-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpaging.c
199 lines (169 loc) · 5 KB
/
paging.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#include "paging.h"
#include "isr.h"
#include "kheap.h"
#include "monitor.h"
#include "system.h"
#include "types.h"
// Assume physical memory is 16 MiB
#define PHYS_MEM_SIZE 0x1000000
// Bitmap of frames (used/free)
uint32_t *frames;
uint32_t nframes;
// Kernel's page directory
page_directory_t *kernel_directory = 0;
// Current page directory
page_directory_t *current_directory = 0;
// Defined in kheap.c
extern uint32_t placement_address;
#define INDEX_FROM_BIT(a) (a/(8*4))
#define OFFSET_FROM_BIT(a) (a%(8*4))
static void set_frame_state(uint32_t frame_address, bool_t value)
{
uint32_t frame = frame_address / PAGE_SIZE;
uint32_t index = INDEX_FROM_BIT(frame);
uint32_t offset = OFFSET_FROM_BIT(frame);
if (value)
{
frames[index] |= (0x1 << offset);
}
else
{
frames[index] &= ~(0x1 << offset);
}
}
UNUSED_FUNC static bool_t get_frame_state(uint32_t frame_address)
{
uint32_t frame = frame_address / PAGE_SIZE;
uint32_t idx = INDEX_FROM_BIT(frame);
uint32_t off = OFFSET_FROM_BIT(frame);
return (frames[idx] & (0x1 << off));
}
static uint32_t get_first_frame(void)
{
for (uint32_t i = 0; i < INDEX_FROM_BIT(nframes); i++)
{
if (frames[i] != 0xFFFFFFFF) // nothing free, return
{
// at least one bit is free
for (uint32_t j = 0; j < 32; j++)
{
uint32_t totest = 0x1 << j;
if ( !(frames[i] & totest) )
{
return i * 4 * 8 + j;
}
}
}
}
return -1;
}
static void switch_directory(page_directory_t *new)
{
current_directory = new;
asm volatile("mov %0, %%cr3" :: "r" (&new->tablesPhys));
uint32_t cr0;
asm volatile("mov %%cr0, %0" : "=r" (cr0));
cr0 |= 0x80000000; // enable paging
asm volatile("mov %0, %%cr0" :: "r" (cr0));
}
page_t *paging_get_page(page_directory_t *dir, uint32_t address, bool_t create)
{
// Turn address into an index
uint32_t index = address / PAGE_SIZE;
// Find the page table containing this address
uint32_t table_index = index / PAGE_TABLE_LENGTH;
uint32_t page_index = index % PAGE_TABLE_LENGTH;
if (dir->tables[table_index])
{
// Page table has already been created
return &dir->tables[table_index]->pages[page_index];
}
else if (create)
{
// Create a new page table
uint32_t new_address;
dir->tables[table_index] = (page_table_t*)kmalloc_alignphys(sizeof(page_table_t), &new_address);
memset(dir->tables[table_index], 0, PAGE_SIZE); // zero first page table entry in new table
dir->tablesPhys[table_index] = new_address | 0x7; // present, rw, usermode
return &dir->tables[table_index]->pages[page_index];
}
else
{
return 0;
}
}
void paging_alloc_frame(page_t *page, bool_t kernel, bool_t writable)
{
if (page->frame != 0)
{
return; // frame already allocated
}
uint32_t index = get_first_frame();
if (index == (uint32_t)-1)
{
PANIC("out of frames");
}
set_frame_state(index * PAGE_SIZE, true);
page->present = true;
page->rw = writable ? true : false;
page->user = kernel ? false : true;
page->frame = index;
}
UNUSED_FUNC void paging_free_frame(page_t *page)
{
uint32_t frame;
if (!(frame = page->frame))
{
return; // no allocated frame
}
set_frame_state(frame, false);
page->frame = NULL;
}
static void handle_fault(registers_t registers)
{
// Faulting address is stored in the CR2 register
uint32_t faulting_address;
asm volatile("mov %%cr2, %0" : "=r" (faulting_address));
bool_t present = !(registers.err_code & 0x1); // page not present
bool_t rw = registers.err_code & 0x2; // write operation?
bool_t usermode = registers.err_code & 0x4; // cpu in user-mode?
bool_t reserved = registers.err_code & 0x8; // overwritten cpu-reserved bits of page entry?
bool_t id = registers.err_code & 0x10; // caused by instruction fetch?
UNUSED_VAR(id);
monitor_write("page fault (");
if (present) monitor_write("present ");
if (rw) monitor_write("read-only ");
if (usermode) monitor_write("user-mode ");
if (reserved) monitor_write("reserved ");
monitor_write(") at ");
monitor_writelinei(faulting_address, 'x');
PANIC("page fault");
}
void paging_init(void)
{
monitor_write("Initialising paging... ");
// Size of physical memory
uint32_t mem_end_page = PHYS_MEM_SIZE;
nframes = mem_end_page / PAGE_SIZE;
frames = (uint32_t*)kmalloc(INDEX_FROM_BIT(nframes));
memset(frames, 0, INDEX_FROM_BIT(nframes));
// Make a page table directory
kernel_directory = (page_directory_t*)kmalloc_align(sizeof(page_directory_t));
memset(kernel_directory, 0, sizeof(page_directory_t));
current_directory = kernel_directory;
// Need to identify map (phys address = virtual address) from
// 0x0 to the end of used memory, so we can access this transparently,
// as if paging wasn't enabled.
for (uint32_t i = 0; i < placement_address; i += PAGE_SIZE)
{
page_t *page = paging_get_page(kernel_directory, i, true);
paging_alloc_frame(page, false, false);
}
// Register page fault handler
interrupt_register(14, &handle_fault);
// Enable paging
switch_directory(kernel_directory);
monitor_color_set(MONCOLOR_GREEN, MONCOLOR_BLACK);
monitor_writeline("OK");
monitor_color_reset();
}