diff --git a/Season1.step_into_chatgpt/3.GPT/GPT_slides2024.pptx b/Season1.step_into_chatgpt/3.GPT/GPT_slides2024.pptx new file mode 100644 index 0000000..14572fb Binary files /dev/null and b/Season1.step_into_chatgpt/3.GPT/GPT_slides2024.pptx differ diff --git a/Season1.step_into_chatgpt/3.GPT/gpt_imdb_finetune 2024.ipynb b/Season1.step_into_chatgpt/3.GPT/gpt_imdb_finetune 2024.ipynb new file mode 100644 index 0000000..4623bd9 --- /dev/null +++ b/Season1.step_into_chatgpt/3.GPT/gpt_imdb_finetune 2024.ipynb @@ -0,0 +1,885 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1.环境配置\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1.1-基本软硬件环境查看:GPU信息,Python版本" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sat Aug 31 16:18:17 2024 \n", + "+-----------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 470.57.02 Driver Version: 470.57.02 CUDA Version: 11.4 |\n", + "|-------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|===============================+======================+======================|\n", + "| 0 Tesla V100-PCIE... On | 00000000:00:0D.0 Off | 0 |\n", + "| N/A 30C P0 24W / 250W | 0MiB / 32510MiB | 0% Default |\n", + "| | | N/A |\n", + "+-------------------------------+----------------------+----------------------+\n", + " \n", + "+-----------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=============================================================================|\n", + "| No running processes found |\n", + "+-----------------------------------------------------------------------------+\n" + ] + } + ], + "source": [ + "# 查看GPU相关信息(CUDA)\n", + "!nvidia-smi" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.7.10\n" + ] + } + ], + "source": [ + "# 查看python版本(一般在华为云ModelArts平台上有显示,如果已经是python3.9,可跳过 过程1.2)\n", + "!python --version" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1.2-设置python版本为3.9.0" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%%capture captured_output\n", + "!/home/ma-user/anaconda3/bin/conda create -n python-3.9.0 python=3.9.0 -y --override-channels --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main\n", + "!/home/ma-user/anaconda3/envs/python-3.9.0/bin/pip install ipykernel" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "import os\n", + "\n", + "data = {\n", + " \"display_name\": \"python-3.9.0\",\n", + " \"env\": {\n", + " \"PATH\": \"/home/ma-user/anaconda3/envs/python-3.9.0/bin:/home/ma-user/anaconda3/envs/python-3.7.10/bin:/modelarts/authoring/notebook-conda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/home/ma-user/modelarts/ma-cli/bin:/home/ma-user/modelarts/ma-cli/bin\"\n", + " },\n", + " \"language\": \"python\",\n", + " \"argv\": [\n", + " \"/home/ma-user/anaconda3/envs/python-3.9.0/bin/python\",\n", + " \"-m\",\n", + " \"ipykernel\",\n", + " \"-f\",\n", + " \"{connection_file}\"\n", + " ]\n", + "}\n", + "\n", + "if not os.path.exists(\"/home/ma-user/anaconda3/share/jupyter/kernels/python-3.9.0/\"):\n", + " os.mkdir(\"/home/ma-user/anaconda3/share/jupyter/kernels/python-3.9.0/\")\n", + "\n", + "with open('/home/ma-user/anaconda3/share/jupyter/kernels/python-3.9.0/kernel.json', 'w') as f:\n", + " json.dump(data, f, indent=4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "注:以上代码运行完成后,需要重新设置 kernel 为python-3.9.0,然后kernel会自动重启
\n", + "然后查看python版本,显示为Python 3.9.0说明环境目前配置正常,进入1.3" + ] + }, + { + "attachments": { + "77208900-8340-4fc4-828c-71ce5689109a.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN4AAAM/CAYAAAAOTh+PAAAgAElEQVR4Aeyde9wdVXnv83f/OB/PaavNaatFi5aCesQLFaSgKIgoRkWbg6hQ0CgSg43EC9EoBoOAEBRICHJTEgIEEhISEi4JeKPerfZiW6v2emptrdZLi1rX+fzmfX+zn/3stWZm75nZe/a7f3+8nzV7zVrPetazvmvNzO9ds/eiyy67LMT+du7cGfSnGIgBMVCFAawhBw4c0J9iIAbEQCUGYvcdyovfjykuiosYEANiQAyIATEgBuoxUOWZtqjMq171qnDiiScO/CH/rLPOGshHWZyjzUWpAWQBpRJexIAYKGMA64iENwmPYkAMVGUgde+h/Ho3lYqf4icGxIAYEANiQAyIgUEGyp5ny86/+93vHhDXNm7cmAtrmzdvHjh/7rnn5uclvGlnXw5DGWw6LwEuxQAW96oP3ConcUYMiAHdEA7eEComiokYEANiQAyIATEgBtphIPUcO0y+Fd+sqEYbducbyjIfqYQ3CW99QFg4dCyhrSoDuEBITJGYIgbEQFUGdFPZzk2l4qq4igExIAbEgBgQA2JgkIGqz7VF5S655JJ8V1tMeEMeX0eV8CahTUKbGGicASzuVR+4VU7ijBgQA7ohHLwhVEwUEzEgBsSAGBADYkAMtMNAkaBW5RxeK6Wo5r+/jfX9eSu+JXe8acDbGXDFVXFdqAxITJGYIgbEQFUGFuo6qH7pGi8GxIAYEANiQAyIge4xQHFs1NSKajzGjydAXMMf83zK9pLCW9WbZ5XTg5YYEANYUMSBOBADYqAqA1ozxEpVVlROrIgBMSAGxIAYEANFDFQROimAjZra10y9uJb6XGnHW1HHdE7giwExIAbEgBgQA2JADIgBMSAGxMAsMPC1D30wfP95R4SfPel/h/DYR+lPMRAD8wxgTmBufPXySya2EWMcwht+tRQ/nsBdbki94IY8fM8bUvxZkU873g7oYjkLF0v1UZyLATEgBsSAGBADYkAMiAExMCwDX738YoksEtrEQAUG/mT9pRMR38YhvEFEg/hGMQ3HXnjjeaYsi1TCm4S3iUyOYS94Kq+bJDEgBsSAGBADYkAMiAExIAbGzQB282iXm3b5iYFyBjBXxj0/0d64hDcrpOHY73rz5+1nCW8S3iYyOSYxIdWmbtTEgBgQA2JADIgBMSAGxIAYGIaBnx/8axLeKux2kjBVLkwt9Bj97JDfmIi2MCnhDd/7xj/86qkV2vyxhDcJbxOZHMNc7FRWN0diQAyIATEgBsSAGBADYkAMTIIBL5ZMwge1Kfa7ykAX5sekhDcvrhV9lvAm4U3CmxgQA2JADIgBMSAGxIAYEANiQAxEGOiCsNBV0UV+SRDswvyQ8BZZuDQ5NTnFgBgQA2JADIgBMSAGxIAYEANioIsMbN26tU+A7IKw0MU4ySfNXzDQhfkh4U3CW9+ircWp2cXpIx/5SFi6dGlYtmxZwLHi22x8FU/FUwyIATEgBsSAGBADYmDWGJDwJuYXEvM7duwI+LvppptaeV6W8Laz8Lvd+PqpXjWdsDjY5iQYZcGAgAUhC4JW2V9bkzflN3yzf/z5XviJY3sOviG2KVvK1wVVDIgBMSAGxIAYEANiQAyIAc+AhDcx4ZmYxs9r167Nnuv5zMwUz844V9SnmzdvKTxv60p4m5DwBrEDA1nlb5aFEQhDFIwwCXBcFg/UYVzLytrJMMwxfYH4VvbXlg/eX7TDhcKniAn+fD4/j8tH77M+64ItBsSAGBADYkAMiAExIAamj4FJCW94bok9u6Tyxdb0sTWOMQMveI7H8zA0hlWrVmUaAjap4Niei/EGHyW8VRPTuJutStrojrciAYRCiE0BAuqMA8CutUHRjUIaJ0bKTx/bNuKGiQc/4FPKj0nkwx/6xWNyhIWDsWSejSkWmEn4rDbLL4TgDeOD8cJFAMeea/95tuN6ZThz0aKwyPwdvfqOhvi+I6w+dlFYdMaVDdkrH//ZHkvFR+MvBsSAGBADYqCrDExKeONzjRVD+HyG552uxivt16awYsmFYTvfMNu0IixevCJs4ucJpZuWLw6LF/Pv5HDhHUVzcXu4cAnLRtLlmyqOy5ydFZtibW0KK3J/FofFlW0O2rKaAZ6xYmMDpvhMndJj2hbe3vve94anPOUp2TjAh9tuuy3qa8z/WN7MfccbBxADjgFN/bEchJLUYMcC2kYeF7g2bKdsQmBA3yE2sAxjEhMa7ARCvVgZ2qmTcmGHL7DDSQk/y/7aFLgYG/JEgS2V2nLsS524VK27cePGsGHDhnxMq9abxXIcUz+GWA84ZmRuFuPj+3zH6qMzwe3Mq+wFdl6IO3Z1uKP2jYuENx9zfbas6Vg8iIFSBu64MJw8/+AUf7BSDEtjGLuWKa66r4xx0XLepIQ3PiPifhjPqPjjvXJbz38jzcuK8c8Ero4Jb9svPLlP/Jv7XCa+Da7fw9aj2Dd4fZgT3U6+cPv8XPefB9suGjMyU4UXPvuDN2+zbeGNottLX/rSTHw77rjjBnzwPhV9nlnhDYNYFBj/0D1J8Q1tx2Ar8r/uOQppVnjDMRZWHzuWHceiy8lnhQ+2W5a2OYbkBf7hj2OWSjE+vi91x6xKfQhviNPKlSvDrl27CudAFXt1y5SNGc/XbWfY+rwgIOVFAeOFmw2eo292jgzbTpXyaBNtx8oiH+ylzsfqtJJ32+pw9KJFoV90m78Iz5+rv/NNwlsrY1fxxlRtD3dTOUvxmruxN/9htw8wDfDFB4Hef/4Xh8VswwgefecXLw72waHn4+Auhtw+bTbgc3r83Y4B56etV+SzLWeP877YXQmLzcOaiVcen2x3hxk/Uzcv02pMMLe4W8P42libgzH3rNTe3RKL6yj+Gzvex9bGguM/xO6VOGdmXvq+J/rFPuX2jA95nuExi8mQ85R22JadL3PHg3zEyvbmY/9csWXZlh+72nz5eM5/npTw5p/7eD/c5nPW4Lg1d03Oxs1yNfEdbzFRa26N7AlfFfo/P++q1emfB5ZrxH6Of3f9HDFOfGbms3yVsaXY6+u0Kbxhtxvm8mmnnRYgmB166KHZ7rcq/qbKSHhLLGaEgosJUj/YqaA2nU/xpmm7RfbwIM920W8bDwoRqO8XX3uuyP6o5+CXHQv4CCGkzB4nLNKysqOcZ3yGEUB8X0Zpd9g6FN4QQ6j3WACGtdFkeTu/io6bbLPMFscyJahxbtDfVLmydqqep+ANvzxfZAhzwJ+rar+JcleesSgsSu5quyNcedXg66ZZHfNK6qBoNy+0scwZq6OvmvbbOTqsvq3CzUhi3W8iFrKh+M8SA6mH0VwYqzPXKAj4B2985kNS4oGeD7584Oj56R4cDhwI+cMybdbxuahuoj/+AWeOH/sQNOjzAGMlcYi3MT9XE34xhoV1i/pb8Vwe/2ycJbxxRyLjb1PyPDD+qVjnXEQYys/NC0lG9Cqz3z9m/UJUv8hEQdWXmftMtnJ7xoc8z8//ivO0N+f72+rrW4J9+jVX1s7FwX7YMUn6nPUhMgapcauYP07hDc93eIbiPTLvgX2K5zKUQdm2nwkPZAyfHC7c1NvJi/lixy8bkwFmKGzd5F7PnF9/Mi5WhE2OD2s3zoYb48p2qtw30WfuOCuvE+97rN4844jT/Lrg+5rZMvPT9t+X7ZtjEZbBCLgpK2fP4xkHzzqoa/PbEt7wSil2t4Gnww47LLzkJS/JXze17Q97PLPCGx5msTCk/vyuFgCCssMGuInygMyD1oTdMhuAnJPDLqzI42Jq85lXZrfOeQoNHAv4IuEttojG86zwxrE7++yza7+zPuqY0oeydFT7o9SDL0VMUQijz+MS3uiXFdg4H+hLW8JycRznBLLqO9ooqJ0ZruQF+aoz3Wuq82WMmJcLbOY73ubyiuzE50FxfyZbx45vys8qZVJ1lT/Z8V1Y8e89VOcPn/mDSk0BpU8U8LbM9/GYcr2bf/OgPP/A1XsIdw9GYxPejE8DDy+DTPY/wA/63MeRicFiu7ttfn1F33uxGWzrQGzMjM18bLleN5b2+OmJS36sI/7WbD+PbYVx6ItzUbsmXoWxLrKBc1E7hp0BAaEkPvnYOobyfCMkDRGPPIbGn94c6wkfeTkIT86+5TIvZ8rE8qqOR17XiHaD42Liatrtb8OUcYJOVm7TimDnR95uNC7Nsz1O4c3f+/K+syht+/64N19MbOfZzsc7+2zOY565vGzczJjla6LJmxtbM484Vw07A2U4z4rslK0J8+fn5pdpv6zevH95HMrK83y0Xmq33dz8sHOgf/7E1ycwMwob1GZsG20Ib+ecc04msuG6BJ2Br5siveqqq2ppQTMrvBUtFKlzFHvsgI/jGIOOv3G05dvAAx4ENfzZh3z4Y/PGIbrBN/rAsYAfRSIJ+wNBAuPaljABf2B/mAdi3xf62mYaE97I+4UXXjh2xth2WdpmTKztMk4wzpyPTEe5eNg2y45jNzvkmAzZ+GE+DMNhWfvl5+e+x62y8JaJbIM70zIRjUJbtMz898VReEu83tpnhzcSU5RiLIuYwvhy/S0fm/hNj+opLs0w0BNOejf3fFB1Dzr5HOR59yDOh5j5h9v8ATYiJPX57urxXE8EmHtQ8Z9ZDmnelnk4sudjx8M+BOXtV2lj/mHt5OUr5r+PrfhhK/e/LFYYg1i8+HBo6+flUuMYm0PDPoTN84OYVG0vL9fPTy8GxbHqG2/zwMwxzsdpXrAZeKDMY0XBaj4+xq98Lpi8XFgsG39TJ7eTv+aFNuf6l/e3L3Y43xuvvIwRn/KdovP9QBt5uUg8GBef5nX6+tOb21ncTF+86Ja0Z3zI2zB5vl7q81xdxKrnk40n6uVj3deHfq7zMjHRLV/TenVyn43N3IbJS/k9bP44hTc85+HeE/cfvOfEvQry8OfvVZHX+rPhPGN+nmbjkMd7cF3qPz8/B/Lyg8JcNi7zbZEjb2Nu7Fxb2TzrzcmYndIxN2uO72dR3TkWy9fDARuun3PnmxPewAX4QTrQdmRO2TJ81rZcNSm88dVSrNfY7cYfUkDKY+vPKMcS3k48MV9AuJCkUoo9owS6ah0+VPGhnguc/WyPq9ptqhwf9OEDfLXwN9VGkR22z7GgH0V1cK7ORC+zjfNcDIYRPHxfqrRTt0yR8AbuzzjjjLGOaWqu+fy6/a5anzcOw4xjVdujlqNPPibIx/zz+fiMeTG+uTmc8Db3IwxmlxovtEZsy8pQhOP5A/O74OaFt2I7Efu5nd5N8qhj0lY9cMe1BOPr28Gay/H15/S5u+O6oMfGPBTk4sLixX27QHz/8wdR86txeV728NN7WC57YI8KSeZhm0JDbt+0Sb/mHlDM66sV1oo5e9UfatgGHpx4nMXLiwoUKxAHHkd8pu8HbF+9rVg/cpu9XUn57g4r0GTH1fs354976Iy1n8rL/XIPqbHyOXNe9KpQ1wqtLl5942JikT/s5u1SdDNCV+5/hbi6dntjmRBG7RjPiwMpXzOmisrMn7Nt5raK/HLjkNcx9npzbC4Gvc/l45LbMz7keWYs0L98PJxPtk+9495aQsGE52g/PSd7/1jgOsK6qZQ27VoYneeVfC+/po1TeGOf7T2nFU/4nMXzLN9qms27CF/ZXO2tX9m45KwOrlP95ym89epnfZif43MczbNheGU/+2w5PwbtlI8x7ebfgxlps1eG9gb7OFiGZV3a10+ea05443MLn+Mr+2We5e0zWh3hDeIadrfZ10qb2NVW1CcJb1MivPFhy4pueAgrGtw2znHCwA/6NL4HfO14qzumEt54EYmnFD3sol435nXrp4Q3zH/4yZscn45vXg73qmlcVDsQDhjhLbVrLcvvE94WZa+oLuL3wOXpdApvYAVjSoHNim/Mw9pblynVj89/xWW0uAw+bLoHFv+QmYsUfGDqPeDOPVT3HpZLH7JzW1YM6R3zYbsnAgz6lvufP5iVx2E44a3Xv4EHcogK+YMU+z3vY963QZ97rLKOFSQi7bFvuc0KAlEmeHCMymNCEbB0zDwP+Jz7Va09O2YXLp8b76rt5nXzuPNB2whpfT7NxT9aj33J/Tdx5TmmeZmC8czL9Bi2zJDn3Bezw63HuIlhLham28xt2XjQ50Sa13GiWObrPGs9f9Jtk+PcnvEhz3NtVB3nOdu9+cHYzeVH5ohtJ/PDlCn0q9e/lM82LuxzE+k4hbfUvai/97Sf7T1ME/0dsJHNF8M7efWCly2Xneuvk40b10jY8PWRNz83rfAWY7HPVqmdKuuqKRPxfSAmuf/9fYyWY7xs2tdPtj03Fwb7Oze/BvNZbzDlc8soGgYZtH2pI7zZtRWCG0Q4a7uNYwlv88IblVcAwYdvu3jgmGXaGIgimxTbisq0eQ4xwUM8RTcfF/g3rod8TliOBdquMnn5nxj735kmY0Zm4F9Vu74vVevVKVckvOlV096PhVThGWXAX1tMcZx5obHzjv6RIXuuynyg7abSlFBG+/Z8lZ1qcXGu4o43ewMxpccYVwptGH8egzfGVOngDZ1iMu6Y9B5q8xvv7MHACRgD87D3QJvVm7/R770m17PbE6USfcvreqGi9zAMLopEgPxh2T54DfhsXsmzD+j5cX97/Sz2+mt3zvT71CuTCwR534psx2LVs5U/WLBvuU0jEEXHzNhg3UhM+DCat5PHY248ci5idW1e7lfVh0XTb7RZ5KNtJ7HjrTcWnqMey4NljK+5/yaudqdaX1wKxtPY6Y9pf50os3ld41c+tv31LZ+5LSMuZefzuoxJz0Zep69fVvy1c87448aCfuT2jA95XmpsC/yjXYrBiGU+rzIf4nz3xhh9jZfJ/cr7HomL9Tkfl/749HxMrG2JWNl64xTecK/r70dxb4I8e5/C+1HktX1/PLf+DPI1N469ceFuMaxH2fjZ8eGaYPMytmz9uPAWuz5l9slxqR23jg1w6tjI7A321zKB48H+OztFbM3z2j9f5q9/7Fdef85/X9b74z+Dm1HuZ1HH16sjvL3nPe8JRx99dPZ9bk29Sur76j9LeJt/LcsHhg86XECQUuzxZdv+HAOt7TZhn8KCjQGPcc4+9MNHigFt+sY2ORZoF2NV1iYWf/je1kVgmoU3/bhC74JEvqowxTUCdcr4q3Pe3uigTdse/eW8bIvvUv8T37eW1Zs/l38HnNnZZu1acc7ufuuVcd/xlrATF+16Y9yz1+08jC0Zw/iOa42dlvjIzw7wywdf+8DCh5iSV8LyB1zUHbBjHngLX7PsPQwNPli7+LANs0OIDOUP0gMPFf028nL5AzcFCaTuIS1/MJmzwbp9QlTu0+Cv5/WLLvPtRP0rjlVfnOGTEQHyh6Xcj/4HurxuUd+MvZjPff11MWH8szS30+9DX5m++u6B1TGYrmcEVBPPXl/tmPLY+JTHiufmBZ3cfwo89M/UzcsUsJKXoZ1+Btkv8tQnOOZ1TZu5v+k2c1smHlk7eV32tWcjr1MUd1O/jIPcnvEhz0u1YezPsdfzj3FKC289Dvp8y23O2cp9iKwbvVe0e+3m5ft8NnPU9K/nY3yMq5wfp/BGf3i/6Z+p+JzF8yzfajrPfN8Y8hrkYp3N8SUrwoolgwJoNm52zDIOeuOa9WG+La6bA3Wy9Wlu3uf+VLATjY9ri2Xm1innV9+6aK43rv+0UZoO03asfxF/fJt8ZuazvD8f+5yqU0d4w/PVoYcemglv+H63WLtN50l4S3yRtX3Y5SIyDCBNDtSkhDe0i76j3wQen63AZh/8x/FgyPY4FmizikjCC0JbwgTjA/+qjr3vS9V6dcrZHW8vfelLAxaAOvbq1uXcKkvrtjNMfY4lGYvVZRmsE7HzTeZxLYr5Q4YwB+y8bLL9qrbmdrItCmdeZW8i58Wyvu9rm9+5tsi8DpqJaLbufBlTLxPm8Copf1zhwIEwl2fsFAmAFW4GqvZ1XOUwvhjbcayt4+qT2rHzY8qP84dU86BvdvnkDx+xuTd/c49dbicvmXuw5wNNxkhuG+f8g0bZr5pG4pq3Z1/t5CtFkfZjPpu8qg9A5L0n7PT60veQ3tdfCh0uTT1I9dXt2Ufbebt8qDRxyOOd14+PY5+4Y2LAvvVS99BZWNaNUe6X9cGVMfby2C1fEVbMC6GFvEXrbupdv/MY9Mev1zfvS09MydrN/fdCXK8/+VgM8GxsezvGb+tL3n+OK8rldXtt9sQhk+ds5rZSfLny8COvY9sfKNeLEYQxPz6IBxnM7Rkf8rzCNkzsBtrHOQqgg0JmbDwG2sxjirnoYhhhZqA+fMrLDcbAjukox+MU3vD8xPtR3rPj/gR5+MMx85Eir61nrjxW+fiYscnibT6Ti1jZ+XPZuFnOMhtuLZivT2bz+TbArKlXxQ79c+kcS8bWfPt+HuWxyOvPzbvycom54/uZ252fS3l/R1/vh723xfMNmAJjvr91hDf/zyLca7e9803CW2LHm108eBx78PUAtPEZIOCvDdspmxSqsHCyDMUG/4DPh3/Eqe0HRLSFP/qE9mITkeeZsj9tXQQYG+sb206ljNs4uaLwtnLlyrBr1648jikf287n3CpL2/bD2se48AYCfIEZ5OEP7PNcFe6s3VGPwYefc7QFn8bJD9tNpvPCl/3OtXynW37xnrvY50Ja9r1sg79yeoA/psDvbTtjdVh9bL/wBj/67VjxLnFT4fxI9qUj5che1/2UfwuDt+HGsf/Buv8mNvLg0zenfF3zgDFfLn+Ije0w40NS/jA1+GDt+1LJXp+P6TGde2gf9Nm32fvcEwD641Tgd9638nZ6IoIT6xi7ongZYcD7hs/VH+BGfxDLH2K9uBEbj9zfecb851gdk5dzkD9AYpw9j704sv95PcZ0Ps0exPOx4nhGxnvJyeW/UjtgJ85g7gvHFf3L65q5l+fN98eWn49JbqsvHvF2yXNeJ2KPZbLUtx+LnRXyjA95G67OoBBf5GtvHHLBJGehd85z31c256vHRH/53vxM+4y6ZlxyH4p8Lz83TuENz4Nl9+r+vH2G7OOiof6T+RUXXjg/t4riPD/HY8waTrOxz8a8N66W5T42jLCbMeFtV7YTH2vPU3/b8/9Y8W3O+8R1azDuc9x7W3m5+VjEz7s5Y+ZrXr/i2OLeFrzgOavoOQbnyFXsWaiO8MYfVoDYhmOMYdvf9Sbhbf473viAjQHGMQfZpkVgDAvcMOXxgD+uh3z6BbjRd7toctHFZGE5ppxAqIP4xSYHyzaZoq0qsZHwNreoQ3jbsGHDwPg1OSYLwRZ4tou9XQdwPKm1YCHEVn2I32ApLorLtDLgHw4qPxjbB9rUDbx5ILIPu/lDhTkff1BwXNk2+UCfarvgAWJ44Q1+eHGn5EE875t7AEz65R6K2D+7wyq3SYGof0eOjTGOK8U092eu/Xxs8nw3BrH83K+SmJjx67Vj41oeq5zXyLjn5/LY9WJQdI4CQF/MjK/ZrsG8jwU+5mV67cbWhdwX+9Cd1+2PYZ8oa8vPj0NuKxKPWNvIy+tE7MXq5OVNXO06kZ83PuR5fXUgrBTEb4Ct3pyIs2zZqSDaDPjSH+tmfK4wX+b7OU7hjeOK+2M8d/n7Yn6u8kxGW7XTeebjY+vjWGN9GuDK29bnUcYSLFFzQQqdAc/reMbCnz2X0hXqCG/eZ//rpvyxBeQ39SrqzAlvFJS4QAyTpgbdD9xC+MzJAOg5ARArfE71D3UYT5QbR7zQTpVFflzCG9oZ5g/xkojT3QsWmMZ44mLAeYC81BxQfnfHUmOjsREDYkAMiAExIAYWCgOTEN4QO9wHczMGn/uQVnkeazT2wwhvmRA+jGiredLoWCXES7CE56uYmEsNosiPJoU3tgORDTvf8I8Upjy+6qqraj0DzpzwhqBykPkgXSWdxYdt9BnQc1GtIqbZ2I5DeMNEpfiG49Qf+9GWT7DLNhivquksssXFTaku7GJADIgBMSAGxIAYEANiYDgGJiW8cZzw/IJ/TuM5mnljTasIb4mdoGP1MyE6yYd+3sETnqeHeVZvQ3jDuNjXT/EDDHimh/h23HHH1WJ9JoU3gd4PelE8RpkERfaaPocFv6rgNY4LwzC73VBWolt1FptmR/YUezEgBsSAGBADYkAMiIFpZGDSwts0xkw+z+5cD499VLB/ZSxAfIPY9uIXvzj7MUIIcNgBV1av6LyEN6nQtQAqgkvnZndx09hr7MWAGBADYkAMiAExIAbEwHgYsKICjhX38cRdcZ6OOI8yP7DDDeLbYx7zmCzl976NOuYS3iS8aWEWA2JADIgBMSAGxIAYEANiQAyIgSllYBRhYVQBQfWmQ2zSOPXGaZT5wVdOm/q1UwlvU7q4aiL1JpJioViIATEgBsSAGBADYkAMiAExMKsMjCIszGqs1O/ZWye6MD8kvEl403+2xIAYEANiQAyIATEgBsSAGBADYmBKGeiCsCBBa/YErWkZ8y7MDwlvU7q4Tgvk8lMLsBgQA2JADIgBMSAGxIAYEANioD0GuiAsaHzbG1/Ftl5suzA/JLxJeNN/tsSAGBADYkAMiAExIAbEgBgQA2JgShnogrAgcaieOKT4tRe/LswPCW9TurhqYrY3MRVbxVYMiAExIAbEgBgQA2JADIiBaWGgC8LCtMRKfs7evO7C/JDwJuFN/9kSA2JADIgBMSAGxIAYEANiQAyIgSlloAvCggSt2RO0pmXMuzA/plp4q+K8ylwWFAPFQAyIATEgBsSAGBADYkAMiAExsDAZ8MKCxnlhjrPGdbRxnZb5sXPnzjDJv0UpwKZFYZ0WP++5556gP8VADIgBMSAGxIAYEANiQAyIATEwPQx4YUFjNz1jp7FqZqyKNBc/P4rK4tzu3bsb/0tpWjZ/kqIb2pbwNqYtz5r0zUx6xVFxFANiQAyIATEgBsSAGBADYmBcDHhhYVztqh0x3hUGisQ0Pz+Kykp4u2xwW2FZwHR+uPfMuzJp5IcWcDEgBsSAGBjYm8UAACAASURBVBADYkAMiAExIAbEQDUGvLCguFWLm+K0cOJUpP34+VFUFue0482Jb2UB03kJb1pMF85iqrHUWIoBMSAGxIAYEANiQAyIgUEGvLCgGA3GSDFZ2DEp0n78/Cgqi3MS3iS86ZeGxvTabdlk1PnhRF3FS/ESA2JADIgBMSAGxIAYEAPtMDCssKBxaGccFNduxnXY+SHhTcKbhDcJb2JADIgBMSAGxIAYEANiQAyIATGQMzCssCCBqJsCkcalnXEZdn5IeJPwli+umpTtTErFVXEVA2JADIgBMSAGxIAYEANiYJoYGFZYmKa+yVfNxboMDDs/JLxJeJPwpv9siQExIAbEgBgQA2JADIgBMSAGxEDOwLDCQl0hQ/Ulhk0TA8PODwlvEt7yxXWaQJevWpjFgBgQA2JADIgBMSAGxIAYEAPtMDCssKBxaGccFNduxnXY+SHhTcKbhDf9Z0sMiAExIAbEgBgQA2JADIgBMSAGcgaGFRYkEHVTINK4tDMuw86PqsLbc57znMq/gHqZ07Jin3fu3Bkm+bco5hTyBGY7YCquiqsYEANiQAyIATEgBsSAGBADYmA6GBhWWNC4Tse4apyaGadh50cV4Q2iG/+qlE9pWjZ/kqIb2pbwpv/mSGQVA2JADIgBMSAGxIAYEANiQAyIgQgDwwoLEnSaEXQUx+mI47Dzo0xIo+Bm07I6VmBLHdcV3nbs2BE2bNgQ1q1bF9asWZP94Rh5OFdmX8JbZHHVJJ+OSa5x0jiJATEgBsSAGBADYkAMiAEx0CYDwwoLbfoi22K9awwMOz+KRDQrtvnjonopsc3mlwljqfMbN24My5cvDyeddFI48cQTo384hzIom7Ij4U3Cm/6zJQbEgBgQA2JADIgBMSAGxIAYEAMRBoYVFromjMgfiXVtMjDs/EgJaF5oi31O1bUCW+o4JYil8rdu3ZqJaSmxLZUPAQ51vV0Jb5HFtU0wZVsLnxgQA2JADIgBMSAGxIAYEANiYDoY+NkhvxG8uKDPj1JMHqsY+HmAuVK2rqXEszr5KbHN5nshrOgzXh895ZRTorvbUoKbzUdd2LBtSHibIeFt37594bTTTsuU27IJofPTcSOgcdI4iQExIAbEgBgQA2JADIiB9hj4/nG/J5FJIpMYqMAA5krZWlRHYEvVtQJb6tiKYEXHEMyKXiu1AlvRMWxY8U3CWweEt7Vr14bFixf3/UEgg1BWBq4/f80114QTTjghU1f9uS4Kb9iKafue8t33xX7esmVLOOKII/rs0Cbs27JVjjER4UfKF55nG6OOVRVfVKa9myjFVrEVA2JADIgBMSAGxIAYKGPgq5dfLNGlgujidz/p8+ztiPuTKz5U+uydEs/q5KfENptfJLbxHF4R5U63pUuXhg9/+MPZDyfgxxOq/qEO6kKUgy2+dirhrSPCmxV5KJDZvLILAs9Pm/BGv5lCKGtCyKI4BlGTtqukaB9xX7VqVVR4o10KehyrJnyu4p/K6OZQDIgBMSAGxIAYEANiQAyMlwGIbz943hHhZ09cLBFOIpwYMAz87JBfD9jp9tX1l1Z67q4jsKXqWoEtdUxxrSjFMz53sd10002V+hNbi1GXdmATbUp466DwhsHjLi4IabHBTOVNu/BW5H+qz7F8CG7DCpdom4Jaqn4sf9SxivmtvPHeRCneircYEANiQAyIATEgBsSAGBADYmA8DKTEszr5KbHN5hcJbjiH10IpliHFDjcwARENGkCVP4p1VniDLdiW8NZh4e3444/PBDiAABGJohAXBQo+hICvPvoU51GHu7NgB38sF9utZc+jnG2bdmDXlovZoa9VUtq1bVWp58swXuy3P1/lM+rGhDv4Zv2jz4hRnfaq+KQy47kYKM6KsxgQA2JADIgBMSAGxIAYEANioHkG6ghsqbpWYEsdlwlveMaPCW94xrf5sWO+Wko9wAtvsC3hrYPCG8UcK2TFhCDk2TJYGIp2jNGuFYkoUqEeFxaAYe2yDAWnIjuEjbaqpLBbJAJWsWHLxGJlz1c5jtlgv9lHCp+rV6/Wj1Z0YB5VGVeVaf7iqZgqpmJADIgBMSAGxIAYEANiQAxUYSAlntXJT4ltNr9IeMPuNv+DCtzxhmd/im3nnXde/v1tzFu2bFmmo6A8vt8NMfDCG2xLeOuAYIDBpPDElOIO4aX4RYGMIhA/s1wV4Y0CGurQDtujmFRkl3WK7NCfYVP4gR9KgB/D1kV5xon9GcUG6qC+3/HGfuMc+s7zzLfxGLVd1dMFSwyIATEgBsSAGBADYkAMiAExIAYWIgN1BLZUXSuwpY6LhDf/milENS+8UVRDPkU3pHy91I6VF95QTsJbR4Q3ijh2wPwxBB/uREsJbKl82IoJRMyjUAXBi6+42vZhl4IY61ihiXm0Y+sOc1zXTlH/h/ED/YiNCfpsdwzCZl2fh/FLZXUBFgNiQAyIATEgBsSAGBADYkAMiIFpZCAlntXJT4ltNr9IeFu3bl2fmBYT3ijEIebQClCGu938OEh464DI5geFAxcTeXxZK4pBAIqJXEXCEwWiIsHMtmHbt3ar2LF1hznmjjW0N0w9lI35NawNlk8Jb7H8VMxoS6kuimJADIgBMSAGxIAYEANiQAyIATEw6wzUEdhSda3AljouEt7WrFmTFN4guPldbcjD97oxH5+tNiPhbcqFN0xSiGbYkfbyl788e63ST1yIQNiZFhOuYsIU8wgKP3NnHexTDPNligQ871fVz7AZEyHpA3abxfoG+8jnrrxUeygDG7E2bJ2YwIbz9IN9Z7z42drQsS6sYkAMiAExIAbEgBgQA2JADIgBMSAG5hhIiWd18lNim80fVXiz40ahDXn2GN/9hh1wfB1VwtsCEN4orFEEsyDwGOf4XXH2tciYSMQ8a495MRtog+et2MQ8a4f+pFLWse1Ym7YeBS+UjQlvPJ+qT1tFwhtja/3hsW2TbfFcWZtsW6kuuGJADIgBMSAGxIAYEANiQAyIATEwqwzUEdhSda3AljouEt6KXjW14wSBDX82D7vdILrhj1qIhLeOCm924MqO9VqjFukyRnRejIgBMSAGxIAYEANiQAyIATEgBsRA1xhIiWd18lNim80vEt6KflwBu9ggqOEP4hpeMYXYxrhyt5uEtwUgtnFQudOKSirzlWpBFQNiQAyIATEgBsSAGBADYkAMiAExIAa6zEAdgS1V1wpsqeMi4Q1C2kknnZTvXIOIRnGNghvy+Mddb3a3W5HwBtv6VdMpEObsK5AS3bSQdnkhlW/iUwyIATEgBsSAGBADYkAMiAExIAZiDKTEszr5KbHN5hcJbziHr4+isIa0SHjDeex8s+VxTK3Gv2oK2xLepkB4iwGrPC1kYkAMiAExIAbEgBgQA2JADIgBMSAGxMC0MFBHYEvVtQJb6rhMePOvm1J4g4gGQa3KH8piHLzwBtsS3iS85e8nT8tklZ+6sIgBMSAGxIAYEANiQAyIATEgBsSAGJguBlLiWZ38lNhm88uEN7/rjSLaKHzhe+G4Gw673WBbwpuENwlvYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYaJWBOgJbqq4V2FLHVYS3rVu3hlNOOSUTzfAqKQQ0CHDD/i1btiyzAVuwKeFNk6rVSTWKOqw60/UfC42XxksMiAExIAbEgBgQA2JADIgBMSAGqjCQEs/q5KfENptfRXhDGbwW6n9ogbvXhklhA7bYrna8SXyT+CYGxIAYEANiQAyIATEgBsSAGBADYqCbDOzfHx68//5u+iZmhhqXOgJbqq4V2FLHFMCqpBDMuPNtGLGNZVHXim5oU8KbJspQE6WKiq0y+m+HGBADYkAMiAExIAbEgBgQA2JADNRl4KH77gv4q2tH9bvBYko8q5OfEttsfhXBzZbBK6L+l04prBWlqMPXS609CW8S3rSIiQExIAbEgBgQA2JADIgBMSAGxIAY6BQDn9izOzz4wAOd8kkCXj0Br47AlqprBbbUsRXBhjneuHFjJsAVvX6KcxDcUDZlW8KbFlctZGJADIgBMSAGxIAYEANiQAyIATEgBjrBAF4r/fRdOzrhi4S2ekKbj19KPKuTnxLbbH5KEKuav2PHjuz10XXr1oU1a9ZkfzjGK6U4V2ZHwpsWVy1oYkAMiAExIAbEgBgQA2JADIgBMSAGJs7AJ/fsDtjp5gUbfW5WAJtUPOsIbKm6VmBLHZcJY22fl/CmxVWLmhgQA2JADIgBMSAGxIAYEANiQAyIgYky8Jltt4WH7r13oj5MSpCalXZT4lmd/JTYZvPbFtbK7Et40+KqhU0MiAExIAbEgBgQA2JADIgBMSAGxMBEGPjE3nvCZ2/ZPJG2Z0Xw6ko/6whsqbpWYEsdlwljbZ+X8KbFVQucGBADYkAMiAExIAbEgBgQA2JADIiBsTPwme13hE9vv3Ps7XZFiJo1P1LiWZ38lNhm89sW1srsS3jT4qpFTgyIATEgBsSAGBADYkAMiAExIAbEwPgY2L8/fO7jNwbsdps18WmW+1tHYEvVtQJb6rhMGGv7vIQ3La5a6MSAGBADYkAMiAExIAbEgBgQA2JADIyFgU/u3h0+f+P1Y2lrlkWuLvY9JZ7VyU+JbTa/bWGtzL6ENy2uWvDEgBgQA2JADIgBMSAGxIAYEANiQAy0zsDDt24ND99+W+vtdFF0kk8HQh2BLVXXCmyp4zJhrO3zEt60uGrREwNiQAyIATEgBsSAGBADYkAMiAEx0BoDDz7wQPjSpg3hk3ff3VobErYOdD62KfGsTn5KbLP5bQtrZfYlvGlx7fzk1ALa/QVUY6QxEgNiQAyIATEgBsSAGBADYiDGwKfu2hG+vOFKPXdKe9CON6sG4jg2YZSnhVQMiAExIAbEgBgQA2JADIgBMSAGxIAYqMLA5z92Q/jszR+TviDRLWOgzs62VF2vZcU+l+1Ia/u8drxpAmgRFANiQAyIATEgBsSAGBADYkAMiAEx0BgDD95/f/iTKz4UPrXzrsZsVhH6VKbbgnBKPKuTHxPafF7bwlqZfQlvWly1EIoBMSAGxIAYEANiQAyIATEgBsSAGGiEgc/cuS18df2l4cD+/Y3Yk5jWbTFtmPGpI7Cl6nqRLfa5TBhr+7yENy2uWgzFgBgQA2JADIgBMSAGxIAYEANiQAzUZuCL120Kn7/x+tp2hhFzVHZ6hLmUeFYnPya0+by2hbUy+xLetLhqURQDYkAMiAExIAbEgBgQA2JADIgBMTAyAw/de2/4sw+uDZ/efufINiSgTY+ANupY1RHYUnW9yBb7XCaMtX1ewpsWVy2MYkAMiAExIAbEgBgQA2JADIgBMSAGRmLg4Vu3hj9bd0F4UK+WjhS/UUWsaayXEs/q5MeENp/XtrBWZl/CmxZXLQ5iQAyIATEgBsSAGBADYkAMiAExIAaGZuArV64PX9q0Yeh60ygayef6O/LqCGypul5ki30uE8baPi/hTYurFkkxIAbEgBgQA2JADIgBMSAGxIAYEAOVGXjo3n3h62veFfBDChKk6gtSsxLDlHhWJz8mtPm8toW1MvsS3rS4aqEUA2JADIgBMSAGxIAYEANiQAyIATFQiYHP3rI5fP19q8ODDzxQqfysiErqZ7kAWUdgS9X1Ilvsc5kw1vZ5CW9aXLVYigExIAbEgBgQA2JADIgBMSAGxIAYKGXgTy/+QPjy1R8pLScRqlyEmsUYpcSzOvkxoc3ntS2sldmX8KbFVYumGBADYkAMiAExIAbEgBgQA2JADIiBJAOfuGdP+ObKc/RqqRhJMlJFSKwjsKXqepEt9rlMGGv7vIQ3TZxaE6fK5FIZ/bdDDIgBMSAGxIAYEANiQAyIATEwnQx8/qYbwl+/a2V48P779ewo/aAWAynxrE5+TGjzeW0La2X2Jbxp4tSaOLp4TufFU+OmcRMDYkAMiAExIAbEgBgQA2KgjIG/eP97wp9c8SE9M0o3aISBOgJbqq4X2WKfy4Sxts9LeNMEamQClS3YOq+LuhgQA2JADIgBMSAGxIAYEANiYDoY+OTu3eHb57w+PLztNj0vSjNojIGUeFYnPya0+by2hbUy+xLeNIkam0S6iE7HRVTjpHESA2JADIgBMSAGxIAYEANiIMXAF274aPibty0PD913n54VpRc0ykAdgS1V14tssc9lwljb5yW8aSI1OpFSi7fydWEXA2JADIgBMSAGxIAYEANiQAx0mIH9+8NfrV4VvnbpRXpGlE7QCgMp8axOfkxo83ltC2tl9iW8aULlE2r//v3h+uuvD2eeeWbYsWNHnn/fffeFTZs2hauuuir6d/PNN+dlcSHF51TZsnxva5wX5nvuuSds3Lgx832SfjDeiDkWoLPPPjscf/zx2djE4oHymOjXXXddWLNmTbjyyiv7xsPXueaaa8LixYvDEUccEbZs2VJYFnUfeOCBsHr16rB+/foARpC3du3aoWx4H/S5wzdcWhNL54T4Fb9iQAyIATEgBsTAQmPgUzvvCn9/5qvDw7du1b2Q7odbY6COwJaq60W22OcyYazt8xLeOjapIGxcdNFF4fDDDw8nnHBCJqhUWdTvuOOOcP7554eXvOQlmUiDFCIMxKQq9VHm1ltvDUcffXQmqLz2ta/N6wJC+AKxJva3fPnyvjbwOVauSp63VdX3JspBhIIYBT8n6QfjjZhjXE877bTMJwhmEEYhwuGPY+Xj+od/+IcBYlwqJsMIbxDdVq1albX/5Cc/OVx88cWZ+HbBBRdkecOId2h32bJluf9Lly4NH/7whwt9tX0Ay2CajJ9xxhnhxhtvzMVAWzZ2jLl19dVXB7SL+L385S8Pl1xySeX2YzaVp5tuMSAGxIAYEANiQAyIgWln4EvXXJV9n9tD996bfIaY9j7K/27MU4pnV1xxRaj7R1sxoc3ntS2sldmX8NYR4W3fvn3h8ssv7xO4qgpvEOoOOuigTAjxIgwEBghqVReaCy+8MLf11re+NdvttHXr1nDkkUdm9iH2UPiBOBgTqSi8UbyioAUBCf3EH46taOPrVPV3lHIQYLZv356JLkhpg37G+sQy40iLhDeKZn6c8fnggw8Oxx13XDj33HPDrl27krsUIdCi/NOe9rRs51psFyJ221G8g+AFIRZ1nvWsZ4WPf/zjmTCJz1UZtbFFPfsHAa1MIL7lllsy7mw9HIN7MMudeKnxgf03vvGNfe3SVpX2U3aV340LuMZB4yAGxIAYEANiQAyIgeEZeHD//vA3560If7bugvyZSHEcPo6KWfWYUSyrK7qhPm15kS32uUwYa/u8hLcOCG8UWigEMK0qauC1P4gub3jDGwIgw24kCDC0g1cVsXOpyoIAseWss87K7L33ve/NxBe8ugiBA38QZGiHYtk555zTJ3wwH8IcRLpjjz02q4sdUy94wQuyPxzDHs6hTErEY1tNphCmEBsr/MG+FYcoGjbZblVb5CG2443CGwTQD33oQ9nrpSgPMdPapw0yMGzq2cOrx3/wB3+Qjz/H2JezPthjxBY7zMAmhL4PfOAD4aijjsrGARwUvR5LoRZ9ADd47RU75V7xildk9Z/xjGeEm266qa//tm0cY2cb2oEN7AhEfex8w2fk47yvo8/VL6CKlWIlBsSAGBADYkAMiIHpYuDTO7aHf3zNKeGPb9ms++AOaAKzMn8olkl4u+yyTLyZlYHvQj8pkkAAwM6iF73oRZkgUFXUuPbaa7MdXLYvECKwownCwktf+tJMDbbni47vvPPOsG3btmwBhuDy4he/OLMD0czuEKP4wp1Wr3zlK7NXIyH+Ybec/8N5+HPIIYdkIqE/j8+oW+RbE+fo9zQLb2VskCnEe5Q/2LevuY5iA3UgFGLMIPx68Rc7PGkX4nFqbC3L5513Xi7y2lej3/KWt+T53g4Wd8wBtHXyySeHu+++O2vL1uduTF9Xn6frBlLjpfESA2JADIgBMSAGxEA5A1+5+iPZ97k9tG9v8h5ccSyPo2I0fIwkvM0LbtyWJ4iGh2jUmOE1OOz4ueuuu/LXMCESlIkrRe3Z3VsnnnhiLjYU1fHn7r///uw7uSiOvP/97+8TN+wuIpSBsIbv3IoJasirIryhHF4rhCjyspe9LNsN9453vCPcdttt4dWvfnW24+nZz3529r1jiBv+8Kogds3hu7/8jyJ88IMfzM5BPMQuK7u7DkInd9zhu9NszCDOsU0Ii8973vOyVxq9eIT28b1jL3zhC/NdfdgZhu8Ss68/2u9mQ9wQJ+zYgu3nP//52e41lqdohp1ceD3ymGOOyUSj17/+9dn3/yHWFDvRH/9XtHsLfmHXGMcUx8jzY4/PdqcZyw+bUniL2ceuM9q79NJLoz6gHnf5oeyGDRvycnv37g2nnnpqZgNsYSxi7WzevDl7RRb1sduRZWx97BCF4MxzSse3/inWirUYEANiQAyIATEgBsbDwIP33x++9ZZl4S8ueLfue7XLbSIMSHiT8DYR8PxFxooddYQ3bN20r9bx+7p8e/xsRScIFNwBBDEDu/Bi34MFoQi7kfgdYfjuL/wqKMWUUVMILdYfiFqxHxLgD0BA+GJbdueUjSWEGSv0sDzTKm36VxJT3ztGmxARKdRZ8QivOFrxC+WxC5CiEoU32mGKHXp4zZKfU6mNAccXqd29aOtClLS/Yss6GF8sjPDH/kEU5a5MCIP2HI7x66r4Ljj0CYIj7THFuEB4hCAMP7ALDfV43qc2drZvYJNibtFcSdVHO6ndj94HfR7PzaDirDiLATEgBsSAGBADYqAdBj6z7bbwnVe+OHz25o8l77sV+3Zir7j24irhTcJbJxYgKxYViQlFkxe7vihUQeCB8FBUHues0AUxhMIbhBPsuOLOML+7ip/xPXL3zv8KDsQmCCsU5Jjiu+BgO/Wl/qhDocr786Y3vSl79fGjH/1otsMLdiCEYadg6pVBmw9xDuIOfMHOOe8Hztk2Yfud73xn1iZSipgQ+9BPO044B5ENr2ZCiOR3jyEfAijia8UfjAl+EAM7rBgT+INf/ET/4QvGnt/jxvhB1OTrmTiHXWL4YQGcRz52zsFObPcYBVScx45B9h87+XBMEbOME5y//fbb8114EALhM3fr4TxfDS16lRdtIg7YgVYkusGeHReIdRhXtIcdmByXorkCsQ7t4Q/iq+0jhTfYsd9faMvouHehVCwUCzEgBsSAGBADYkAMTB8DX738kvBPp70ifGJv/A0Rjen0jem0jpmENwlvfQ/kkwLZCjpFYkLMP4gREHggeEBkgJgA0YhiVmoHE3bDoQy+++rd7353VpfCmxWMKF7EUpaHX7YPsbKpPGvDii2vetWrwp49e/LxgU8UXCDcwHcIf7ALQQrCDPy4+OKLszwvAFFs8fm2Tezw4y5BCEPYdQf7HBOKS8jDri/GGO1i5x9eE8U5fJE/7Ng42u8pg/jGH8Jg/ym8sS071rQDkW3VqlWZYIZ4UwyDqAnfbB34BmEQ/qAtiHU4Rv8hXLJ9iICwZevGjlGH8ccPcGD3m+WMPhbFF+3jDzvj4I+Nn2/T+s96SOHDk570pMxOLFa0Y4U3+MZ8pGQB9vw5W07HuhkRA2JADIgBMSAGxIAYmDYGHrzvvvC3y14X/vI97+i7B562fsjfhTP3JLxJeOvEYmRFqyIxwS8+EHfwXWgURLiryu5EsratgGEFB4oUVgTCri3siOIvUnIHFr4PkKINBSb4ZdtBPgStoj+UgT9sEzasCAZxxPbXnmO72AmHVxthBzu+EA/atSIa7FBsKRKGbJu2PxwT+9qqff0R9imcwRd+vx7FKOTZ8rYs+2/zUJ5/sEE7+D47vCLKPlBk9D+kgTjwV1zBBL7PjTZY137vG0TE1HeloW8QwShyYickuKB/FO5oH2zY701DXYi76B/EQQiqqAtmIb7ZMfbHGAMIjegD6iDFLkb8Ai8++37b+vhuP/qIY3suxYIto+OFc6HXWGosxYAYEANiQAyIgVlh4OHbbg3fXXJC+NzHbui7/52V/quf3ZzrEt4kvHViQYqJPGWLht8RhNc/8YXyvh5ekYRowtdDmdrv4bLCGwQY/OADxRX7OiJf9YOggd1ddpeV7QMFjyophSf4bcU1K4L5c3w9E77iu9PQDgQ3fP8af5Qg9XohhSfGKdWm7Q+FNyvmWCENtqxwNorwxt1rPmZWeEOs3v72t2f9xZhSxII4xf4gJogP7axcuTITziiMsf8YSwhfFG3xqix/1Za2mNrdfGgXP1BAYY8CGoRPtMlYsa5P7W6/oh9HsPW4axMp+sfveCMHtiyP2V/4BPGY+Vac9SIhyyjt5gVb46JxEQNiQAyIATEgBsRAmoE/++Da8M+vekn4xJ7d+b2v4pWOl2IzvthIeJPw1olFKSbylC0E9ocU8P1lu3btGrkvFN5gB99DhlcIIVxwp9Hpp5+efeE+dlgxD6+nQgihn7YPsMMdcqmU37mWEt68qGJ3m1mhib5DROEPLrzgBS8I27dvz32Dj6ldTsMIb/g+MApV1gfYx6uu/I49iJUQPK34Y4U6K9Kx//QDwhW+Nw75EI1gg6IWxEWUYzs4TyGNPuBHC5CPP7uTjb7Y8l68Pfzww7Px9+P6ute9LrOH3YXYZYi2IIChn4g57HAcyoQ323cKlLBX9c/vckzV27p1azjyyCMzv7lDEmXRPl8hZuxTNpRffVwUK8VKDIgBMSAGxIAYEAOTYeChe/eFfzh9afjrd72t8j21xmoyYzWrcZfwJuGtE4uTFa28cAERBK934rU6fi+WLY/vu4L44QUuiETY3VNlclM0gS0ISxQq7I4o7HA7+OCDMyHD7oKjfesTBBzurEulKANxyIofFJ8oKF177bWZuAchCq9YIt+KP2ibghfy+QMC9vvU6B+FN5TD95UhrhCMbJt2l53tD8cEOwHpB8Qv/JIn7KAsd4DBRwiUaJdiF/LKhDd+fxzEm8ms/AAAIABJREFUKC+8QeSDDX63nW2LO9rQnn19FLvClixZktVD3dTfG97whvzHHtAn/EgHY4a+WQbwiqdlCufxh/L85VU7nuASMUKcUQZxgmBL8ZKc4Ty+Nw6Mc2xQHnXxmiqO0Q52aYIn9MX+KmqsPvzE68YoC7EYsYEN++MMHCfY159iIAbEgBgQA2JADIgBMTBtDHx2y83h3174++HzN1yn+1nd03eWAQlvEt46AWdM5OGib19B5G4lu2soJahQLKKdopTCG21hpxR8gqCxYsWKPtEGv4hpxRnatX2AeIQv9i/6Qxm0Z4UaK4LRF5968Qc+8vvHUNYLc/SPu8asPQhjts0y4Q22rLhlbfHYipLDCG/c0Yd4YHyRwibyeYw+cKcZ28POQOTBNwhLEMowftYGy8ZS9BkiFYSzDRs25POBtii24hXe2267LT/PuLJd/lKrHU+KnbF2rcgHQQ3jhnKW21R9iLbW11R9xJ87NL0P/sc7bH90rJtuMSAGxIAYEANiQAyIga4z8PX3rQ7feeWLwyd369XSro/VrPsn4U3CW1RIGPfEsKKVFR7gB87xVT/u8mlSeINwZb8T7C1veUu2iwzfi3Xsscf2iW5WvMCvWkKsgXAFG7YPTQhvZ555ZiaocXcUBCCIOxSZ7BjZ1w/xnW+xMsjjDij2YxThDYIUdhOi/7SDFAIPdqYhDvRtGOHN7mqzscRrv9htCNEV7fIVXds2fIH4BN/sHxY4sIK/9evXZ/7iF0Wxk4z5sVhBiPM/2gHBEf3COfhhd1hitxr8g09WvARDXvjCeGKMrIgHX/iKLFhnDLFzkePP/uK76PBdfowx0lR9jpXlGPbAe51Xs23bOtZNuRgQA2JADIgBMSAGxMA4GfjEvr3hn//g5PCNt7+17554nD6oLTE/DAMS3iS8TcViBWELr9xB9BgG8CplIU7w9bs/+qM/yr8njUIH0qOOOip73RXiEHdA8fypp56aCRn4XjWKLMO8aoo6qItda3jd0gs4EIYgrFCMifXJCm94vTFWhnm0h8mPvjN/lJS2MDYYo1FsoA7qU3jCDjcrvEGkglgEMZO7BBEzCF/Y3cbxwCuwO3bsSPpAEZC7JlO+ok/cYYcxRlv29U8wiFdEOf42xa41uxMNbSDG6B+FvhTDyI/FEfmsW8RAqr73ochGKibK142FGBADYkAMiAExIAbEQBcY+NzNN4V/f/6R4YvXbUre93fBT/mg+WIZkPAm4U0L1vwX5eN75CAe7dmzJ/+1TOykwk4pK5bge86wCwuvCkKUgaAD0Sz1XW5V81PCm52wsWP4jFcrIQDBJ3znW6xcl/PQh/e9733Zl/7jRyGs8AYhDkIXBC3EGq98YscZ+gNRC+OD77aDOFbUx6rCG2zgV0zRDv6wk87b5fe5WdENO+nwnWl1xUzflj7roi0GxIAYEANiQAyIATEgBg6Evzr/vPDdJSeET909+o/qKY6aS5NgYFqFN2xswXP4unXrsg1K2OSDY+ThHDeIpNJFEFlif5MYBLXZvcm/bdu2bPdR0dhAYMHuqCaFltT3rcX8AL9vetOb+n5AwP/SaqxeV/MQR+z4isUTwhzy8WdFUPYFebF6PI8UiwF2yW3cuDH6Kq4ty/Ko4/PxGcIgF5eUz7F6yuveXNeYaEzEgBgQA2JADIgBMdBtBvAdbt89+QXhb1aeE7031/h1e/w0PgfCtAlveGbGVyiddNJJ+ZtnfAONKc6hDMry2dinEt70iyedXLSHEd5iPwgBIVALmy48YkAMiAExIAbEgBgQA2JADCwEBr5ww0fDfxzzjPClTb0fQVsI/VIfZmt+TovwtnXr1kxMo7hWNYUAh7oS3iS0TYUgBeEMijF2ZsV+OdUu0Hil9F3velf2h7JlO75sXR3P1kKv8dZ4iwExIAbEgBgQA2JADEwbA984b0X415OeGz51V/p7nKetT/J3NufhNAhveH30lFNOSe5wKxPhUBc2rPimHW8S4qZCiNPCPJsLs8Zd4y4GxIAYEANiQAyIATEwqwx88u5d4d9Oem741oo3hgM1fwxuVmOofndr/ei68AbBrOi10jLRjedhw4pvEt4kvEl4EwNiQAyIATEgBsSAGBADYkAMiIEOMfDFazeGHx751PDlDcU/nCZhqVvCksajeDy6LLzhFdGynW5Lly4N+Kor/PAhjim0xVLY4munEt46tLhqkhZPUsVH8REDYkAMiAExIAbEgBgQA2JgITPw4P794Vvnvil874TnhE9vv1NiqJ7XFxQDXRbe8P1sMQGNeRDc7NqDXzNFHs/HUtjEK6cS3jSR++CxIOlYNzViQAyIATEgBsSAGBADYkAMiIHxMPDpHdvD959/ZPj2m88KEOAU9/HEXXEeX5y7KrzhtdCYcIY87Gy76aab8vmIYyvCQYAr2v0G2xLeJLzlAGnBGd+Co1gr1mJADIgBMSAGxIAYEANiQAyQga9c/ZHw42ceEr5y5Xo9n+kZfcEy0FXhLbXbzQtsy5YtywU6HEN0wxwu2v0G2xLeNKkX7KTmRUypbmjEgBgQA2JADIgBMSAGxIAY6CIDDz7wQPj2m/4wfP+43wufuXObns30fL6gGeii8AbRLPaDCtjFxjUDZWI74lCG4hvKxna+wbaEN03sHCZCpVQ3JWJADIgBMSAGxIAYEANiQAyIgXYZ+PT2O8IPnndE+Ns3nh4gwCne7cZb8Z18fLsovBW9Zlp1xxvYKvq+NwlvEt60wIsBMSAGxIAYEANiQAyIATEgBsTAGBn46uWXhP88/Inhq1d8SHEfY9wlvk1WfOui8LZu3brobjbucMMuNvsdb/hF0yJBjvVsKuFNk1wLvRgQA2JADIgBMSAGxIAYEANiQAyMgYEH77sv/P1Zrwk/OOYZ4eFttynmY4i5xLbJim02/l0U3tasWZMU3iiyQXyzYhv7xF1uSCHOWbHNHkt400TXYi8GxIAYEANiQAyIATEgBsSAGBADLTPw8G23hh8e9X8y4e3B++9XvFuON8URpRLedu7cGVJ/KeENYhvZwfe44ccUKMBBkIOwhs9l3/GGchLeNNlzmAiV0u4sTBoLjYUYEANiQAyIATEgBsSAGJh+Br526UXhkaccFL522Qf1/KVn8JlloIs73opeNfXCGne4UYDj2kxhzu5ys8cS3jTpZ3bSc5Ionf4bGY2hxlAMiAExIAbEgBgQA2Kgiww8dO+94R9f+6rww6OfFh6+dauevfT8PdMMdFF4K/txBex0s6+Z2h1uWHNwDkLceeedp1dNu7gIyyfdHIgBMSAGxIAYEANiQAyIATEgBhYmA3986y3hR7/35PAPpy8ND91330wLLmJ8YTI+7Lh2UXiDkHbSSScNiGYQ3NA/nKe4ZgU4fKeb3/mGz3anG45hWzvepLjrAiAGxIAYEANiQAyIATEgBsSAGBADDTLwF+9/T3jk0MeGP/3ghYprg3EdVuhR+W4Jfl0U3vDdb8uXLx8QzCCaWaENAhx2teEPAhuEObv7DWW96IbPsC3hTYuALgRiQAyIATEgBsSAGBADYkAMiAEx0AADD+3dG75zyovCD498SvjjWzYrpg3EVOJZt8SzOuPRVeGt6HVTiGzY3cZ+44cV8MfPEN9iO90owsG2hDctBDkwBEfpwlnYNJYaSzEgBsSAGBADYkAMiAExMB4GPnfzTeEnT39S+KfXnBLw3W6K+3jirjhPT5y7KrwV7XqjgGZ3v4E5voLK87EUu91gW8KbhDddEMSAGBADYkAMiAExIAbEgBgQA2KgBgN/+e63h58e8hvhzz/wPsWxRhwlok2PiDbKWHVZeNu6dWs45ZRToq+LUlTDzjYIcKnXSlkOKWzBpoQ3LQi6KIgBMSAGxIAYEANiQAyIATEgBsTAiAx84p494btLjg8/OuIwvVo6YgxHEXBUZzoFui4LbxDI8Fpo7IcWrKBW5Rg2YAs2JbxpYdAFVgyIATEgBsSAGBADYkAMiAExIAZGYOBzN10f/vPwg8M/v+ol4aF9exXDEWIoAW06BbRRx63rwhvFt7Kdb0XiG+pa0U3CmxYGXRzEgBgQA2JADIgBMSAGxIAYEANiYEgGvvGOPwo/e+Li8PX3rVbshozdqKKN6k2/SDcNwhuEMrwimvql0yLRDXX4eins8E/f8aZFQhcKMSAGxIAYEANiQAyIATEgBsSAGKjAwCfv3hX+7UXHhB8/85Dw2c0fU8wqxEyC2fQLZk2N4bQIbxTMNm7cmAlwRa+f4hwEN5RlPZ9KeNNCoYuFGBADYkAMiAExIAbEgBgQA2JADJQw8MVrN4b/evJB4V9efmJ4aO89ildJvJoSa2Rn4Qh30ya8UUDDL5ji9dF169aFNWvWZH84Rh7OsVwqlfCmxUIXDDEgBsSAGBADYkAMiAExIAbEgBhIMbB/f/jmH705/PwJjw749VIJQQtHCNJYjncsp1V4SwlqVfMlvKUWV+XrgiIGxIAYEANiQAyIATEgBsSAGJhpBj61867wveOfE35y+BPD5z5240zHQiLVeEWqhRhvCW+XXRYuM38LcZDVJy0UYkAMiAExIAbEgBgQA2JADIgBMVCFgS9f/eHwyGGPC9996QvCJ/bskegmEVoM1GRAwpsR3SDAVVmIVEYXLDEgBsSAGBADYkAMiAExIAbEgBhYSAw8+MAD4dvnvD789xN+Nfz1u96mZ+OaYstCYkN9qbfWUXhrMrUbyFLHVV8JbaucXjXVIqILiRgQA2JADIgBMSAGxIAYEANiQAwcOBA+vf2O8IPnPiv85//57fD5G69TTDQvxECDDDQpuNFWSmyz+W0JalXtSnhrECKp3/XUb8VP8RMDYkAMiAExIAbEgBgQA2JgUgx85cOXh5/+zq+Hfz3pueETu++W4KJnZTHQMAMUy5pMrcCWOq4qkLVVTsJbwyBN6iKhdnWDIgbEgBgQA2JADIgBMSAGxIAYGJ6BB++/P/zdG14bfnHQL4dvrDpXYouekcVASww0KbjRVkpss/ltCWpV7Up4awkoXfCGv+ApZoqZGBADYkAMiAExIAbEgBgQA+Nk4DPbbg//8fuHh/96yuPDF67bJMFFz8dioEUGKJY1mVqBLXVcVSBrq5yEtxahGucFQ23pBkUMiAExIAbEgBgQA2JADIgBMVCdga9delH42ZP+d/jeC38/fHLXTgkuejYWAy0z0KTgRlspsc3mtyWoVbUr4a1lsHThq37hU6wUKzEgBsSAGBADYkAMiAExIAbaZuChe+8N/3D60vCLx/3P8M2V54QD+/dLcNFzsRgYAwMUy5pMrcCWOq4qkLVVTsLbGOBq+8Ih+7o5EQNiQAyIATEgBsSAGBADYkAMlDPw8NZbwo+e/eTwyJN/K3xx0waJLXoeFgNjZKBJwY22UmKbzW9LUKtqV8LbGCHThbD8QqgYKUZiQAyIATEgBsSAGBADYkAMtMHAn160Nvz8tx8d/v0FR4VP3bVDgouehcXAmBmgWNZkagW21HFVgaytchLexgxaGxcQ2dSNiRgQA2JADIgBMSAGxIAYEANiIM7AQ/fuC/906svCLx77qPCtFW8MD+rVUglO0gEmwkCTghttpcQ2m9+WoFbVroQ3TbiJTDjdFMRvChQXxUUMiAExIAbEgBgQA2JADDTHwB9vuTn8+Fm/Gx459LHhSxs+omcfPf+KgQkyQLGsydQKbKnjqgJZW+UkvI0JunvuuSfoTzEQA2JADIgBMSAGxIAYEANiQAyMh4E/fdd54eeP/9Xwb8c9Ozyw9RY9j+mZVAyMwECT/whoUnCjrZTYZvPbEtSq2pXwJuFNi88Ii49ulsZzs6Q4K85iQAyIATEgBsSAGBADwzJw7/bt4Z9f8vwQHvuo8I1lp4e9e/bomUfPPGJgRAYkvO0MVQW2VDkJbxLetACNuAANewOg8rppFANiQAyIATEgBsSAGBAD7TLwqU0bw0+e9tvhkd/59fC5yy7Ws46edcRATQYkvEl4m5r3s3WBbfcCq/gqvmJADIgBMSAGxIAYEANiYLYZ+PPz3hL++6BfDt879plh/5bNElxqCi6aT7M9nzj+Et6mRHj7+LabwyGvPCz8yvG/lv3hGHmpAXz3FWuyclfddHWyDOqyHOyW2Uy1Na58QqtUi5cYEANiQAyIATEgBsSAGBADYqA5Bu67847wnRcdm71a+s2zTgt7d++W6CbRTQw0xECTmgm/l63J1H6XW+o49QrouPLH8qrpq9/xmj6hDYJZSijbuXtnePYZzykV3s5a84asHMoDBIh0KZtNgjKqLV1Ym7uwKpaKpRgQA2JADIgBMSAGxIAYEANg4DNXfTj85KmPDz994uLw+UvWSWxpSGzR/NL8IgOjaiCxek0KbrSVEtts/rgEtlQ7YxHefMAprkGA8+cgqC156ysyUS2144076Px51MWft9mFz4RWqRYwMSAGxIAYEANiQAyIATEgBsRATQb27Al/ee6bwi9+63+Ff//9p4cDmz8u0U2imxhogYEm9RSKZU2mVmBLHacEsXHld0p4gxCH3W43b9tcKrz93ulH9e2iAwyoD9Fu7317Oye+6cJa88LawgKiMdGYiAExIAbEgBgQA2JADIiB6WPg/ttvDf/6/COzV0u/9bqlYe/dd0tw0fOSGGiJAQlvU/Idb36gYq+FYhcbxTTuiPM72minaMcbhDu+fsryXUh1QZ++C7rGTGMmBsSAGBADYkAMiAExIAa6xcDDH7k8/Nehjws/O/jXwhcuWiuxpSWxRdx3i/tJjkeTekqTO91oK7XLzeaPa2dbqp2x73iDmIYfQ7CvhFJo46un/JwS3rCjja+jUmSjGCfhTQvEJBcltS3+xIAYEANiQAyIATEgBsRA8wzs3bMn/PXZZ4ZfPPZR4QdHPTU8+PGbJLpJdBMDY2BAwtsU7XijWAbRjQIbBpD5MSEuJbzZevylVAhxqy55u141HcPE041E8zcS447p9ddfHw477LBw/vnn62KlOSMGxIAYEANiQAyIATHQaQYeuPWW8L3nHpG9Wvq3p50S9u3a1Wl/x31vr/am//msy2Mo4W1KhDfuYIv96ih3wFFA8+kwO9iG/XGFtWvXhsWLF2d/OAZQ+/btC6eddlqej2Pk4Ry2DZ5wwgnZOaT4XBXC1ETaeevecNHT94c1iw9kfxtOvX/gIoI8nL9h5X195+rUTfnTVj6FnvXr1/f1oa32umb3zDPPDEuWLAl33XVXJ/rP8Zik8Ia2jzrqqLBt27ZWYwL7aGeSfe0aj/JHN2diQAyIATEgBsTAtDDwuQ99MDxyyG+Gn/32Y8KX1r631fvGaYmJ/NT8HScDVTWPKuX4emiTqX2lNHWcegV0XPljedUUu9GG+dEDCnVFO978oI5SB2Lb8uXL+8SzVatWhS1btvSJcFZ8Q7vXXHNNJsDVFd5277gnrD/hgewPx1svuXdAYGOeF+Tq1B3nJGVbENwgcs6i8AaxDaKbhLf+CyTEyHEIb10QGTkPlPYzoHgoHmJADIgBMSAGxECKAfxgwjfPOi3b5fYfv/fk8NCN10t0085MMTABBrz2Uudzk4IbbaXENps/LoEt1c5YhDf+aELVAYqJaNjNZne/rbrkHfmPKMReV63SVkx48/ViIlssz9fzn2MXlDs27QtrD96f72TjDjaKbDwPcQ5Cm7XBc9wFN0xda2dcxxLeJLx51iS89c9pHx99VnzEgBgQA2JADIiBWWXgwOabw/ef87RMdPu7/7sk7Nu5s+9ZaFbjon5rTZgEA17bqPOZYlmTqRXYUscpQWxc+WMR3vzro/yc2gVXRXhjGdqy3xtXFYQqwhvK+NdKxyG8cUcbhDmIbH6CFQlvZXWtLbx+x9dt8Z1f2B3E83xFj+f97iQrpkFEYTlrh7u9eI4p6tI+6rJNpNyhxN1xtIEdYytXrszasbvH6Adte3vWtj1m+6l6NjYo419VpHB0ww03ZDu3aKfIN5ThefrNftI3tGNjzXig76jrfbGxxzlvD3ZtGdhGmVG+483asX2h71X6xP6gPv/YXzvWGzZsyHxkGbTNdmw5HDOfY8qx8v7CFs+xjlLdwIgBMSAGxIAYEANioDsMfOHiD4SfPnFx+PkTfjV85X2r8/s8jVF3xkhjMVtjUVVfqVKuScGNtlJim80fl8CWamcswluVAZhEmTLhDUGD6IZy1r+mhDe/S42vlSLFTrbY97pxkatTFzYoXFDwYN4FF1yQXdxwHqIFhAyeg+hD0Qh5FFkgZlDsidm1ZVkOeRRJrKCCfAozLEubaMeXpQ8sm7IJu/aP9awIA6EHbaMczttzLM92UIaijo0hfbd+0n8bO7ZhY0f/0G7MZqws2rFlvZ9s25ZhjGDP9pHtx1LasX1gnrXt26ct3yfke9+RR5vwzbZFu/SX5WwZ1GffWA55HBObh3z9KQZiQAyIATEgBsSAGOgOA3t37Qrffu2rsl1uP3zW74ZPXP9R3a/pnlUMdIABq4XUPaZY1mRqBbbUcUoQG1e+hDf3HW8U2/Dgf8QRR+Tf92YBa0p4w4WeO9f44woQ3JgXe8XU3hyw3Ch1IULYnWnWbuoY4oet48UQ1ouJHyyL1JezIhXOUShhWYosVuBBObbj66NvvizbLKpny/hj+mDbwrGNB+vAb5vPul4kisUENrz/jIdtG+Vi9dkWy8bK2LpVxagUL/SNdlLt+T7BB/jox4n++3wfF5bzMSUT9Af1vI/I059iIAbEgBgQA2JADIiB7jDw4Mc/Fn5w5FMy0e0fX/GisM+80aBx6s44aSxmcyysFlL3uEnBjbZSYpvNH5fAlmpHwpsT3ixI/IXTtl41jS1c/jVR7nyDuJZ67ZR2hqkL0cOLFrQTSyFkQIzEH8QVlEmJLBRFKP6kylIkseVQlkIJ26E972+qfeRb4cv3x9v35/1n+ul3YcWEoyb89yIV/bViEtpJtY98xipVJmXT9x2fU/G359AOPqfGxPcJZWO+FbVlxzVVjmNlYzVMX+GX/hQDMSAGxIAYEANiQAyMj4Evv/894WcHPyb8/PG/Gr52/irdi+l+VAx0jAGrkdQ9pljWZGoFttRxShAbV76EtwLhDVBhIPzrpk3uePMXdQptSO2rpxTVLnr6/oDXTH09fK5al6IFxZKYLQoYFNsgZHhRxX+mHdqn+IP8WFm24f2gUII6qBuzZ23SR5+yPv1iivwiYQ7l0F/aw+6rzZs3Z2KW7VNMOEJd+k/xp8x/7yfq2R1f3h77gfbpo09ZH2Wsz6ybssnzNqX/fpxQhufYBvoCX8r6hLqx+Hl71g9rO1WOTDH2qD9MX217Oh7fDbdirViLATEgBsSAGJg9BvbtvCv8/f9dku1y+9Ezfid88qPXRJ9xxMbssaEx79aY1xXbbP0mBTfaSoltNn9cAluqHQlvFYU3iG0Epi3hjUIbf9UUqRXaIKyldr0NUzclWtgFLiaKWOEDZf1n1qd9K9TEylIkseVgg0IJ6uAz7VHcYTs4XyagsaxNY77Y82zfijcxH2Ixgh3Wr+J/FZGK9qw/aAft+5jYfrAMRTh7LmXTluFxrO/+HMcwFVsvJqJ+LH5FbdnxTpUjUzZWw/SV/VLarYu9xkPjIQbEgBgQA2JgYTHw0A3XhR8985BMdPt/S44P9+7YLtGtY7ucNOcW1pyrM57UQZpIKZY1mVqBLXWcEsTGlS/hzQhvW7ZsCa9//esDXjElVMuXL2/tV00t/PyxBCu0VRXeRqkLYSIlWqVEDdSxQhFFFityoE8UOig8IY9lbR7boWjDePiyLOdFppjIQhtFKev5dlnHt4981rE+oH4shoiHFbtS/sfihLa8IMVyPs7wM9Y++4EUdWJlkI+x9DZtXXucskPfOK7+M234PiE/lsdY2fhZGz7+9jPKsX3br1gebSrVDYUYEANiQAyIATEgBsbLwNdWvz38/AmPDv/9+F8Jf/bOlRLcJLiJgY4zQG2kibRJwY22UmKbzR+XwJZqp3PC29779oYlb31F+JXjfy37O2vNG3IRrImBtjZiv2qK3WwQJPh32mmn9QlxqN/GjjeIbPgeN+xc48Wfu9iQ8lXT2A8ujFKXQpIVOCB68FdNvdBCMSomvFlhh3arCCLoJ9qxNlnf5lGM8TZj9ZEHXyHqMI6xlO1agYa/akofaIPtwyfrA877PMbJ2kX7VUUm1rfjkhKO6Jcty7ZgB8fsiy1De/Dd+xmLlbVj+8/2Y3m2vVifYBNtW3aQR5vwjfFnWeSxX8ijXfbB1mUeyjEG1h7y9acYiAExIAbEgBgQA2JgfAzsu2tH+KeXvTDb5fbjpx2sV0t1P6r78SlhwGoodY8pljWZWoEtdZwSxMaV3znhDUIbhDcIcBjU67ZcFz6+7eZWxLeY8FYFpKaFN343GwQ0f/HnOYhydjccy/H8KHWtUAFRw4og/hzElYsvvrhPJKPwAbEOQgts4M8KMfQTKcQQlrECCgUsnIMdnIMvLENfqtiFjaoCC/2nT7aeP4e+o33rA8rDX/SfNpBa0Yf9p/iD89aGzcc52ER9K1xRKIvZZWxs+4xbrG22D5ERMY7ZZD2fxtqyMWP5Kn1CWWuP/WUeYrRy5cq+uPp+wQb8Z9/JDGz5ftnx9Ofot9Lx3Xgr1oq1GBADYkAMiIHZYuBTmzaGHx/+xEx0+86Lnxfu3X7nwHOPmJgtJjTe0zPeVTSSqmWaFNxoKyW22fxxCWypdjolvHG3W5u73CwQXRHepnXRoZgRE0SmtU/D+E3hDULTMPVUNn2RscIbjhWrdKwUG8VGDIgBMSAGxIAYmAYG/vztb81eK/3vg345/Pl5b9H93ZTscpoGtuTjeNZAq6HUPaZY1mRqBbbUcUoQG1d+p4Q3DOK7r1iTvWJ6yCsPa22nG2GB8MbdMjhmfirFoOAXTlEHKT6nyvr8hbgoSHib2/Em4a25BV/CW3OxXIhrjvokPsSjnlWaAAAgAElEQVSAGBADYkAMTA8D9915R/jOi47Ndrn95KlPCJ+6ZoNEN4luYmAKGfDaRp3PTQputJUS22z+uAS2VDudE94wiNz5hu95G4cAVwecqnUX4k2ChDcJb01zLeFtem6mmx572dPYiwExIAbEgBhYOAx8euNV4SdPfXwmuv3LiccEiHAa34UzvhrL2RrLqppHlXIUy5pMrcCWOk4JYuPK76TwxgHbuXtnePYZz8l2wTFvWtOFuDhJeFsYwpv/TjbuAkVqv/dvHAxLeJuti/g4mFIbYkoMiAExIAbEwHgZ+Pq5Z4dfHPTL4Re/9b/C19/6ZgluU7jDSXNmvHOm6/FuUoNpUnCjrZTYZvPHJbCl2umU8IadbqsueXv+wwoS3jThu74IyT8xKgbEgBgQA2JADIgBMSAG7gn3bbs9fPeEo7Ndbv/5lIPCZ67+iEQ3iW5iYAEwIOFtZ/Y1YylRrUp+p4Q3DOhVN12dfccbXjPFH77zrcmBnpQtXYx1QyYGxIAYEANiQAyIATEgBsTAQmTg4Y9cHv7zsN/KRLfvHv+ccP+22yW4LADBZSGyqj4NvwY3qaFwl1qTqd3ZljquIo61WaZzwluTg9olW5rgw09wxUwxEwNiQAyIATEgBsSAGBAD3WVg75494a/ffFb4xeP+Z/b3V29ZFu7Zs0eim0Q3MbCAGGhSV2lScKOtlNhm89sU1arYlvB24MBYdtTphqG7NwwaG42NGBADYkAMiAExIAbEgBgYjoEHbr0lfO+5R2S73P7rsMeFh6+8QmLLAhJbNB+Gmw8LOV4S3hbgq6ZNDmqXbDU5EWf9Rw2ajKVsdfuCMinW79x1Zzj0bYdmfzgu4mT1tavDotMXBaRF5ab1nH7wottzZFSuJjW3RvV31uqdeebC+PGeWRu3hdDfquxdf/312Q8wnX/++WO79k37ujWJmFVlchTfPrv+0vDIIb+ZiW7/dtyzw/233To2Fny/qtyrVCnj7c7q51F4mNVYtdXvqz92R/gfJ64Nb1x7Q2vz6sINW8OiY9cEpGX9aFJX4S61JlO7sy11XGVXWptltONtwjveblh5X1iz+EBYe/D+cMemfVHokY/zLDPtNx6Y2BtOvT/rN9KyiT5r53feujdc9PT9WXy2XnLvTMenDut4eLC/0ApbRSxZJichvHEtWH/CA2H3ju6IPQvtRhVcLFmyJKBfRTwspHOxPteZW23H5pgLjgmL3rAo/1t9XbmoffP2m8Ojz310XufQdx4aykRz9GOUtprsP39V2osXVcWPJn2pY2uUOE7rmNWJ0zTUrcreJB7Mu7xuVRnbScSsil8oM4xve3fvDn/z+tdmgtsvHvuo7DVTvG5ata02ylW5V6lShr4xHv7eMbVms16bqX8e9G01eR/J/vtrk2+zS59vuWNn+M2XX9SqUDVqf0fxTcLb7jCMMJcS22x+m6JaFdsS3joivEFogeASm9BcSClSTfuNB4UlComxPs9yHsQ2iLFdE2AmMSajso4bBXuzhM8Q4Wye7Y9nchjhzdoZ9RhCG8Yb4941sXWYG9VR+z+uegupL1VjlurzqHOrarujlnvN5a8JVmjDZ4hwNs/bXr9lffils38poCzPQQiCEAdxh3k+9WVQH3Zgz5dt63Pq4aaq+NGWX8PYnbUxGyY2C7lsit02+9zVdatqnycRs6Z92791S/j3Y56RiW6P/O5vhj++4kNjWy+L+pK61tk6VcqwfIq1SY6hfx6kr0i7fB9p/WzzeBxC1aj+d9U37Xir//poFcGNZSS8dVx4oyBgH8hTF4NRF4Nx1+OFQ8LS4K4me+FEnMY9Nl1rrynWy/5D6Zkct/BGsbVIgJ/U2AxzozopH6u2u5D6UrfPTc2tqn6MWo67oqyo5m1BQPM73MrqUayzgl427995aLYLzrfR1ufUQ9w0CW8+NmWxR/lpHjPf31n9nGK3zXhMy7qVisEkYpbyxedX8e0LF38g/PR3fj0T3b537DPDA1tv6cx9apXre5UyjEuKtSpxoo0m09jzoLXf5ftI62ebx10Vt9Dnrvom4U3C21h+7KDJ95Sr2EotNHzgTz1wcyG1IhUvBhdffHH2yhRfpzvqqKMCBAbfFm7gWQapf83KXohgk2UPO+ywbOs5RQvmx7Yd80LEMr4N+mSFJe7saaJ97mhi+zEf6YNPUZZ9tecQN98P206sDseGfsCGt4lxuuCCC7I4+zHjNvIYD34c0RZtp2IIP2w5li+yxTJ+3H1f/Hm05ePOeHhWfVzRJvvA2KEMefR9qOI/+4GUvnr/cC7GpBXePnDjB8IvnfVL2fe44bvcjnnPMXncUd9/x9v6zeuz8q+59DVZWdTB36PPTu++4WuuMbG1jDl7HrHzTDGuNp6MsY8r+sMxYxmOnR+zqnMeNu0f/aF9axfjmpofVdorKuP7hfZt296v2Py2/Sg7ZnuMX6y/KRusi9Sybn1iXz3T7Af6dskll+TruW+fbXj/PD/00frhY4cy1h9bNmWPdsvSMhGnSCyDuIO/WBsQ8mI74lA+lm9tkNMbbrgh49XHFmUZX6S2Ltci2LBxog2OJ9tAfYw7zyPf2sMxbbIMUtphWfrjx9vOAZatm3ZxzFJ9YpwRQ1uG8fLjZ8vUOeZ8sWNm2yryy64D8AFlU3bserBy5cqsHMb89ttvz9Y/HNt8lE+1bdvBvIa/8CXFGn1CvWFiRZ9Z3zLKcfEcx9YZH2NrB/6kbI1aDja9736s6JONmZ+/w8ZrmNiiLNpmbK1/1jc71ihz47XXhm+9bmkmuIXHPir8xRmnhqOPPDK34+OfsjVqOfbR+oU+2DnD2PvxY12ktgwYYhyQckxYxp5jW759Ww/n0L+i6wJ9SY0BWHj+858fli5dGrBDhuWRxp4H7fnYfWSKcfiKutaPorFBWcYF8U2tGbFnG8+3jRn9p5+oDz8Yb5znOeTZfNZletK5G7LvKsP3lfEP3422fefu8Mw/XJ/94ZjlY69+wgZeVYUYhe9Ws3ZYjyls8zzSou9hS/kGW/SPtuAr/YyJdcP4yPq0jbqsj/6jfQpvq6/YnMWIZREHlkE59K+K3lG1zDCvkFYta18pTR1z59mkUu14m/CONy6kMaHFCgL2gZyLUOyCycUUk8Qukji2eXaBZTksaKxvF0rbDttGCnv4sxdY20bs4hfrb9324QsvmGg/5iN9jaWoa/vIMoiF7QPK+bjhIsHyvl3GkDFFORwjztYu6yPlhZOvFfMc2rYx9z7HYsj2fN/KbKEe+4Ky9GHDhg3ZWOOzH3ObZ/tLO9YH1rXlGCsbF5bzF9oq/tNnpmjL2mY+0hiTFN4gmOFHFvAZZSmyQVSjDebxxxUovKEu87IH0bMf3WeL9Sm2+levOaZFzKFf9jxsIs/Gm3bs/I6VQx5i6+MNe55ZjBfyYRv1OH7Iw+fUH8fUlkMe2EKdWFvIZz3yyD7ZMa3iU6we7Mfy0ZaNY6pPqfyq7Mfqs64dC/rI8eZnGwPYYqxgA59T5diG7SPr2vGJ1WcefbHtWp/Jhfcx1udUXmxnlC1L4c3veEvls27KbpXXTclprP+MHfvOz2wXcY/FnGyzHNuwsYvNT46Zrc8823bV8Ub7vA5hp33sz96P0F+bpmLLMqmxSeWzXspulTGjDZ8yLkjtOcTOxt6eq3sca5N5HEd+LvMLfloOfT3OVcxLy0MqH33zNlnWtkO+YZc+o65vn+Vs20Xxi7GLPF4jaD82h2wbaBef4Tvai/lR1VbVcoyT5QaxifnKmNEvfoav9l6rKFbDnqN/dhyRx/tYxt6v4a844pnhm0+a2+X2yO/8evj0Bz+QxRa+wwfatf1O2ULbo5RDO55LjgvSlB8+RvTVzwfYtuOEet4+bbFvdsxwDjZg18aXZXGO9VHPlrFjgJjGhLfU8yBtpu4j2QfbN7QPP20MGJfY2LCfLGPrsX323dbHOfafNmyejUnMT5RFvvUdeeAVvuDY/1FosiIYhS0raKFeSniD8GTLUmCDQMX2cGzboHhly7As0yLfIIbZcpd99Pbsc6wOylb1EeWsn+yLFdXoO4RGtAc/2K71C3WrimpVylUV04YplxLbbP6kBDe2K+GtI8Kb3dHGyceF1ItyXKDsQoY6WMTsYo7zfsFCOb8QcjG1dVEO9bHA2nZ4k8AFk3X9YhtbLGGTN/T2xp02RmkfNv0f7dFHf95/TsUJ9dkv2uRnb8PHhedh2/YLNmNjgvLcRu4FGNqyKdvj2NA/2xbK+7G2NnjsbfFzKn5sKxYLH8u6rMIeGIQd+utT+stY4Dx9RF3PsK8fYzJ7AHzbodFdahDd7O61lPDmd8ahHnbOQZizPmAu4OE2JramWEF9xtbHhvHg+DEWZWz4evSR+bHxZhmkiL9vw56nH0V2YvMjVQ/9LopPzKeULc8t6rLflivbn7Jjjo+vjz4WxQl2U3W9TzG/kWftp/qcasP7F2sDPvq1hZ/JHeOTqs/zPqX4wh9XKHrFlHVXX7c6+x44WxbHsOEFOdZJiTiwVfY9bzFOYdcz6WOJMsizc4BxQ5zoG8t5vjn+jHFqbFHfx73qeKMu18SY6IY8e/1G+WkYM/gZ+/MxRRnm+TGJ1R82j7Y5hra+5SVWjnn0i2OKlHbIBO3zs10TUDaVj3PWD3yOtWPz6Q/9Y9sogz+c9+3znE3pk50f9jyO6Qvb5HnvM/Nt6v2oaqtqOdhPzVn66+c7bSO1vrZxHPPPtkPf7Ph9cd0F4b8e/6vZTrd/efaTw/4tm6N+wn/b95gttOV9qFouFifyQn/5uYgflvE80g+OE3yNtYn8WFnkww8bA+TRDvPZfpGPrGfT1PMgy6TuI9kH2y/OUx+D1NiwLn339eBDrO8sH+urbyvmJ+3G2mO/fUrByIpNwwpvVoCCfQp0VoTy7bKNojIx32J51nbsPNoo85H+WAERdpkfE95szFAW7dhyEt6aeSVVwluHhTfe/PoHci5QSO0ExULGBapoweO5sosV7PNiwXZ83dQFiPnWR144vLBEm35xrtI+/WLKCwrEFtqz/ynig4QVOv0FgLYQH9pAHj6nRBz4inO2v6jj+wAbHCO2w5QXTusbz9mUsUV7ZWPIePDCae3gOGaLeb4vrMvzMZs8x7pIY3GpymqqvvfFxoLnbIr2Yn6kmKTwZne70R6ENiugpYQ3uysOdX095FFsBZfYecc2kHr+7DmeT7Fk66bml2cjFetUfesP2kN8/Xphy/j27Dkew47vE5nyvDGfrNEG05hPsb7E8mCD+bBDmz7lnOW6Yte2VDwt+94eP6fqep98THnexop5di1DO6k2rH+puqjPc4wPx8O2zXYsF9xhypjF2GcckFJAW13yy6Y4T7EOKYS1lLgGu6lzsFNFePOcwiZjQCb9Z44Xz9s6Pm6xuVA15tYu26oy3qjXxF/XxqzKPYAdT8TKfo7FpIjjonOpcUAbOGfnimfA++XP00/kc76TGX5mmVQ+znu7/jNtkG+ym+qb7VfRWHB+0B7bsWmqDdQpGjP0wV+jqtqqUi4VT+ajffTDx4yfi3y3/cdx0XWn6Bx88BxY2/QFsdy3c2f4u1e/PH+19Ibf/o1w40c/Gl0fUB6xtfdY1pZtw7KA/KrlUgzaPjHWRX1MlYmxlxr3lM8pH1ke9tBnlEOsiji3McNx6nkQ54ruI2N9YAzgh22nbGxYLxbfWN/Z71g/eY4xifkJ38iW99X6bY9jQhXFJi9CUVCzgpMXm2Cb9VOiGu34XWjWLxzHfGNdL6SxbqxOFR9j9WjT1+eON79bD3GR8NaM2MbdbkglvHVUeONCah/kOGmKFijetHGBjC1WPMfF03+27dAe81iWdrl48qLrU7vg8obAC4m0SX/Ylr8IIJ9l2T7yuDCjbdy8bN68Obu5oL2iGz3W9/1EPtqgDds2+2h94JjwnE9xnjZjN1jWRy/AsB5twif0EXboA+Ni/UU93kywXBVbsbijHv845uwT85HyHMedcfFlcZ4xp+/WR9qM1Ue5oliwrk9Rz8cnxWSZ8GZfIx1GeLP14B8f0LzYWhQT9ivWH3uOnNGW77tnA7HmmNAO0lh9jjPHAXXtmNr6PGYdzwLPI0Wf6DfzWY9t+ZSs+XIxn2J9YZ63y88+bvQLKfmhiGTXa7QPG76/ZXGC3VRd+mp9shwgBkceeWQ2D+lnrE5RG9Y/1kUbtMeU5+gL48/xYDnfFzLPmJUJb7CTEsnYRizlLizUjZ1P2YRoVFd4YwwYI8YPsUjxzTr0NTYXaM/H3DMGG348/DiwHTvezGsiTcW3yHZbY2avr+TOrrmMFeOI2HPMUv4WcVx0Dm3E1lm048fIl/V+4TPXKZ+SM88M+5PKx3nYZX1+JnOsj5RxI7v03/vCzzhfNBa0h3K2HXvMNnwZzzFt2bZ9maq2qpRjPNmeTxk/+sWYoW+0jzopNmwMiq47qXP0r4hr+nb5OWeH/zjisEx0++kTF4ftK97cdy3jvQP7iL6wD0jhK23Zftq+DluuDus2dowDx4Pn2CcbH98nlk31zc+bVHn6wPjZNlnHpkXPgyjH9cauaawf6wPb9+2irOXP95P1fOzQVqzvrM+xpk9IeY58xPxkedhmrGJtsxzSmOBE4ayu8GbrQ5SC0IY/iFM33LIj+j1yZb5Zn2nPCmCx/njhDDZ8H1nP2qIvvn6R8GYFQe14a0aEk/A2YeGNE8GnvHhWXUhRHwsYF82iBZLnuOjys1/Q/CKMNliWdbl4xhZW2ydeOGIPWbRZp30u3tZHb8/6Y49t3Gw++piywQsBz8diZW3xGPXsDS3zeeH0rxXjfOyC5G8SUjH05arYipWhn0g55jbmPM9zsJHyHfk25infY/Vjvvk+0hefok0b+yImy4S3UXe8WeHNPoBgvlt/i2LCcimWcN6ym7Ll4xaLLWz5+v4z/bFjyjybko0YNywX6xPrkSmWtWlVn2LlmIe2rc26x6l4lsUJ7abqxnxFWa77sM01if6zjs9PtWH9S9WFbZ5j3DhOfnxT7dC/KinEsLIfPPB2+AX/qxM75VI2U/nWfoxTnGcM0GeWRzy47qAe48XzrOPjFmuDMedYpurGfEmNgx1v+sTdFRSpfOrXK9azaZU42vI4bnPMfFv2M+OKmHNdtGNoy9Y9To0D7OIc5zI+0y+MUcwv+EsWUn7Rhi+Xyocdz57/zLY8f95/lquaenuxeqn4WY5TfbNlYLuKrarl2CZiFfObeUV95DmIDPCNdZpI6Z/nwNpG+6uf9PjwyEG/koluPzjqqeHA5o8PxCnGg48l+4KY2zZGLYc2i3xHG1X6mCrD+WXHz/vKfqT6FosL6rB8bExRB+Nd1Lei58Gi+0i0HesDY2D7yrJ2/aHfHEPWi/ka67uvz/jFYhLz05bHMfxArHg99efxmYKT3cXmRSnW424zW9aLUijr6w/TBttK+WbP0x8IcPQp1taoPrItX1/CWzOCmt3VVnQs4W3CwltMcLELKc5zsjBNLVD+psJ/Zn0uhrwIpBZTnLeLMOqzLBds/5lt+JT9jAmJtOEX8yrtx2LBC6i3533i56J2imwgvrwAsE3k0W4sjV2cUI4POrEHmtg4cgz9OHh/6RfLVbHl6/h+pMYL5WxM8Dk2Pixn2UrFBfn2JrSK/95ffoYtG58iJim82e9yox18d5t9BXXUHW98zTUmtsZixPaZpmLL8UOsUDY1XixHNsgU67Ed5jN2vh7LwY4dU+YzTfnB80hhg3OK+axHP5lv06o+0Rb7QhueW+bXSVPjE2PYt8O6qbHAedZh3/ErY+iXr5PqM9uwtmDT++c/s11ywfr87NtPtUM7VdJRdk+VCT8Q5PBKKlL6ULbjiuVSrKPvnl/Ghb/WxnjRFs/7uBXNBfKbGlvY9r6kxgHl/Lzl9cgLbvwcu06xP0y7Nmb0K5UyXhwnzKtU2Tr5nK+x9Qx5HFu2Ab+Qx1/xxJjzHMbUjx3PMU0xkspHPc9ejBGUQz6uz0jxmX3jZ/pQNS3yiTaqcEw/fIzx2carii20W7Uc+u3nP/1mmprvPE/fR40h7cRS2LT9t2X23bUjfPPEY/JXS799+tKwb9eubFxt/1NjBNv2Xi3VT2sL7Vcth3op39mPlG88jzRVhnG3zHhfaSfls+eL5cu4KDpf9jxYdh8Z6wNjYPsKX32MfT9Zz69RqAtbnv2i8r7PMT8ZP5t6H+05HMeEKuRDbLI71lJlvSiFcl54iwlVFM18G6jPv5RvPG/bgh/4HKtTxUf6Qztsg/n2FdJYf1Ae4p/d8YZyVX40oWqZYX40oWpZ+yMKqeMiUWwc5yS8TVh4sze4FNkoCKQeyFMLFBYye2HihcQukrGFMJaHSRdb4FjWLtj0B+1zcmPBPvXUU7OLnL1wxG7YadP6WbV99pH+0BZuALw9+uZT2rDl0RdrA3bxYIuU9dFmrA7iwTI4pm/Iw7G/OPHCaV9TY32k/uJHf+EfbbPf1h/UZVmWq2IL9dh/O6b2l7ZSYw7+bB2WszGhfcsq/bL+s27RzRz7Z2OBPPTXjhX7Qz/KmKTwhh1q9kcS8L1tdtca+jKq8Ma5jxR2/B/7ZnlBn/gLZBxzex42PGMsZ2OLcrRPNljXxpt1kWfr+zYYXzumvj/4zDG1bWLs+Yt13i5tsJ5lC/W4xtB3G4uUT7E2GAvbR/Qd9tEO/Rgmpc9kjnXhV9U42XIxH61NvGJ6/PHHZ+PKfKaxPlf1L9YuubDx4hy2Y4T2U+3QN5tixxMEG8w/5kNA8wIZytjXQddvWR+WXbksrwMxzddBGdRBXdimyGZ30pWJdfQJ8fRzgv30/UcdlMfY2HjRFuOLMsxjHcsz8mJxj7UbGwuWQ2rbqcKjLe+Pp2XM/j97Zx59R1Hmff72nDkHRTCMr4RFEEgQUZElIDrwBnVc8EUUEZAgijIyirggsggiIhAJuwEDMSGQjeyBbOybgA464ziIirigIAwCArKm3vO9+L08t35V3dV9+97bfe/3d07/qrq61qeerqrnc6u7/Xr75+gH9BHuo1Af+vG7OUf+dpxFXrH+QV+iTqF6UR98PYEusZ8Zx9e9WDjqgvQ2T+qoDaOOoR1WXrG2+fodkx/lYOOjLM4RvM72MR+Ua8dLvw2sl42TmldqPMrJyhpytvMI5UaZIW/bFl63YWxjty7rZ/sR9bvomH93T791mxZ0e2qzV7vZhx7UMUb47fdlzetWp9kOtpN1Z1y2LzUe9dXWHXmin5kX41j5s1y6sTiUja930Be/DaG4rEvevIDys2wJ5G2/appnD+atI315o56UgW0rwhHX3h9+3zBdSL7+/UZ5s3wrQz9flm31h+khK8iE58iHOuDLCnEIlnzgRLjEnWSEaRuY3WVIXwZq2bwI3lLrBrB27Fmz2+1j/VnPsuANbUEeofYhrAx4Q91SoVpKvFSYViReDLbZ8H7AtawyBN4GDN5CgyoH0hCkws3EgQwuznlgQLKDJsI5UGJA4+EPtozjD6b+IGzz8/NgnViGzYtgKQYSuy3fL5u/DNs6UEYxlxMB6w9Zoo02Dz+OvcZ8kY55wPXlhHNOGkyDfsZOghiAQTybL/oYbUY+zD8mQwz+Nl5KXqyXL1eWxeu+PNBepOF1uMzDDw/pqp8fygulz5MFyvXz8mWep5MEb9jZtv8Z+7dgG4CbD91QVhnwxsdcY7CVMmS/Uqf8+xvxICdeh+vrJfPww0O64eeH8mDwIK1Nz7QsF3UI9SnbYV2/b2y+yMfvK6alLrBMmw5xUutk49k8bDjKCMmadUlxWd8U3ffzY1ruvom1mekoU8iPYda1bWObWUZK/ahDrAdcvyzWAXpgy46VY+NYPwEZwBkOC8YYzwdvCCegQxoL5ZiG+RK8IZzwLassprcu9RT9Y2Xit51pKIO868iLcVgG+o75sB/Yhwyn7G1d/H5lHfxwlNe1rv8DambJcdB9RllluZB5t7LIyt9eY3+wz2Llss/zrjMfuLaPmd7XmVg46hjSPTuGoAzkh7kB9aLOsn04t/VBfryW4vr6bOtOudk2Ik9fj/36og5+nNS8UuOhHn65fr+xbVZmqJuVl9+2FJmlxmG/s7xvbbO5e3HLlx8tffQdE9y+2287pj/99vt5oH+w7kaerHuonaijn1dqPKT1y7Xl2etWX3y5MA8/DvvN11Wry2ybbQfqwL5EWqxf8uYFtpl9YOuCeljwlmUPpqwjfXlbOfltRVyrr6wn2xeTHfJk21F/X+bMh+31+83K08oY4ewXprXrQ19WLJeQzYdOBFEIx04uxAOAIuRC+hTwhni2DOR3wrlzOt7xVqRutl5+nbsBb6innzfq7beRbYFLGTKt3fGGsBSglhqnCFBLjWsBW8yfBcX6cU3gbcDgzSo5/AQCeQa5n67O55w4ssBSnevfy7px4gR4447HXpanvF8G1YPWScLW0KPX6qNXfkwYVVmEFstZsuDC1l+0ZqXRtfJ6lmVkhOTqGzShOAor3x9VyQ79ao3gqvJVPoPvW/VBZx+sWbzYPfSBfdqPlv7u4I+0Hy2VrDpllSqPovNCXr559qDWkeX6KU/uw34d4I0784q2NRWqpcRLhWlF4sVgmw3vB1zLKkPgrWbgbdBAoOhNmBc/b+LISz/s1zVx9n/iHLROCrb2v8+bNo4UBW/4RVrAoH96VdTAQnwcTdPDUaovd1YIXvfvPhol/apTW2/7/oXumZ3e2IJuL7zxde4/Tvumxibz9FDZvio6L+SVk2UPah2pcSpPf0LX/UdZQ3GywlKAWmqcIkAtNa4FbDF/FhTrxzWBt5qBtyyF1zUNtNIB6YB0YPh1oAh40263/utDEQNLu9363z9lxkj0qeB1M/qqTP8qzct9e++xR7v1W2zUgm5P7rqDu2lmuXeYSp5j75Ui84LkN1Z+kkm1MsFjpvYxWr6Lzr7frajMU6FaSrxUmFYkXgy22fB+wDPg5NMAACAASURBVLWsMgTeBN70S1cFv3QVHbwUv9oJRvKUPIdJB1LAG3fo4N0nfAfLMMmgzm1JMbAIREPvs6lz20atbrh30Ef23UGjJgO1d/jnz7ULF7hH9t2z/WjpHz6+n1u9bJnW/xWu/1PmBd1rw3+v1amP8Vgp3hvHo+wjpmxTClBLjVMEqKXGtYAt5s+CYv24JvAm8KaJt8KJl4OTXE2u0gHpgHRAOiAdkA5IB6QDg9SB2y88z/194uYt6PbiVhu7n55ygtb9WvdLB6QDhXUgFaqlxEuFaUXixWCbDe8HXMsqQ+BN4K3wjTfIBYTK1gJWOiAdkA5IB6QD0gHpgHRAOpChA9dc4+47+jNu/fhXt6Db396xvbv5sh9ozS/gIh2QDpTSgRSglhqnCFBLjWsBW8yfBcX6cU3gTeCt1M2nxU7GYkcDunRKOiAdkA5IB6QD0gHpgHRgADqwbsE89+g+u7cfLX1w//e51UuXqi8G0Beyl2QvDYsOpEK1lHipMK1IvBhss+H9gGtZZQi8CbxpItZELB2QDkgHpAPSAemAdEA6IB1ouA7cOe1s9+yE8S8/Wrrlxu6/vvFV9WnD+3RYwI3a0WwImQLUUuMUAWqpcS1gi/mzoFg/rgm8NRC8pbx4W4Nbswc39d/L/Sddr48e68