Skip to content

Commit ced29a6

Browse files
Revert "Migration/v1.2.0 (dotnet#568)" (dotnet#569)
This reverts commit 81ec280.
1 parent 81ec280 commit ced29a6

File tree

63 files changed

+93
-118
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

63 files changed

+93
-118
lines changed

samples/Directory.Build.props

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
<Project>
22

33
<PropertyGroup>
4-
<MicrosoftMLVersion>1.2.0</MicrosoftMLVersion>
5-
<MicrosoftMLPreviewVersion>0.14.0</MicrosoftMLPreviewVersion>
4+
<MicrosoftMLVersion>1.1.0</MicrosoftMLVersion>
5+
<MicrosoftMLPreviewVersion>0.13.0</MicrosoftMLPreviewVersion>
66
</PropertyGroup>
77

88
</Project>

samples/csharp/end-to-end-apps/AnomalyDetection-Sales/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
| v1.2.0 | Dynamic API | Up-to-date | WinForms app | .csv files | Spike and Change Point Detection of Product Sales | Anomaly Detection | IID Spike Detection and IID Change point Detection |
5+
| v1.1.0 | Dynamic API | Up-to-date | WinForms app | .csv files | Spike and Change Point Detection of Product Sales | Anomaly Detection | IID Spike Detection and IID Change point Detection |
66

77
![Alt Text](./SpikeDetectionE2EApp/SpikeDetection.WinForms/images/productsales.gif)
88

samples/csharp/end-to-end-apps/DeepLearning_ImageClassification_TensorFlow/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
| v1.2.0 | Dynamic API | up-to-date | Console app | Images and text labels | Images classification | TensorFlow model | DeepLearning model |
5+
| v1.1.0 | Dynamic API | up-to-date | Console app | Images and text labels | Images classification | TensorFlow model | DeepLearning model |
66

77

88
## Problem

samples/csharp/end-to-end-apps/DeepLearning_ImageClassification_TensorFlow/TensorFlowImageClassification/TensorFlowImageClassification.csproj

+4-4
Original file line numberDiff line numberDiff line change
@@ -9,10 +9,10 @@
99
<ItemGroup>
1010
<PackageReference Include="Microsoft.AspNetCore.App" />
1111
<PackageReference Include="Microsoft.AspNetCore.Razor.Design" Version="2.2.0" PrivateAssets="All" />
12-
<PackageReference Include="Microsoft.Extensions.ML" Version="$(MicrosoftMLPreviewVersion)" />
13-
<PackageReference Include="Microsoft.ML" Version="$(MicrosoftMLVersion)" />
14-
<PackageReference Include="Microsoft.ML.ImageAnalytics" Version="$(MicrosoftMLVersion)" />
15-
<PackageReference Include="Microsoft.ML.TensorFlow" Version="$(MicrosoftMLVersion)" />
12+
<PackageReference Include="Microsoft.Extensions.ML" Version="0.12.0" />
13+
<PackageReference Include="Microsoft.ML" Version="1.1.0" />
14+
<PackageReference Include="Microsoft.ML.ImageAnalytics" Version="1.1.0" />
15+
<PackageReference Include="Microsoft.ML.TensorFlow" Version="0.13.0" />
1616
<PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.2.3" />
1717
</ItemGroup>
1818

samples/csharp/end-to-end-apps/DeepLearning_ObjectDetection_Onnx/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
| v1.2.0 | Dynamic API | Up-to-date | End-End app | image files | Object Detection | Deep Learning | Tiny Yolo2 ONNX model |
5+
| v1.1.0 | Dynamic API | Up-to-date | End-End app | image files | Object Detection | Deep Learning | Tiny Yolo2 ONNX model |
66

77
## Problem
88
Object detection is one of the classical problems in computer vision: Recognize what objects are inside a given image and also where they are in the image. For these cases, you can either use pre-trained models or train your own model to classify images specific to your custom domain.

samples/csharp/end-to-end-apps/MulticlassClassification-GitHubLabeler/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data sources | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
| v1.2.0 | Dynamic API | Up-to-date | Console app | .csv file and GitHub issues | Issues classification | Multi-class classification | SDCA multi-class classifier, AveragedPerceptronTrainer |
5+
| v1.1.0 | Dynamic API | Up-to-date | Console app | .csv file and GitHub issues | Issues classification | Multi-class classification | SDCA multi-class classifier, AveragedPerceptronTrainer |
66

77

88
This is a simple prototype application to demonstrate how to use [ML.NET](https://www.nuget.org/packages/Microsoft.ML/) APIs. The main focus is on creating, training, and using ML (Machine Learning) model that is implemented in Predictor.cs class.

