left(1-24\sum_{n=1}^\infty \frac{nq^n}{1-q^n}\right)\\
&=\frac{\pi i}{12}\left(1-24\sum_{n=1}^\infty n\sum_{m=1}^\infty q^{nm}\right)=\frac{\pi i}{12} E_2(z).
\end{align*}
Using quasi-modularity of $E_2$, we deduce:
\[
\dlog \left(\eta(-1/z)\right) = \dlog \left(\sqrt{z/i} \eta(z)\right).
\]
Therefore $\eta(-1/z) = C \sqrt{z/i} \eta(z)$ and setting $z=i$ one gets $C=1$, as we wanted.
\end{proof}
\begin{theorem}
\[
\Delta = q\prod_{n=1}^\infty (1-q^n)^{24}.
\]
\end{theorem}
\begin{proof}
Note that:\[
\eta^{24}(z)=q\prod_{n=1}^\infty (1-q^n)^{24},
\]
so $\eta^{24}(z+1)=\eta^{24}(z)$. Moreover,
\[
\eta^{24}(-1/z) = z^{12}\eta^{24}(z).
\]
Since $\eta^{24}(z)=q+\cdots$ and $\eta^{24}(z)\in S_{12} = \CC\Delta$, we deduce that $\eta^{24}=\Delta$.
\end{proof}
\section{Growth of Fourier coefficients}
In this final section we study the different behavior of the Fourier coefficients of a modular form $f$, depending on whether $f$ is cuspidal or not. Intuitively, if $f$ is cuspidal, the vanishing at infinity should force the coefficients to grow slower.
We start by studying Eisenstein series.
\begin{proposition}
\label{prop:growtheistenstein}
The Fourier coefficients $a_n(E_k)$ of the Eisenstein series $E_k$ grow as $n^{k-1}$. Precisely, there exist constant $A,B>0$ such that
\[