XB3ffFtDnT3KuOeJU75OxDMg2hRcsXuQlfntA64B/EeFDlvbd06dLWFyPr9NXIUJ1SdLxKufj9yg8yNOFjGU2qqy9nnXc/lkmG9ZPhqpUr3a+PPMyt32zDFnR76u3bult+MH0g84f0o376oT5Rn3SrA6lQLSVeKkwrEi8G22x4P+BaVhkCbwMGb5cfu9advOkN7rStr3dXX7I6OEEiHNcZp5cL/25vytT0Fx+0rtVuuKlpRiXesnmr3Blvu74ln7lnrRlp+XSj6zCi8bU6HsgrS4eapJO9rCsNal9eKVAiS769unbF4ivcJl/cxG3wmQ1aB/wIyyvvkHMOaadB2hNm5L9wugXEvj6hne5VR73KTbsyrldjxu4BgLeyutLNvefLPgS5/Dhlz2P6mpdfqE4pOl6lXPw6si0CbzKQfN3QuXQiSweun3ul++teb28/Wvrn/Sa7NUsW586DWXnqmnROOiAdsDqQAtRS4xQBaqlxLWCL+bOgWD+uCbzVBLwBtAC4WAWnn3COkKqXC3+W2UuXYIkgsZdlNTFvwDbA2Gn7XudWLhntQb+srsNwRVr2P84B4GwYr8Ftkk72uq4xmadACSvTfvgBwvY6da82aCMYy4NvSGPjAJ4BogHGxerNvCd8fYKDH/H8fPy0Y8buRPDm51P2vNe6UrZeVaaL6WteGWXBW16+3VwXeBvt+a4b3VHa0dWdu6Z+1z2/7etb0O2lLV/r/vu4L0XnMenJ6OqJ+l59360OpEK1lHipMK1IvBhss+H9gGtZZQi81Ry80XACiOHup7KGRrc3XFXpaYwKLI2dBADaIBf0N+RUlcybmk9Vur5w4UI3adIkF9tJ0iSd7HVdYzKvI3gL6TV2rmXtRCNk83e4AbpZGOfnHcqXu+1CwC44dvcZvPVaV3wZDeI8pq95dRF4Gzv/5MnMXm8SJLT1lr+7fpf86iO/VStWuPunfLy9y+3pnbZ2t06/eOTXjdLR+uio+mK4+iIFqKXGKQLUUuNawBbzZ0GxflwTeKs5eAvtfqKhceaZZ7bem8NH6QAWABj8gQ4GM+PA9d+zYw0Q5Mm4EydOdFhcE1owPAQvuAhnHL8M1smCJYLEKsrnjiaWH6oj6+C7iMu22muQm98OW04oDfuG9UAefp7op1NPPbUlZ7/P+GhaaAek348oi3nHZIh62HiMn5UX4/j97rfFv46yfLlTHr6u+nJFmWwDZYc41Ee/DSn1Zzvgsq5+/XAtpJNMy/qzTr4McI4+RDzoA+PZchgHdWC+cJkG9w7PmR6u32bECdWVcoO8Lr744o562PqyLX6+lM2UKVM6xhPWhfHZDpzbttoy2D7myTzgWpnY9qboBvNNcU/IAW+x6wByG39x4+ijo9jdZne7oS6hXXCsY3DsNuAN73nb4LAN2scJl77yqGsrX+8db7iO+F+6+Eutd78xLd4Fxx14LBtuSFcQzn68/PLLW7rLPvLvSV9fOMajH3EwHVzqiC3f+q2Owm/r4euTryeIa8vjuMs8bT38uqCt9rqtJ9PbdlM2/r1q21JGLqGymCfaxjZZGdvraIOtJ+OxbfYa0rGOmGcwPlEuDE+551hnlsE6sl6sQ6i/GEfucBld6s/69OeNs2e5x/fYqQ3dHn7/v7g1iwfzPlDpRX30Qn2hvuilDqRCtZR4qTCtSLwYbLPh/YBrWWUIvA0YvNE4C4EWazjZ3U9cPNuFMBfB1gjmwtkuyhlmgQ/DsMBmems423JYNlze3CybC3DmZ8tl3FB7Gb9s+agLy0Y5oTqy/JBrDR97HbKwbUA8X24wbJjGL5cypEwRD3600+bL9HBj72NC2Vbmfp1DMmR5tv8QlpcX4rAtiItzHIA66Gv4/T63Yba9zMfWgWltPMrKyoXxIC+/7f65zZ/1tS7KsnnbayGdxHXWnWWxjrbe8Pv9CZnZOvv5sGxbJ8Tx2wDdQr8yPtxQXW3f2zayXPZhqP5spy2b6eDaslPaivjsN5Zrw6zsWI4tm2ltPFuHPH/WDjSmPWHGCa13tMFlGNxYOK4RsAG+2TTwhx43jY7d/wBvgGb2Awt7nbRX66ML+PhCu7wIeMPHGRiPH2tAer9eIV1BHPajHctCcmf/UA8YB7pt+xb52T7064Fz6qjVT9bDhvn3DtIizNYVeWWNuywf6Vh35mPrGauTLYt5WbesXFAfWz7yZB2o75Qx4uI6y+J1hPlxmIeVI9P55YXCmZ8tI5SnX3+mY12tjOSX8Scd6J0O/OQ7p7oXtn5dC7qt32Ij9z9f+cKY8V/y7538JVvJdlR1IAWopcYpAtRS41rAFvNnQbF+XBN4qwl4Cz12Gdv9xMWzv+DFwtkaDf5CmQOFv2DmItumRVyk940s33hnWrvoR1rU0V/0I5xgyYJE5lGmfLbJuszPGhL2uu+PyQnp2S7myXM/D18uvI68bbuQZ0guiM9H01LefcfykD/Ssn62LIT7fc16WdfPi+cx+bGskCx8WXarq8jPQixbb/pZX8oC4awj0vo6zHR0QzrJPH0ZoAwr41B/+mn9c5TLMNYZ+dh8WTffDdWVbQ2lD9XXj4eybV+yz+Da8lPayrrY/JgH6mJ1n+VQBoyXKgvG56Oj+EBC1iOmjE+IZh8rJbCLfWSBaULgLfSIanTs/gd480FZK/8vT3AM57ndzcYdbxbYoU1Is8lRYz8oEdIVxA/1I8LRH6H+oR5wLEF6yhIu+9wPD8WxehGqB+8L5sW8bTqbL/zUI9bTv85z5k19C+WNcv37g+np+uWlyoXxWD7yYxjrznPEoZ+yQPxQnRGO9KG+s2UxXmg89NuNdDY/pPXlx/r5ZSCuDslAOlC9Dqxetsz97uCPtHe5PbPjVu72i87X/aYxRzogHeiLDqRCtZR4qTCtSLwYbLPh/YBrWWUIvNUYvNFwgmsXMf7Cn9ewAKbREFugIy6vcUHPc9+48RfzobSxxTfDaVAgLY1RHyx1Uz7bTpfGAYwLtsfuPsG70/wPF4SMDOQH+TAPnoeMFlyL9YkvQ9/AYb3hpr6PibJFXfL6kPKIGUehvBhm+87Wk9dDefIa08bkkqqrsfSsD8uzsuA166I8xGG9eC2mk7FyEW4N0lB/Up/ZNyjLj4d8eK/iOutn07COdGN1ZXlWV5nGry/lhXDEoX7wHGHwh2TltwFxWTbrzfyr0g2UwfuC964/fiAODwIyC9V4zbqMxy+hAtgdecGRLXB3grcTDukYPxW8Rcdu86iprQ/8AGgEbVngzT6SinQAcT54i+kK4of6EeHsO+qCrwe8Hupb5BnSP+SLg3pi44TqwXjUJ9YX+hgqF9f9erJM67LudpxgWXl1svmEymPeofr5cvHPkcaWz7w+//nPt8YHew1l87pfFsNjfcc2xGSF/DgeheSC9Axn37BMvy4sS+4r45JkIVl0qwM3zprpntxlYhu6/eW9e7m1i65uz33d5q/00lHpgHQgTwdSgFpqnCJALTWuBWwxfxYU68c1gbeagres3U9Zi2dCAX+RbG8mXuOi3j9nXJTD/BjGuP7iGwZN6LCLchrQPkhknqwPy0opH3FRBsuG8TBnzpyWMcP8qgJvrCfLogxQB/YJr/kuriMe0tDAYTvh2jriETF7jemYJ9qFNiIf1oF1Y5uZnmCF8VLyCsmd+cGlwcU2ha6x3ykXPy6uU7dYd1tH5hlKj3hZsmBa30U6Xz4xnWS5LMd32R7k6fcn22PLQny2F/VCOhy2jjhnOTYt48TqGiqPadgO1pdxWTbC/fr7aZgX0vhxmR/rW7VuoGy2OwW8IT53r4U+eMC2hNwTMt4NlwXe/EdNM8fuHPBGgFYUvNnHT63M/LEW10L9iHD2Xeze9a9bGcbyZBxfT2L1CMVjGO8N6i7zztJXpoF+poyZee1AmX55ReSCtBwH2C7KG3kzL9Sb8dhO/zrbZl3m5deRecTCQ+Oxzdf6/XudZbIMuTLepAPV6sA93zrJvbjVJi8/Wrr5a9y9XzyqY+0geVcrb8lT8pQOhHUgFaqlxEuFaUXixWCbDe8HXMsqQ+BtwOAtdnPT2Aw9glpk8cxFsi2HC34aMDz341ojgekZl2lpKCAu44RcGqMwnn2wxDy7Kd8u/mP5heqFMGt02Dhoo18nXsc1GCO8HpIV41oX6Xx4geux9zHhWqi/faAWa7MfLyWvUBzbBva5lTmv8xryiNUd4VbmsbqH0ofq5reRdfFdlGlln6WTKCdk+Pp5hvoz1B6GoQ6sL2Xk54k40K3UujJv6qLNL9QOKwfUH4efBuX79UtpK/sfZdg84ec15gs3VA7Spsjez5/nWZCMcUIuQJ3/8QQbD4AtdN0Pzxy7c8Bb2R1vFrxl6TXaE+pHhOf1D6+H+hZ5hvSP8gvpaKgeoXjMg3W34y7CQnoUCuN9h3KRLlRWqE62/FB5ReTCOkCGSLf77ru3XJbBvI499tiWPP37gNd5DzGd74baH6o709l7jnKhnBjHd1mXkD74cXUeNmIkF8klSwdWL1vq/vixD7V3uf39zVu4Oy44d8zcmpWHrknHpAPSgap0IAWopcYpAtRS41rAFvNnQbF+XBN4GzB4CwGXvN1PsUW1XTzjJvPPeeNxwczFOxfavuGE6/7Cn3G5KPfPWYbvsp0hkMg8ypQfkgWNGz8/v048z2pnVh6QL+EIy8wzQmKGHR9Ng9HOetEN9SP70O8Hv76sF+Ol5OWnYT3oxvoL161McB7qH8azuhWTC8ItnEmpP+vpu8jLyidLJykDlOfnY89D9Y7JB3mhfH5REPFsXtbv62RWXVkeddHm47cZ16g7/OIhyrJpYn2W0lbWxcqZeZfVDaZPdcvseEtJAzDnv0POT5c7dkfe8dbK56hN2h9c6GbHW5auQIboR3vvUa55/UO9QXqmgZtyr4T0IkWfbDn059UT8RDHb6Nf/9Q6sVy6/v3h58t4Mbmg3bg/CNdQD6ZhXqg/09v7mnX2+4Dp6fp1zAv35eXLmOmta+tqw+WXkScd6F4HbplxiXtq5+3a0O2RyXu4dQsXtMcKybh7GUuGkqF0oJgOpEK1lHipMK1IvBhss+H9gGtZZQi8DRi8EbjYnWA0nEJfOsUgEVtU+4tnLtytEcyFe14Yy/GNF6a3C3/WB+VzEMOi/KCDDmrtKrDGaAgsMU9bp9Ty2UbWh3n5uyJYr5DLPGz5aIvNA/nCUILLPGhAMYxpIA/GgZ91Qxj81pBCWNb7mHDdN3BYX9SPebPdtg1Iy7iMl5IX0rEttk/tV01jfQ59sWkYz8qE+VvdYr1s/ZnWgjfGYxlsn5UFwtBe9gvLs/nk6WQoDcJQJ8oS5/D7/RnrC9QdO1xwsP7IAwd0C/XmOa4z37y6sjwrA+SDPGybmTdc1Hvy5MkdIJLXfRkzPLWt7DfbxlCejAeXZcBFOqsb9prvP2HGCc4+UsrdbvYdb4Rjdrfa/mft33okFfkxjb2OcOxks6AtlI+/2y137P4HeMNXTfmuNkI2PmbarlPkq6ZMR1ngHW/c8ZanK0iDfoRehO4122d+/7APrU5R96irrJPvMp4tM0WfkC5v3GW9bN39sNA4kVonvy3dygV14zjg675fb55bubF8v72cb1FfxvHzj4X79xzlZcuFvFAG6oQyWDdbD19WOi9m1Ehekhd04OfHf9m9uOXGLz9aOv7V7r5/P9Jde801HfOkdEW6Ih2QDvRbB1KAWmqcIkAtNa4FbDF/FhTrxzWBtwGDt5ChRhgXglS4yVIXz4hL4wLGEg8YPPZmZRy7yGY5vgHMuH4erBPLsHkRLMVAIvO0aYqU75fNHUV+frbNvp9GBOsPYwJttHn4cew15od0zAOuLyec+0YqH00LvY8plC/6BG1GPsw/JkMaUIyH/GwdQ3mxTF+uNg/E8eWB9iIN08NlHn446uDrlp8fygulT6m/n5cv8zydZBtsWan9GesLhvvtRlnsJ+qOrW9eXZkv9BGQgnmE+oPtolzRPoZZ17abfYf+sPVCfFs2/MzDl3+oLqwD82dalB2SEa/7LsAbP5IAFzDMxgkBM4YxnZ8G6X3whjA/nQ/rcsfuf4C3/c/Yv/UhBQA4HBa6oRzCOD56ijB+1TQLvOXpCvJhP2LHo9UVXxf8/mGfQsega0zr6wTK8I+QnrAe0H3GD8VjuSwvb9ylPlkdDo1zobJCdWLd6HYrF5YbkhvbavuCYfaeYB1iMuF1yiJWd4aH7jl/TLLlIx3rZevK/OSOvQckE8kkTwfWLF7sHvrAPu1dbs9OHK9HSwPzSZ4cdV33mnSgNzqQCtVS4qXCtCLxYrDNhvcDrmWVIfA2YPDmDw40nLK+3Oenqfs5jdEssFT3NvSqfnnvY+pVuaOeb5N0Mq+uNORDQCLWzzDIfUM6FlfhaQuYOozdebqCvkyBS6E+F2gJ60FRufB+RT+E5KywsJwlF8llmHXg1ku+757Z6Y1t6Pa/e+/m1s2fpzFC4E06IB2ojQ6kALXUOEWAWmpcC9hi/iwo1o9rAm81A28phlOTFh91MEbrLC/udgu9+67O9W5y3Zqkkyl1pSFfBLzB6JfhX60hO+ixO0VXcN8KvFXb70XBG+L7H1Vo8niqulerT5Ln6Mnzf77yBffSFhu9/GjpZhu6Xx31KbdKj5bWBjbonhy9e1J9Hu7zVKiWEi8VphWJF4NtNrwfcC2rDIG3moE33ezhm11ykVykA2EdKAretNstLMdR0S+Bt2r7vwh4470q6F1tH4zKvat2DpferF10tXv4fe9q73J7bvs3uB+dO1XASTucpAPSgVrqQApQS41TBKilxrWALebPgmL9uCbwJvBWy5tbC8zhWmCqP3vXn0uWLGm9cws73uCPyXrGjBmtx0vxXqhzzjknGi+WXuG968N+yvbwww9vvatvwYJiX8ij/hx//PHSHWMUpMoFcse9l3ef9lMXVNZw3NPqx+b14+0Xnuee2XHLNnR77F07u+vmXqWx1Yyt0uvm6bX6bLj7LBWqpcRLhWlF4sVgmw3vB1zLKkPgTeBNE70meumAdEA6IB2QDkgHpAPSAelAL3XgmmvcL7/wWbd+89e0oduvP32oW7VypeTeS7krb+mXdKBrHUgBaqlxigC11LgWsMX8WVCsH9cE3gTeur4R9QvHcP/Cof5V/0oHpAPSAemAdEA6IB0orwPrFsxzj+6zexu4Pbft691d3ztTa3ABEemAdKAROpAK1VLipcK0IvFisM2G9wOuZZUh8Cbw1oibXYu98os9yU6ykw5IB6QD0gHpgHRAOjAYHbjj/HPcsxPGt6HbX9/5Nnf9lXO0/hZwkQ5IBxqjAylALTVOEaCWGtcCtpg/C4r145rAm8BbY254LRgHs2CU3CV36YB0QDogHZAOSAekA8V0AF8n/dXnDnfrN9uwDd3uP/wgt2rFCq29BVykA9KBRulAKlRLiZcK04rEi8E2G94PuJZVhsCbwFujbnot+oot+iQvyUs6IB2QDkgHpAPSAelAf3Xg+rlXusfevUsbuD2/zabu7rO+ozW3YIt0QDrQSB1IAWqpcYoAtdS4FrDF/FlQrB/XBN4E3hp582sB2d8FpOQteUsHpAPSAemAdEA6IB3I14G7pn7XPb/t69vQ7YlJO7ob5szWelvARTogHWisDqRCtZR4qTCtSLwYbLPh/YBrWWUIvAm8NXYA0OIvf/EnGUlG0gHpgHRAOiAdkA5IB3qvA3iE9P4jDm4DN7fZhu6Bww50q5cv11pbwEU6IB1otA6kALXUOEWAWmpcC9hi/iwo1o9rAm99Am+pSqN4K11dZbBixQqnQzKQDkgHpAPSAenAWB2o69ytetV3XTVMfXPd7Fnu8T3e0oZuL2w9zt19+qm1XdMOk+zVFt3j0oHe60AqVEuJ14v+isE2G94PuJZVhsCbwJsWBSuzBysZWGMNLMlEMpEOSAekA9KBkA70YkGtPLPXKZLPYOVz1xmnObzDDTvccDyx6w7u+h9ervV1zvpaejtYvZX8Jf8iOpAC1FLjFCk3Na4FbDF/FhTrxzWBtwaDt3PPPdfpqF4G06ZNczokA+mAdEA6IB2QDnSvA1qnVL9OkUzrIdPzv/c999MPTm4DN0C3/3z/Pu6CqVO1Pu+zjZJqnCueYJN0oJwOpEK1lHi96IMYbLPh/YBrWWUIvAm8aXHwj8WBDKzuDSzJUDKUDkgHpAPSgZAOCBbVAxapH6rph5mnnOz+8rY3taHb81tu7Fb+22e0pu4zcKM+98KQV57lAI3kNpxySwFqqXF6oSMWsMX8WVCsH9cE3gTeRnqREDIOFDbWaDznnHOcDslAOiAdkA5k64Dmj7HzR0gmNJblVgOBJMf+ynHlUZ92AG18tPR/3/JGN/ObJ430enrQOtgLQ155DidAUr+W69dUqJYSrxd9EINtNrwfcC2rDIE3gbeRXSiEjIE6hsnQzTZ0JR/JRzogHZAOvKIDdZzHQnUatKGu8vsLq4ZB3hdMPdv9/H3vbgM3gLf/ft+73YVTzx7ZtXRd+rUXhrzyLAdoJLfhlFsKUEuN0wsdsYAt5s+CYv24JvBWU/B2/PHH576UtS6TXdPqETIA6hAmw/EVw1GykCykA9IB6UC1OlCHeS5Uh6atIVTf0QR2Pzz5RPfYjlu1odsLW77WXfvZTwm4DejRUv8+7IUhrzyHEyCpX1e6PfbYI5cz+HJKhWop8fy8qziPwTYb3g+4llWGwFsNwRugm8BbbxZ2oUX/oMJkVFZrVEqekqd0QDogHUjXgUHNfaFyfSNa571ZA0mu5eS67ohPuhe2eG0buuHR0lknnSDoVhPoBr2uwnBXHgJto6IDAG9F4VsKUEuN0ws5W8AW82dBsX5cE3irGXgjdBN4K7c4ylpUhhb7vQ6TEZhuBEpWkpV0QDogHaiHDvR6bgzlnzV/61r1ayLJNF+mF559lrtvn0lt4IZHS++dvKe74Gw9Wlo3/emFIa88BeKGVQcI3orAt1SolhKvF3KNwTYb3g+4llWGwFuNwJuFbgJv+Qui1Ek/tMDvZZgMx3oYjuoH9YN0QDogHeheB3o5X4byTp3bFa+6dZJkOVaWc77xdffXHbZoQ7cXt3ytW/epQ7XLrUa73Kze9sKQV54Cb8OqAxa8pcK3FKCWGqcXcrWALebPgmL9uCbwVhPw5kM3gbexiyA7wab6Q4v6XoTJuOveuJMMJUPpgHRAOlBvHejF/BnKM3WOV7xq1kqSY6ccbzzsIPfiFhu1odtf37ylu+KE4wXdagrdoL+9MOSVp8DbsOqAD95S4FsqVEuJ1wu5xmCbDe8HXMsqQ+CtJuANCujDtzyl1EKpc6HkyyO0mK86rG5Goh1c5P+ekwwkA+mAdGAYdKBuc03Vc2koP39O13n2mkfy6V4+F5/5XXf/Xju3gRseLb1v790dHjmVfLuXby9lmGcz6bogmnTgFR3wwVuKbFKAWmqclPKKxklZ62VBsX5cE3irEXiDgln4lqdwvZzAhiHv0EK+qrB+G0Epg4niCDBIB6QD0oHR1oF+z01VzamhfIZhHaI21BvW2P658vivuScnbNaGbtjxdsOUTwi41XiXm+2/PJtJ11+BLpKFZGHBW6o+pEK1lHipZRaJl7L+7QdcyypD4K1m4A0KRviWp2x2wpG/c3EXWsR3G9YPgyZl0FCc0Tas1f/qf+mAdKCoDvRj/up2jg2l19qmc20jefRGHrce/FH30vhXt6Hb4xM3d1cef5ygW0OgG+6LPJtJ1wWbpAOv6ADBWxGZpAC11DhFyk2Nm7IuyoJi/bgm8FZD8AYF0zveyi2uQgv3bsN6YbCkDA6KI+NaOiAdkA5IB3qpA72Y37qdc0PpBZzKrYkkt2y5TT/jdPfAnm9rAzc8Wvqbd+/iLjrrTEG3BkE3gbdXgEoqpFC80ZZZyjvdfB1JhWop8fy8qzhPWSv1A65llSHwVlPwlqKAWlB1LqhCi/Vuwqo0SFIGA8WRgS0dkA5IB6QDg9SBKue9bubfUFqteTrXPJJHd/KY/9Uvuae3fX0bur20+WvczZ/8uIBbw4Ab74MUu0lxRhs2qf+76/8UoJYapxd9kbJ2yoJi/bgm8CbwNhSLjNAivZuwbo2PlJtfcWRgSwekA9IB6UCddaDbubCbeTiUlka23O6g0yjL77xp09yPDvywW28eLX1ywng397ivDMV6eFT7theGvPLsDtRIfsMlv1SolhKvF7qRspbqB1zLKkPgTeCt8QuN0OK8bFi3RkbKTa84MrSlA9IB6YB0oEk60O3cWHZODqUbVbCgdncPGy85/dvuwV3fu8KdJgAAIABJREFU3N7lhkdLf/vOtzt8zVTy7V6+g5RhLwx55Tlc4Ej92V1/pgC11Di96IuUNVUWFOvHNYE3gbdGLzZCi/KyYWUNi5QbvY5xpk6d6nRIBtIB6YB0YDA6UMd5IaVOZefKsnNzKN0gDXyV3UxAs/DYL7pntvnnNnTDxxTwUQX1ZzP70++3XhjyyrM7UCP5DZf8UqFaSrxe6EbK+qUfcC2rDIG3BoO3Xiht0/JcsWKF6/ZYvny5K3tk3Vx515YuXeqqPJYsWeJ0SAbSAemAdGA4daDK+QJ55c1RWdfLzplI1+2cjfRNW6uovoMzQK9Zvtz9+ohD2sANu9z+vsMW7rbzzpEerRxcv+iekOylA83SgRSglhqnF30v8NYnqJXayYOM1wsFG+U8q1i4I4+yxkOWQRK7FjKaqjaQFy9e7HRIBtIB6YB0YLh0oOq5IjQfxeaurPCyc2hVc/gor4PU9nyj9brZs9xje729A7o9MnmSWzN/nqCboJt0QDogHSigA1VylF7MXwJvAm+uSiVVXje05Hn99de7Ko7rrrvOFT3WrVvnihxr1651a9as6fpYvXq10yEZSAekA9IB6UCWDlQx32DeKjLPIW7RuRTxq5jHkYfWRi+vjSSHTjn87Jyz3AtveuXRUnxM4f5jjnI3SGd0z9TMPrVjoe7jzvu43/JQX/RH/gJv3+t80XG/FV3l9UfRmy5nOyB24y9qJBQxQrqFbVlGla7J6JYOSAekA9KBIjrQDYwrCuGKzq3dzOM2bdPXNqp/dWvgG9eudX/41MEdu9ye22Fz9x8Xny/gVDPgNMp6nzV+2WvyV7PZIkWOvj7aNP41nXc3Zgu8CbxpQq75hGwHwG78RQyDIsCtrHFTxICqIu6qVaucDslAOiAdkA7UQweqGNeL5FF2rioyHxaZZ7uZz21aGULdGULDIL875s9zf5v0lg7o9tf/O8ndunSJ1vg1X+MPg/6ltoHjFuPzXG7/IFuKrP3+4bnc7ucagTeBN03KNZ6UUwbIlDhFjIEUI6PM7rYiBlJeXBnO9TCc1Q/qB+mAdKCfOpA3NxS5XhTEpe6CKzLfpszfKXFkEHVvEDVVhv919hnuxa3HtaHb+s02dL89+jPuRj1aKvumRvYNxjHeYyljmuIMHsbZ/qJfbndzjcCbwFt7INTN1N3N1Av5VTHxFDECYtANBoc9Ug2WIkaQH7efxpzKEjyQDkgHpAPN1gF/Dilynjqn2XkwC8QVmXermOd7sf5QnvVbE9o+uWnNGvfgoQe0gRu+WvrchM3cTy+YpnV9jYCT7bNR9WOMY9vzxjuMnYxTZBxV3PT3d1v50h9zbb/RL7f83CDwJvDWHgx1I5W/kXohu9ggWCQ8dSKqErgVMXYYt+4G77XXXut0SAbSAemAdKBTB+o+dnOOKeKmQLiqAVyReT0WtxfrEOVZr3Uh++NHV17hntpthw7o9vi/7OJuW7xIa3pBt1rpAMYr6m1s7EK4tVdokyCMfrnFPnIXk5eVqZV5Vt/Y/qNfbrm5QeBN4K09IOomKncT9UJuWQNg6jU7oGb5Q4Ozb1SkGCJFDJsqjDUZwJ0GsOQheUgHpAPDrANVzBtF5qmUec+fK0Pzadb8a6+lzu1Z8XqxHlGe9Vkboi/+59QT3YtbbdIB3X73ucPdjdddp/W8oFutdABjFceP2Lhlx0COn/64qvPOp46qkgflbfsg1k+2H+mXW3xuEHgTeGsPirqBit9AvZJZbOBLDbeDaJafgy7d0GCeZ3ykGjJljaZhNiTVNoES6YB0QDrQnQ6UnVtS5668OTA0b3JOpZs1D9trqXN8LF6v1iTKd/Drw5tWrXIPf+R9HcDt+e3+j/vZuVO1jhdwq50OcIzC2EG/de2454+hGHMRljf26vqaUjKibH252z6xfUW/7UvNCeXmBIE3gbfaDdajfjNzgCvr2oEzy0+DAK4/+HJQzprUUoyWogYRDdBrrrnG1eHoxQCpPFc6yUAykA4Mlw7UYbxGHTiHFJ17UuazrPkQ10LzqJ1ns+Zje63s3M90o76GGsb23zn7h+6Zt7+pA7o9sdfb3W2LFmoNL+hWSx3AeIR7keOSdTneWfuD4yvH4rwxnGO93PAPV3nyo5wpd85f6BP2j+0z+tmnwzjO9qNNvVj7fs9jWaHzZcuWuUEeG4QqhbB+CF1llKPEoyA3DmxlXQ6WeS6NAQ60vsuBOOZywI65eQM+r3drrPViAFOewwUE1J/qT+lA83Wg27mCc06eG5vTGB6bExnuz6U855ybNzfzetk1ANONwnppVNp434lfcy9ttXEHdPv9Zw51N65bJ5tF0K22OoCxCPcoxyS6HOM4NsLl+IlxFmN0DKZ1Ow+MavqYPCFryJzyt33CfmK/0WWfjsr4W3U7e7EejTEtGz5I6IayBd40WdVysuLAVsblIJnn0gCwA6z1cwAOuTQ+Ym6eUYPrZSa+XgxUyrP5xrj6UH0oHRhtHSgzn6TMU7E5juGh+ZFhdj61fs69eXM0r5dZBzBN1caC8uv/D8Y3r1zhHtlvcgdwe+FN/6xHS2W/1NJ+sWMExiGec0yii/ENYyHGRo6ZGFctHOK4rvm9N/M75Wtljj5gf6Bv0EfoK/YbXduv9MtNnx96odMWsMX8Am+aONqDsm7YV25YDmxlXC7Ws1wu/K0xYP0cdEMuDY6QGzJk7IDOQT7F7cWgxDxXrFjhdEgG0gHpgHRgsDrAMbkXbso8wzh2ngrNY6H5jmGheZJhdl61fs7BWfM0r5VZBzCN1lWvrKuaKIu7L/uB+/tbtuqAbk/usZO7feF8rZ1lP9VeBzAO4b7jeEQXYxuhG8ZFjpcIb+J9Okx1Rh+wPzhnZcE39vEwyaAfbenFmicG22y4wJsmDg2yng5wYirjcqGe5XLBzwHVdzng+i6NjJDrGyrWiIGfxk2WW3YQkuE8WMNZ8pf8pQPSgX7qQNm5Imv+4TV/7vLnttD8xzB/zuS5P8fynHNx1nzNa2XWA0zTDyNCZVQP+H79tWPc+i026oBufzj8IHfT2rVaN3vrZulf9fpXhUwxBiEfjkV0Ma5xHOT4ibAqylQe3esC+oL9wn5CGPuPLvtWMi8u87LrmKx0FrDF/AJvmjw00Ho6wAGtqItBMe/gQp8DqXVpJIRcDsAhl4aJb7CkALesAcS/FjPsli9f7nRIBtIB6YB0YDR0IDYX+HNG1jlBW8wNzWec60LzIMNC8yfD7HxLP+fkvLk7ZPSkrhFkFBU3igYps1tWLHf/+769OoDbC9uMc/859btaL3vr5UH2k8pOv6/sWMWxDmMgxkaMnRhvJc90efZDVugT9A36CH3FfrN92Y96DGsZWeuTstdisM2GC7xpEtFga3TADmhF/RwUs1ws8rngty4Ng5BLg8J3YYSEjBOExYwZhKcMKFUa0IMeZFT+YL+gI/lL/tKBZulAleN/ynyTNV/F5jjMf/6cyPPQPMowO+/Sj3k5a97mtaJrAht/WI2XYWvXTy79vnt2hy06oNvfdn+zu2P+XK2VzVp52Pp9GNuD8QftsuMQ/BjPaItgzKQtMYwyaHKbMPdxnsNcxXnK70/2cZPbOoi6p6xNisaxgC3mH/R6WB9X0ERWq8WMP6ClnnNhnuVyouNi37o0CnyXhoTvxoyRLAMmawDBDoYyxtagBxCV3yyDXv2l/pIODIcOlJkvMM9kzUNZ81dszvPnRp77cynP7bxr/TRqsuZwXEtdE/jxBmFYqMwCO1iuv97df8xRbv34V3dAtwcP/ai7ac2aWq1T1a8F+nWEbSyMQdAVOxZxfKM9gvGSY2s3evXJKZ/VPeLp2qnfOsP9n80ntI+jv/iVQjJiv6CPMFfZOcr2Kfu4m/4bxbRZa5Gy12KwzYYPeg0s8ObdqKOo/HVqsx3MUv2cyLJcTnJ2oU8/DQLfpQFhXf4yxQHZujGjxQ4g/iNCRYynQQ8WWeUvXbrU6ZAMpAPSgWHXgaxxcNDXiswn/lxk56nYXGbnO+vnrgA7V8Lvz6k859zru9awyZrPU9cGNl6d1jmqSye4uXXJYvfY5D06gNuLb3yd+/mZ3y5kKEuunXKVPAYrD4w/6AM7DsFPewTjIcZJjKUYc8v214oVK1twCW7ZPIYhHUAb4FrqgfhZ7UafoG84l2G+Qt/5/Yk82NdZ+ela5/1o1xxV+S1gi/kHvU4TeBN4yxx4+j1Q+ANaynnWAh3X/MW9Pach4Lu+AcHJ0Rob9MeMFA4kvoGD8zwDqduBwRq/S5YscTokA+mAdEA60AwdsON3t3NB3lwTmp84d8XmNs59vhuaN/25led2Hvb9eXN6yrrAj9PvtYzK6zSyYvK456Lz3PPbv6EDuj21y0T3o6vm1GptGqu/wtP6eRTlhDEI7bZjEcc2jHkYC2lbCLx1r0cXXXyJ+7/v2a8F3gDVYgfAHOIhfpZehsAb+8/2Kfs4Ky9dG9u/XGdU6cZgmw3vdk3VbXqBN4G3zIGnn4OFHchS/RwEs1x/Uc9zGgC+6xsPqbvcbrnlFvfYY485/UkCkoAkIAlIAsMiAcxrmN8siPOhG89Du9/8OZbnnIt9N2s+57XUNYKN18/1jMoaa2hZmdx43XXugX87wq3fbMMO6Pangz7sblq9qjbrUltn+bP7VPIJy8eOQRi/7I432heAD2Xl18sdbwsWLHRv2+VdDm7Z+jEdQFfeLjPGBRzLA2OMa92PH/yp3HTIF/FsupAffYJ5DX2EOQvzFHdl2z4NpVVY+F6wcqkSuDEvC9hi/m7BWbfpBd4E3nIHH3uj9NJvB7JUPxfhMddf0POcC3/ftdANgy0nRRoV1rVGCPyCbsNiZqodkoAkIAlIAlYCmN/8Oc/Oh9bPudPOp/5cy3POyb4bm9MZnrpGsPF6uX5R3vmGFmV02+Kr3RPvfkcHcHtxq03cf59+Sm3Wo6yr3PR+lazCsrJjEMYvgjeMj7Qx6gjeANvwjrTd37mve8vb39k1fEN+yAdQLUtXAMXKlmfBmw8LeV4GvKGvMEcJvIV1PKs/Y9cIy6p0Y7DNhncLzrpNL/Am8JY5AMZumKrD7cSU6ucCPOZycvMX9Djnot+61kig4WCNCeu3BggHDWukyC8JSAKSgCQgCQyTBDjX2fnPzovWzznUzqt2vqU/ND9bAyc2vyM8da1g41W9dlF+xQyxn553jnt+29d3QLend97O3TlnVi3WourPYv0peeXLy44/GLdom2AMLAPesMPNHvPmLWgBMrg2HP6y/UPoxp1hgGVlYZitQx58I3Qrs9sN5VjwhsdJCdvg4hxxyoA39JWdl2yf2vbJn38/UEZcT1TpWsAW83cLzrpNL/Am8FZ6YObNU4VrB7FUf9aCnBNbaFHPBb91rXFAg4ETojUmrMHBwYLvyBkmA0ttkQQkAUlAEpAErAQ413Hus/OhnSfht/OonV/tvEt/aJ62Rk5srk9dK9h4VaxXlEe6cUVZ3bhunfv9EQd3ADe32YbuoY9+wN206tparENZV7nF+1cyi8vMjj8h8IZxFGNqigzx9VL7pc48f5mvnfrQjfXqNXzrFrqhnlWDN/QN5jLMVXZOsn1K+ciN3wMh2XAdUaUbg202vFtw1m16gTeBt6TBPnTTVBlmB7FUf2wxDuhWBrxZQyEE3WBM0NDgQEFDBK7+JAFJQBKQBCSBYZWAne84B3JO9MGbD98wpwLAEbZZNwu8YS6PzfWpawUbr8p1i/JKM7TumD/PPfnOt3ZAt5e22tj98uTja7H+VD+m9aPkVE5OdvzpFryhD/xdbVXueItBN/Z9r+BbFdANdRR4K6ej7N9+ulxDVOlawBbzdwvOuk0v8CbwNvCFj52UUv2xhXivoZsdIKwRIvA2rKam2iUJSAKSgCQACfhznp0PAeAE35pj9PTLwPqvs89wL249rgO6PfPWbdxds2YOfO3ZLxmonNG+L6xdUwV48/UJIA4737p5tBR55kE3lls1fOM75Mo+Xsp6wRV4a869ZtcPVfljsM2GdwvOuk0v8CbwNvDFj52UUv0h8EboVnS3W+pONzsw+AaIwJsMU0lAEpAEJIFhlkBo3rPzYip8s7vd6M/b9Rbb+Za6ZrDxrKEmf28MtZvWrHEPfvJjHcANj5b+5f+91918zTUDX3eq33vT75LrWLnasScE3vCDBcbRsrKrCrwBfAGqpdQDXyetApQB9uGrqVXkhXr74M22BddwjrLot9d9P/qEO7cxT+lR07G67cusyLldO1Tlt4At5u8WnHWbXuCtT+At9Euwwq4N/kKeJxc+2mJde9OGjAOELV++fMyxdOlS5x9Llixx9li0aJGzx9VXX+3ssXDhQrdgwYJhtrfUNklAEpAEJIERlwDmOcx3dv6D386P8Nv5E35/jsV5aD6Ozd12frfzPv15awZdL7fWKiu3G2fNdE/uMrEDur205WvdL752TKk1X9l6KF1/+13yzpY3xiuOZRjraMBjjFy8eHES8AqBjarAWyjvpoVZ8Bareyp4Q5+gb9hP6DP2H/pyFPU9JtMy4ZRllW4Mttlw9uegXIE3gbfGDR5cbNO1N21s4R5a5IeMAd9g8A0Ka3DAACF0E3gbcYtUzZcEJAFJYMglgHmO8M0HcP5c6c+lofk2NC/H5nA7z3PupzuKBlBd23zPt05yL261SQd0e2bHrdyt0y9u3FqzrjJWvbIBV13lg/GK4xjGOYx/MP4xVmL8LAMvkEbg7ZWdWFWCN/6IhD5CXwm8VfsRHN4LVboWsMX8gwJuLFfgTeCtUYshLrSta2/a2KLdX+DjBvANAd9QwK8dvjFB8OZDt/nz5w+5yaXmSQKSgCQgCYyyBDDPxeCbP1dyt4CdV/05lwaNnZ9jc7id5+38T39dje1RqdeapUvcHz/6wQ7ghkdLH37/v7i1i65u1DpzVPpM7ewvwMNYxXHMgjeMi93seAN8K/P10rKgr87p+P65t7z9nS7rSHmkFn2CvuE8JfAm8EZ41o0r8Cbw1qgFERfZdDmJ0Q0t2u2inn7fAMC5NRBi0I3Aze50gzEi8DbK5qjaLglIApLA8EuAc50P37j7LQ++heZdzsnWDc3jnOPpcg1AVxChvxDByvuWGZe4p9+6TQd0W7/FRu5/vvzvjVpf2jbJPzh9GmbZY7zCGFY1eKszDGtq3WLgDX04zDqa1bYq+5JzeZVubJebDe8GmlWRdiDgbdnKZW7yUe91sxde0d5aC/92B0x0r508Lnhc+MOLWnGRdrcpe3TE4bUqFaLqvLIUWdfSJ3gusunaGza0WOfkZhf1uHF8A6Ab6DZv3jw3d+7c4be61EJJQBKQBCSBkZUA5jnMd6Gdb2XhG+ZjOz/DH5vL7XzPNQBdraPS11FVyurnx3/ZvbTVxh3QDY+W3n7R+SNrnFYpX+U1GL3uhdw5VnEcwzhHewQ2SNV2p/J75RHUMrJAn8BWRB+hr9hv7Mde6Ejd8ywjx1gayrNK1wK2mB/9Ocij7+DtiJM/04JmgGwWvMU65sRzT3b7HbO/W7V2VWtQQnoL2uAHrLNhsbwGGV73m6kJ9eNgR9e/WUOLdX9Bz0kuBt7wC4e/2w2Pl8Z2uhG6CbyNrC2qhksCkoAkMBISwDxXFL5xTuWPW/7cS8PGn6tD87k/53MtQLcJ65hhqeOaxYvdQx/YpwO4tb5a+t699GjptcMDi4ZFX+vQDo5THMcI3miXDNJGVdljIR3nJvSPwNvLY1qVesL7oEo3Btts+CChG8ruG3jjTjUAMhwp4M2miXU2gBzAHIBcLE4dwusw6De9Dpy06NqbNbRIR5hdzPNm8xf+NAhoIPiPy1joBj8eswFws9BN4G0k7E41UhKQBCSBkZUAwRvhG+ZA+7EFzpX+HMq5lXOtPwdzbrbzdWxOt/M+1wJ0m77GaUr9b73k++6Znd7YAd3Wb/4a98svHqVdboJu0oEMHcBYxTGMNgrGP4yJdbBVVYdXABzBG+Yl9BX7DX3YlLG66npWqR+UZ5WuBWwxP9cbg3L7Bt5sZ6WCN8C0PKAm8DY6v6xxcW0nLt6wsUW6XchzcvMX/TAGaBj4BgMNCbowMvCYjQ/errrqqpE1xtRwSUASkAQkgeGXAOY5wjfOgXzslHMkXX8u5RyL+dafg62Bwzk7Nqdzzqdr1wVVGxnKb+z6Eu9te2mLjTqg29/fvIW744JzR9YYlZ6M1RPJJC4T2jAc4wgA1q5dK/jWp/euWyYR8qMv2C/sJ8w56LtR1u2QrMqGcQ6v0o3BNhvOfh2UW1vwhsdQdz1sUu7jqHw3nB41jQ/ywzBI2MU1Jy17s3JgtC4X8HB5g/kLfgvdYBhYYyH0iGkMus2ZM2f4rS61UBKQBCQBSWBkJYB5LhW+Yf608ynBG9wQfOMcbedtO5/Tb+d9+P21wTCsd+rYhrULF7iH3/euDuCGR0sfmbyHW7dwwUgbo3XsL9WpnjYRxyuOYxzXMO4hTPDtlR1nZYFOt+nQB+gL9An7h/3F/hvV+6tb2dr0lGmVrgVsMT/XGoNyawveUna7EbrZd8DZTq2Tf1Rv0qrazcEObugm5eBoXbuA5w2WBd6skeBDN/yKH4NuV155pRN4G1lbVA2XBCQBSWAkJIB5DvNdDL5xtxvdGHyrErxhPWDXB1WtOZTPK+Di9gvPc3+fuHkHdFs//tXuvs9/2l074jtApCev6IlkkSYLjlcYu3ybBbYK7RS7MQD2id0cYP3WdpF/UccPPlYeVmb0w8Vh5yT0gYVu6CM7z4yynlfJVUK2fLdhMdhmw8kDBuXWErwRqGXtYgOYw0cV8h5FrVJJuskrdqPuddJeboPDNnCHnH3IyPxiOG3aNLfpppu6c845J7nNnKhC4M1OXNZP8Mabi5MZXTupcRDGIB2Dbj54g/GBA8aIwNtI