samples/csharp/end-to-end-apps/Recommendation-MovieRecommender/MovieRecommender/movierecommender/MovieRecommender.csproj

+1-1
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
<PackageReference Include="Microsoft.AspNetCore.App" />
1111
<PackageReference Include="Microsoft.ML" Version="$(MicrosoftMLVersion)" />
1212
<PackageReference Include="Microsoft.AspNetCore.Razor.Design" Version="2.2.0" PrivateAssets="All" />
13-
<PackageReference Include="Microsoft.Extensions.ML" Version="$(MicrosoftMLPreviewVersion)" />
13+
<PackageReference Include="Microsoft.Extensions.ML" Version="0.12.0" />
1414
</ItemGroup>
1515
<ItemGroup>
1616
<Content Update="wwwroot\images\smileybob.png">

samples/csharp/end-to-end-apps/Recommendation-MovieRecommender/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data sources | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
|v1.2.0 | Dynamic API | up-to-date | End-End app | .csv | Movie Recommendation | Recommendation | Field Aware Factorization Machines |
5+
|v1.1.0 | Dynamic API | up-to-date | End-End app | .csv | Movie Recommendation | Recommendation | Field Aware Factorization Machines |
66

77
![Alt Text](https://github.com/dotnet/machinelearning-samples/blob/master/samples/csharp/end-to-end-apps/Recommendation-MovieRecommender/MovieRecommender/movierecommender/wwwroot/images/movierecommender.gif)
88

samples/csharp/end-to-end-apps/Regression-SalesForecast/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
| v1.2.0 | Dynamic API | Up-to-date | ASP.NET Core web app and Console app | SQL Server and .csv files | Sales forecast | Regression | FastTreeTweedie Regression |
5+
| v1.1.0 | Dynamic API | Up-to-date | ASP.NET Core web app and Console app | SQL Server and .csv files | Sales forecast | Regression | FastTreeTweedie Regression |
66

77

88
eShopDashboardML is a web app with Sales Forecast predictions (per product and per country) using [Microsoft Machine Learning .NET (ML.NET)](https://github.com/dotnet/machinelearning).

samples/csharp/end-to-end-apps/Regression-SalesForecast/src/eShopDashboard/eShopDashboard.csproj

+1-1
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@
2020
<PackageReference Include="Serilog.Sinks.Seq" Version="4.0.0" />
2121
<PackageReference Include="Swashbuckle.AspNetCore" Version="4.0.1" />
2222
<PackageReference Include="TinyCsvParser" Version="2.0.0" />
23-
<PackageReference Include="Microsoft.Extensions.ML" Version="$(MicrosoftMLPreviewVersion)" />
23+
<PackageReference Include="Microsoft.Extensions.ML" Version="0.12.0" />
2424
</ItemGroup>
2525

2626
<ItemGroup>

samples/csharp/end-to-end-apps/ScalableMLModelOnWebAPI-IntegrationPkg/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55

66
| ML.NET version | Status | App Type | Data type | Scenario | ML Task | Algorithms |
77
|----------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
8-
| v1.2.0 | Up-to-date | ASP.NET Core 2.2 WebAPI | Single data sample | Sentiment Analysis | Binary classification | Linear Classification |
8+
| v1.1.0 | Up-to-date | ASP.NET Core 2.2 WebAPI | Single data sample | Sentiment Analysis | Binary classification | Linear Classification |
99

1010

1111
**This posts explains how to optimize your code when running an ML.NET model on an ASP.NET Core WebAPI service.** The code would be very similar when running it on an ASP.NET Core MVC or Razor web app, too.

samples/csharp/end-to-end-apps/ScalableMLModelOnWebAPI-IntegrationPkg/src/Scalable.WebAPI/Scalable.WebAPI.csproj

+1-1
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
</PropertyGroup>
77

88
<ItemGroup>
9-
<PackageReference Include="Microsoft.Extensions.ML" Version="$(MicrosoftMLPreviewVersion)" />
9+
<PackageReference Include="Microsoft.Extensions.ML" Version="0.12.0" />
1010
<PackageReference Include="Microsoft.ML.FastTree" Version="$(MicrosoftMLVersion)" />
1111
<PackageReference Include="Microsoft.AspNetCore.App" />
1212
</ItemGroup>

samples/csharp/end-to-end-apps/ScalableMLModelOnWebAPI/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55

66
| ML.NET version | Status | App Type | Data type | Scenario | ML Task | Algorithms |
77
|----------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
8-
| v1.2.0 | Up-to-date | ASP.NET Core 2.2 WebAPI | Single data sample | Sentiment Analysis | Binary classification | Linear Classification |
8+
| v1.0.0 | Up-to-date | ASP.NET Core 2.2 WebAPI | Single data sample | Sentiment Analysis | Binary classification | Linear Classification |
99

1010

1111
**This posts explains how to optimize your code when running an ML.NET model on an ASP.NET Core WebAPI service.** The code would be very similar when running it on an ASP.NET Core MVC or Razor web app, too.

samples/csharp/end-to-end-apps/ScalableSentimentAnalysisBlazorWebApp/BlazorSentimentAnalysis.Server/BlazorSentimentAnalysis.Server.csproj

+2-2
Original file line numberDiff line numberDiff line change
@@ -12,8 +12,8 @@
1212
<ItemGroup>
1313
<PackageReference Include="Microsoft.AspNetCore.Blazor.Server" Version="3.0.0-preview6.19307.2" />
1414
<PackageReference Include="Microsoft.AspNetCore.Mvc.NewtonsoftJson" Version="3.0.0-preview6.19307.2" />
15-
<PackageReference Include="Microsoft.Extensions.ML" Version="$(MicrosoftMLPreviewVersion)" />
16-
<PackageReference Include="Microsoft.ML.FastTree" Version="$(MicrosoftMLVersion)" />
15+
<PackageReference Include="Microsoft.Extensions.ML" Version="0.12.0" />
16+
<PackageReference Include="Microsoft.ML.FastTree" Version="1.1.0" />
1717
</ItemGroup>
1818

1919
<ItemGroup>

samples/csharp/end-to-end-apps/ScalableSentimentAnalysisBlazorWebApp/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55

66
| ML.NET version | Status | App Type | Data type | Scenario | ML Task | Algorithms |
77
|----------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
8-
| v1.2.0 | Up-to-date | Blazor / ASP.NET Core 3.0 Preview 6 | Single data sample | Sentiment Analysis | Binary classification | Linear Classification |
8+
| v1.1.0 | Up-to-date | Blazor / ASP.NET Core 3.0 Preview 6 | Single data sample | Sentiment Analysis | Binary classification | Linear Classification |
99

1010
# Goal
1111

samples/csharp/getting-started/AnomalyDetection_PowerMeterReadings/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
| v1.2.0 | Dynamic API | Up-to-date | Console app | .csv files | Power Meter Anomaly Detection | Time Series- Anomaly Detection | SsaSpikeDetection |
5+
| v1.1.0 | Dynamic API | Up-to-date | Console app | .csv files | Power Meter Anomaly Detection | Time Series- Anomaly Detection | SsaSpikeDetection |
66

77
In this sample, you'll see how to use [ML.NET](https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet) to detect anomalies in time series data.
88

samples/csharp/getting-started/AnomalyDetection_Sales/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
| v1.2.0 | Dynamic API | Up-to-date | Console app | .csv files | Product Sales Spike Detection| Time Series - Anomaly Detection | IID Spike Detection and IID Change point Detection |
5+
| v1.1.0 | Dynamic API | Up-to-date | Console app | .csv files | Product Sales Spike Detection| Time Series - Anomaly Detection | IID Spike Detection and IID Change point Detection |
66

77
In this introductory sample, you'll see how to use [ML.NET](https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet) to detect **spikes** and **change points** in Product sales. In the world of machine learning, this type of task is called TimeSeries Anomaly Detection.
88

samples/csharp/getting-started/BinaryClassification_CreditCardFraudDetection/Readme.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
| v1.2.0 | Dynamic API | Up-to-date | Two console apps | .csv file | Fraud Detection | Two-class classification | FastTree Binary Classification |
5+
| v1.1.0 | Dynamic API | Up-to-date | Two console apps | .csv file | Fraud Detection | Two-class classification | FastTree Binary Classification |
66

77
In this introductory sample, you'll see how to use ML.NET to predict a credit card fraud. In the world of machine learning, this type of prediction is known as binary classification.
88

samples/csharp/getting-started/BinaryClassification_HeartDiseaseDetection/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
| v1.2.0 | Dynamic API | Up-to-date | Console app | .txt files | Heart disease classification | Binary classification | FastTree |
5+
| v1.1.0 | Dynamic API | Up-to-date | Console app | .txt files | Heart disease classification | Binary classification | FastTree |
66

77
In this introductory sample, you'll see how to use [ML.NET](https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet) to predict type of heart disease. In the world of machine learning, this type of prediction is known as **binary classification**.
88

samples/csharp/getting-started/BinaryClassification_SentimentAnalysis/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
| v1.2.0 | Dynamic API | up-to-date | Console app | .tsv files | Sentiment Analysis | Two-class classification | Linear Classification |
5+
| v1.1.0 | Dynamic API | up-to-date | Console app | .tsv files | Sentiment Analysis | Two-class classification | Linear Classification |
66

77
In this introductory sample, you'll see how to use [ML.NET](https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet) to predict a sentiment (positive or negative) for customer reviews. In the world of machine learning, this type of prediction is known as **binary classification**.
88

samples/csharp/getting-started/BinaryClassification_SpamDetection/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
| v1.2.0 | Dynamic API | Might need to update project structure to match template | Console app | .tsv files | Spam detection | Two-class classification | Averaged Perceptron (linear learner) |
5+
| v1.1.0 | Dynamic API | Might need to update project structure to match template | Console app | .tsv files | Spam detection | Two-class classification | Averaged Perceptron (linear learner) |
66

77
In this sample, you'll see how to use [ML.NET](https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet) to predict whether a text message is spam. In the world of machine learning, this type of prediction is known as **binary classification**.
88

samples/csharp/getting-started/Clustering_CustomerSegmentation/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
| v1.2.0 | Dynamic API | Up-to-date | Console app | .csv files | Customer segmentation | Clustering | K-means++ |
5+
| v1.1.0 | Dynamic API | Up-to-date | Console app | .csv files | Customer segmentation | Clustering | K-means++ |
66

77
## Problem
88

samples/csharp/getting-started/Clustering_Iris/READMe.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
| v1.2.0 | Dynamic API | Up-to-date | Console app | .txt file | Clustering Iris flowers | Clustering | K-means++ |
5+
| v1.1.0 | Dynamic API | Up-to-date | Console app | .txt file | Clustering Iris flowers | Clustering | K-means++ |
66

77
In this introductory sample, you'll see how to use [ML.NET](https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet) to divide iris flowers into different groups that correspond to different types of iris. In the world of machine learning, this task is known as **clustering**.
88

samples/csharp/getting-started/DatabaseIntegration/DatabaseIntegration/DatabaseIntegration.csproj

+3-3
Original file line numberDiff line numberDiff line change
@@ -8,9 +8,9 @@
88
<ItemGroup>
99
<PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="3.0.0-preview.19074.3" />
1010
<PackageReference Include="Microsoft.EntityFrameworkCore.Sqlite" Version="3.0.0-preview.19074.3" />
11-
<PackageReference Include="Microsoft.ML" Version="$(MicrosoftMLVersion)" />
12-
<PackageReference Include="Microsoft.ML.LightGBM" Version="$(MicrosoftMLVersion)" />
13-
<PackageReference Include="Microsoft.ML.FastTree" Version="$(MicrosoftMLVersion)" />
11+
<PackageReference Include="Microsoft.ML" Version="1.0.0-preview" />
12+
<PackageReference Include="Microsoft.ML.LightGBM" Version="1.0.0-preview" />
13+
<PackageReference Include="Microsoft.ML.FastTree" Version="1.0.0-preview" />
1414
</ItemGroup>
1515
<ItemGroup>
1616
<Folder Include="Common\" />

samples/csharp/getting-started/DeepLearning_ImageClassification_TensorFlow/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
44
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
5-
| v1.2.0 | Dynamic API | up-to-date | Console app | Images and text labels | Images classification | TensorFlow Inception5h | DeepLearning model |
5+
| v1.1.0 | Dynamic API | up-to-date | Console app | Images and text labels | Images classification | TensorFlow Inception5h | DeepLearning model |
66

77

88
## Problem

samples/csharp/getting-started/DeepLearning_ObjectDetection_Onnx/ObjectDetectionConsoleApp/ObjectDetection.csproj

+1-1
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@
3030
<ItemGroup>
3131
<PackageReference Include="Microsoft.ML" Version="$(MicrosoftMLVersion)" />
3232
<PackageReference Include="Microsoft.ML.ImageAnalytics" Version="$(MicrosoftMLVersion)" />
33-
<PackageReference Include="Microsoft.ML.OnnxTransformer" Version="$(MicrosoftMLVersion)" />
33+
<PackageReference Include="Microsoft.ML.OnnxTransformer" Version="$(MicrosoftMLPreviewVersion)" />
3434
</ItemGroup>
3535

3636
<ItemGroup>

0 commit comments

Comments
 (0)