2J1qpCQgCUgCIysBznWc++y73jA/4iB0o2vhG40c39DhnMy5mnO3nc+t31+c2/VBbK2l8DQo0CGna65x933hsw7vb8PuNh7PThzvfnTu1OT1W0eeGe+/UrwSfSR5Nk4POV5xHLNjG8ZAjH8cCzk2wl6xhx1L5X8ZnqXIwcoQfsqX8qbsbZ+wn9hvozxOdcNB/LSUa5WuBWwxP/t6UG4twRu+ZLrblD0cPq7gdxTf6VbFl0xPO+20FgACBIIfZU2fPr0dhnAc++67b3sQhN+G+fWLnYdu1CsWX+E2OWqTFnib8OUJbtHyRY2bQNgu1B1tSGkHgBtkWAa8hW5QO0DSz4W7vbE4wNK1gzR/FYGR4IM3vteN4I1Gh4VuV1xxxcgaY2q4JCAJSAKSwPBLAPOcD98wD+J9bwRv/scWOKdyjrXzLudiuna+5hzOOd26oXWAjKJqoc26BfPco/vs3oZthG7/u/dubt38eY1dq3LNKrdafZE8i8mT45UdyzjGEf7Y8VD+ZW07vJeygOzZD7Zv2F+jrucxxlEm3Mq3Kn8MttnwXupPSt61A28Ea7GdbAiPQbmiHQ/YdvTRR3fAPYQdfPDBbvXq1R3hNm/AOcI4G57lj92sw7DjjdANO/dSwFtMFrFwDnhwQzcnB0nrctFubwIu7uHilw5rANAooJHAX+uzoBvBG4yR2bNnD7/VpRZKApKAJCAJjKwEMM8RvtkfoLLgG+dUzrF23rU7DjAv2/mac7id1+kPrQPsOiG2llB4Ghy44/xz3LMTxndAt/Wbbeh+9dkpbpUeLRV01C67ynTAt2s4xtHlOAgX46M9l395aXn4sqS86do5Bn2kuePluSOLcxS9ZmVcld8CtpjfrjMG4a8deMt6zBQ74ADdsh5BLdLxdQBvw3Az9wu8xW5MDpTW5STFm8pCN/jt4h9+GAU0ECx0s+ANj9VYYwO//MMIwTFr1qyRNcbUcElAEpAEJIHhlwDmOc55mP/sfIj50e56szvfOLdinvXnXn9u5pwNF/O4ndfpj60FCN+GYV01iDYAqgGuAbJxhxvc57Z/g7vre2fK+BRwkg5UrAMcs3wAxzGOY57cFcG5oCq5UN7WtX0ziPG4jmUWYSx5ca2sq/LHYJsNt2uMQfhrB94A1bY7YGLwa6aEcnjM1D/K7IILgTfsgOvXjjcLrLDzDTeZffwU73074dITWo+iYjcZHkvFdRvHfz+cvYY8bXrExbl/M6McXOPxqiNe5abNmdYRj3FQB+SBOPCfctkpLT/T0s3a+RZ61JRhfLzXPoaKwQ8L+t13392NGzeufXz961/vGIinTp3auvad73zHffCDH2zHgx/pucAP7XajYQDXgjcaEj50wwumaYBgF8APf/jD4be61EJJQBKQBCSBkZUA5jnuesP8xw8tEMD58I1zqZ1fffiWt+stZliFFuo0lPw1js7zd7pdP/dK99i7d+kAboBuj71rZ3fd3Ks61oOSZ748JSPJKFUHOG7RDY1tClsZfOKpF3JhP9BN7cdRiJcH04pc70XfWcAW8w8CttkyBwLeinRML+PGwBvhT+xdblU9apoH3sb/+/g2DCPQ2viojceALgvKLHhjGuvauLZ8G4d++8EHgjekRx0QpyrwBsg2ceJEN2PGjPbi7tRTT209DoqB7Ac/+EHrOkAbb1SGTZkypQ3fCN4mTJjQelcfFB19hfNPfvKTbfDm/+JedLebhW4wPmCMCLyNrC2qhksCkoAkMBIS4FzHH518+OaDtzK73uwCFf4yu95GwQCqso13Tf2ue37b14+Bbr/59KFu1cqV7XVZlWUqL4Ep6UCnDgD0QCYEPrB3rJ/2j9zqIJyVL/3sA+lnp35CHlUymV7ocQy22XB/jdHvc4E37x1vVqnwnjfsfttll11av+zyWr/AG3e4+YCMu+PsbjZCMgveLGTDDjacA5gxPWEawrgTzpbF8nGz2bhMz0HJpsna6cb43N3GXW2HH364mzRpksMinXHo4tfwD33oQ60DgMzeqABxgGqXXnppC74RvB133HGRdhg9AAAgAElEQVQd74oBdNttt91aL4X2d7sBwtlf4/ELPeqBg7vd8OJo7ngDdLPgjbvdZs6cORKGlxopCUgCkoAkMJoSwDwX2vXGnW+YJ/0PLRC+2XnW//GrzK43uxawfhhPXD/IHWs4WZmsWrHC3f+pT4wBbs9t+3p391nfkRwrfqzQyl7+bN0cdfnYcYxASO41bRBZpSyoa1bmDJPbeZ+Sg1Th2nm7Kr8FbDF/v0GbX57AWwZ4g2JBYPiQAnbHUdH6Bd4s4CL4sjDNQrYQeLPpMXjgHJANcAxp4fIc8IwDjAV6BHKh8hm/W/B2/PHHt75yCgDHPOlyZ5vd7cYbFNcA3gDc8DgKwdvZZ5/dAd6++tWvRsGb3e3Gx0wteIMRgYOP0sDA4LvdCN1giAi8jaYhqlZLApKAJDAqEiB4s/AN8yHBG+ZJzpn44YpzKX7QsuCtisdNuQ7wXRpkXEPI7TScKI8b5lzhHt9jpzHQ7a/vfJu7/so5Y9ZiTCc3LE/JRXIZhA5wvJObDeUG0TfDWCY5SBWuP3dXcR6DbTbcB2H9Phd4ywFv3PVWd/BGyBaCcbz5Y+CNaRnP7o7zwZvdBcf43YI35APoxkd899tvvzGPmeKm8W9KgjfscLPg7ayzzhoD3gDoLr744jFfM7XGgN3txh1vMCL83W4wNADdCN5gjAi8jYrpqXZKApKAJDCaEuBcR/CGOZDgjfDN7nojeIPrwze76w073uyuN38hHHrPm78e4DkNUK5P5I4FIj8+83T3/DabjoFu90/5uMMuOMlsrMwkE8lEOiAdGHUdqAK4MQ/O2VW6FrDF/P76ot/nAm854A0d0oQdb4RnMfDmw7GyO956Bd44mHH3Gx89LbPjLQu82cV+3mOm/OUev+LDqOBuN4G30TQ61WpJQBKQBEZZAjHw5sM3zp1Zu978uTgLvIXe8xZbrAu8xY3j1cuWuQcOOWAMcAOE+/EZpwm46dFS6YB0QDogHYjqAKFZFW5sDu8mPAbbbHi/QZtfnsCbAW/Y3YavmkJIUCrudgN4YxjC6/ioaQi8WUhmHx/lY6l8fLTIO95snoRlcLmbLnbdxvXf8WavwW8/toDFeewdb9jphi+d4hf22I43fMkUj5pyx5td7PuPmdpf52k4wPXBG3e7zZo1q7XTDcbIZZddNsr2mNouCUgCkoAkMOQSwDxH+Ib5j3NhDLxh/rTzqt1h3qvHTQXewuDtxlkz3ZO7TBwD3Z6YtKO7Yc7sqKHlr890Hpav5CK5SAekA8OuA1UAN+bRDWCLpbWALeb3QVi/zwcC3i784UVuuwMmutMvPqPlvnbyuJY7e+EVDgeuIQwH4rKTVq1d5fY7Zv/2tSNO/kz7GuMUcUNfNUUHALTxsUd8XAEAzubbFPAGoOYfFozZXXB+PAvjMJAQ0tn0doDhdeaT9ZEFH7wde+yxrcU588OuN+54wyIaN8+4ceOcfc+b/5hpHnjbfvvtW4+aWvBmjQD4rYFgwRt3u8HFV9xobNAAgYsvsupPEpAEJAFJQBIYVglgnrPzHudCft2Uc6WdP+286s+5dj6u+nFTrifkXuvu+dZJ7sWtNhkD3R449KNu9fLlgm7a4SIdkA5IB6QDuTpgWUi3/hg86yY8BttseL9Bm1/ewMAboBogGmAaOg8QDWG7TdnDLVv58o4zhPnnNs2MK2e0QF3Zzg+Bt5S8mgLesAuNO9EAxGIwzMZBvBBcI1gLXcPC1od4sbIQ1wdvWJgDtBF2ErohLsAbbkI+cgoAx4MfVeD7X/hxBfuoKXe8+eCt7G43gje72+3yyy8XeBtWS1PtkgQkAUlAEmhJAOAN8x3hG3e9YV7sdtebwFv1u0VWL1vq/nDgh8YAtxe2Huf+47Rv5hpZgpbV94lkKplKB6QDTdWBFEaSGqcbwBZLawFbzO+DsH6fDwy8YVcbdrexg7Czzd/hhuu7HjapFY+73brd5cby4A4avPXixrPveANQ60UZ3eZpHyXNy4vgLXSTEbhZ17+BAN64oIfLX9jLgDcYFwRv/JIpDBA8fqMdb7JMJQFJQBKQBIZZApjn7OOm/MgC50bueLNfN0193NTO05i3/bnczvP0h9YFCMO6IW9tMezXb7p8hntq5+3GQLcnd93B3Tj7hyMvn2Hvf7VPcEc6IB2oWgcsQ+nWH5u/uwmPwTYb7q8t+n1eG/BmIRs7k4+d8nHTE889uQXnfGjH+EVdgDfusoI/Lz06h4+h+u99y0tbtfLH8msCeLOPksbawfCsG5CLb7p4AbN/A1nwZqGbBW/2a6Z4GTQfk7FfM8Wv+TQu8Cu/wNswm5dqmyQgCUgCkoAvgRB4w3zIuZG73gDe+HVTzKexjyxgHsbBuZnwLQTeinxgAesGriFG0f35N77qXtxy4zHQ7fef+H8OH1gYRZmozYIQ0gHpgHSgOx3IYx1FrmfZ92WvWcAW8/ucoN/njQJv6FDufMPuuKoAXBFFKRu3Xzd73cEbHys9/PDDcxd/WbvdcFMSuNEN3Ty9AG+AbgRveOwGOwDwKKz+JAFJQBKQBCSBYZUA5jnMd3zclHNhP8Ab5nfO9XSzFuejuOttzeLF7k8ffs8Y4PbCG1/nfnrKCblrrn6tU1VOd8av5Cf5SQekA4PQgbIMJJQua/4uey0G22x4iBX0M6xx4I2dh/fA4f1v2AXHsDq7/bpB6grepk2b1t5dmALdIK8s8MaFt3X9GwfQLQbe7Eue7Y437naDi1/tcdjdbniZNI0NPGYq8DasJqbaJQlIApKAJGAlEANvmBctfOPcaedTfmQB862df2M73kK73ux8T39sgT5q4O3WS77vntnpjWOg29/esb27aeZlgm56cbp0QDogHZAOdKUDVXKW2NzdTbgFbDG/zwr6fd4Y8Iadbl8962vtjzEIvA0/7a8CvPHRldj73Sx0Cz1mGgNvfLk03++mHW/WPJNfEpAEJAFJYNgkgHku9LhpDLylPm7qP2qK+VrgLX2N94uvfMG9tOVrx0C3P37sQ27NsqVdGVr9+tFY5aT3t2QlWUkHpAOD0AGBt2VjXmlVFNw1Bryhs/kBBjxmiqMpu91Q90HcIE0vswh4y3u/G8Eb3ynDX9zzwBteFs0dbzAuuOPNB2+XXnrpsNlY0fY8+eST7pZbbnF33HGHe/bZZ6PxdKF+EkB/od/Qf+hH/UkCkoAkkCoBzHMx8Eb41s173uwPZSHwVuQ9b6Ow423toqvdw+971xjg9uJWG+vRUu1skd0hHZAOSAcq1QGBt4aCtyo7ril5NR2CDaL+gwJv+JU+9GEFGBZ4kTShGx4zhRGCo07g7bHHHmu9C+eMM85wPLDl9tZbb3XPPPNMqo0VjXfvvfe6HXfcsfWhkUcffTQar44XHnnkkdaj6VnQ8PHHH3c333xzK94f/vCHOjajdJ3QX/gwDPoP/ag/SUASkARSJUDwhjmP73nDfIh5MQbeuOst5QMLAm/puzhu+/6F7pkdtxwD3Z56+7bu5st+UKmxNYj1n8pM1wXJSrKSDkgH+qEDVTKXbh4pjaWNPV5qw4vuUKs6/kB2vFXZcU3Jqx83xLCV0Wvwht1u3PEGo4CPmvrgDe+ugVHhgzc+Zgoj5JJLLkm1XXoWD1ANg8trXvMat8EGGwQPwLdu/5oM3tB+yAbwKQQN//KXv7hDDjmkFeeoo45yTz31VLfiqlV6gbdadYcqIwk0SgKY5/hjE+Y//ghF8Eb4hp3ieE0D51J+2ZTwjXMvdp5zFzoeNxV4SzMef/nFo9z6zV8zBro9uP/73JoliwXdtMtFOiAdkA5IByrXgSqZSwyedRNuAVvMXzVIK5qfwNsNN/Tl4wwxKLbXSXu5DQ7bwB1y9iGV3yCxMpsSnnXz8cXKdMs8asrFP1767IM3GA0wHnBY8MavmcLgIHjDe28GDd7wCOFxxx3XAkYAb6ecckpLr2+77baWe9FFF7k999yzteutW0tv0ODtwQcfdMccc4w7+uijC+/gywJvgGyAbQBzH/rQh9xDDz3Urahql17grXZdogpJAo2RAOa5rPe8WfBm4dsgwBvWD01Z66TWc92Cee6RffccA9xe2mpj9/Pjvzx07U2Vi+KlAVvJSXKSDkgHutEBgTc9atoXaFaFooUU3X6BdMKXJ7hFyxc1duGEuqMNVbYjFbwBuoXAm/31nC9v5q/r+KXdB2/8Apt9zLQp4O3OO+9sfTV2u+22cz/5yU+ChtwLL7zgnn/++eC1IoGDBm+EZ0ceeWRl4A2ywWO5wwzd0McCb0U0XXElAUnASqAb8Eb4hh+6OPf6O978XW/+L8mc6/mDG9ysdUJo3dXUsDvOP8c9O2H8GOj29E5bu1t+ML2xa8em9ofqLYAhHZAOjJoOVMFDmEfW3F32WmyXmw331xX9PteON+1463rBRuiGnXt1Bm8WusXAGx+NsTve+Jgp3NCON7z3ZtA73rArD9DoiCOOcE8//bS1lSr3Dxt4W79+fesDGv/0T//kdtllF/eLX/yicpnVJUOBt7r0hOohCTRPApjn+J43+6gp5kU7T3K3eOhxUx+8+fDN/mDmL4hHEbytuuYa96t/O8KtH//qMdDtz/tNdmsWN/cH21EzWtVegRrpgHSgyTpAaFaFWxauZaWzgC3m99cV/T4XeBsweGvyDci61wG8hW4cu4DHL+kWvPEX99BjpoBvNBzg0qDAe2wI3vBiaRgeeOymTuAN7ycr87VK7PjCTrJvf/vb7sADD3Tf/e533Y9//GP30ksvjbEOU8Dbww8/3Hr5Nh7dxAEDDNAn6w9lAXpdeOGF7rDDDmulgx/lAY498MAD7cdmARn3228/t3r16lZY1scSbJncLWff8XbjjTe68ePHtw748/6KtI11RrvQBriYDM4///y2PBCGSQxxEee3v/2tO++889zBBx/sTj75ZHf77bcH+4H1ZBrK7Stf+Urr4xqh99MJvFFqciUBSaCoBAjeMO9h/uMHFjAv2ve82fmTP2Zxx1uR97yF5nXAt1HZ8XbdvKvcY+/eZQxwe2mLjdwvvnZM1z+acg0nVzBAOiAdkA5IB/J0oArgxjyyAFrZazHYZsND64p+hgm8DRC8WWCFd71B4e3jp3jv2wmXntB6Bxx2k21y1Cat6zaO/344ew152vSIi3P/xkI5uMbjVUe8yk2bM60jHuOgDsgDceA/5bJTWn6mpZuy8+3www9vPR656aabtlyAFMAy1g83Hm6WcePGtQ+c20U3/KHHTHETVQ3eYFzEwNv06dOL2jCVxuejpti1BVAYAmaxAgF8PvzhD7d2zAFo2QPvUfNBXhZ4A8DD++9CH3h405ve1AJMAEX+3+9//3v38Y9/vKNs1oOPlHJXH8Ota0Gan7c998EboBd2uUFuc+bMaYEvG9/6y7SNdT711FNb7xGkXOxXRXENbYHcYNCiLrZtOD/zzDMdyvf/8EGNb33rW2PSIP2kSZPcz3/+844kAm8d4tCJJCAJFJAA5jn80BQCb5gb+SNVP8Fb1uOmXEs00b1z2tnuue3eMAa6PbPjVu7W6Re310lNbJvqLANfOiAdkA40TwcIzapwy8K1rHQWsMX8/YRsobIE3moM3sb/+/g2DCPQ2viojceALgvKLHhjGuvauBb82Tj02w8+ELwhPeqAOGXBG4AYIJsFbQwDLMAuNHzRFDfNxIkTW4t83mjf/OY3HR5NsfAtBN6WLl1aCXgDjKExUWfwho8rHHvssW1gg48P/O53v8s1qfABAXxIAHDna1/7mvvjH//oXnzxRXffffe1QRigD8L4FwNvAGqQF/LaeeedW7vRnnvuudaXQSFD7CoD5ELe9o91ACw64IAD3C233NLaDQZIBP8555zTepcbd4/hQxGI2+2ON0Aptj0PVpZtG8HboYce6iZPnuxOPPFEt27dOofBGLARfwRvgJ/4AAZ28aHtf/jDH9xJJ53Ukidkd/fdd1uxtUAc30v3/ve/3911112tsMcee8ydddZZrXTIE19q5Z/AGyUhVxKQBIpKIBW8YR4gfOtmxxvmcX/h6u94ywJvWEc0zbhbtWKF+82nDxkD3NxmG7qH3/8vbu2iqxvXpqb1gerbPCCgPlOfSQd6rwNVADfmQbu+SjcG22y4v6bo97nAW43BG3e4+YCMu+PsbjZCMgveLGTDDjacA5gxPWEawrgTzpbF8jGY2bhMz0HOpknZ6Xb88ce3gNqMGTM6FpA4B2jDdSyYp0yZ4nbffXeHR1TsjWmhG/wh8GZ3u8HPx0zhht7vhsdfaCDYR02zwBvqy0dNB73jDQYUHi084YQTWsAFYAq7q7Ab6k9/+lPQvgJMmjZtWgtiIZ6/owoQ7t3vfncLlt1///3tPGLgDY9IApxiNxd2ktk/lIXHlFCvqVOntneWAegBRiEcj6SGHo+0+cDPXWvcCedfzzpnWgDAj370o61yAa/8tvt5lGkb8iB4Q/sA9yAH/4/gLSQ37GhDO5EeE4f9A4gDkPvXf/1X9+c//9learUH9xHSQd/5J/BGSciVBCSBohKw4A3zn33U1O54C4E3zKv8erj/njc7P/tzt78oHmbwdsOcK9zje+w0Brqt32Ij9z/HHt2xXuL6S27vjU3JWDKWDkgHpAPXtp5aIjjr1rV2fVV+C9hifn9N0e9zgbcagzcLuAi+LEyzkC0E3mx6DBg4B2QDHENauDwHPOOgYoEegVyofMYvAt64s83udmM+vIZHUAHevv71r7ceMQWAszdlP8EbwAmACd/vBuMCjwTC4CB4A1CqA3iDEQWwg6+aYgcUoAsOALgLLrjAYVec/QOQ22effRy+hOo/koh4gGLoA+SBnQf8i4E3QEjEBUizO+SY7mc/+5nbeuut3Uc+8hH3+OOPt4IB9ADBYnVgWusSnnUD3gCsALpQ3xTgV6ZtqDPBG+QcA6AEb5B1SG7QOdQTuxixgxB/FliibqG/NWvWjEkn8BaSlMIkAUkgRQKY5zDfYcwJgTe+5w3jnr/jTeAt23D98Zmnu+e32XQMdPv7m7dwt190fnt9xvWS3Gx5Sj6Sj3RAOiAdqFYHuoVtNr2166vyx2CbDe83aPPLE3gbEvBGyBaCcRx4YuCNaRnP7o7zwZvdBcf4ZcAb4BrT0yV4A5TDxxBwIwK68R1veCwQv4xb8IZfv4vueOOHFeDyF3i7481+0dQHb4BuFrzxwwp1AW80nvCOt+uvv97h3WeANji+8IUvdOwow8cT8H69vffeuyVrOyDS/+lPf7qVFnLgXwi8AQgBDKEcfJiB6a2LPADe7PvYCIeKfI21CvCGOtx8880t6Ic6Z+16K9s2yAttRv4WmlGOdAnerIx5De5NN93UysOCRoBLAMxNNtmkZQRbOdPPR3JtOoE3K1n5JQFJoIgECN74ZVPueMOciB8IQuDNftnUzrd2Hi66483f9RZbtDfhUdNVy5e7Bw47cAxww6Olf3nvXm7dwgVj1kpcM8mt1qiUPCVP6YB0QDoQ1wHaF1W4sXm7m3AL2GJ+H4T1+1zgbUTAmw/Hyu54qwq85e1482887n7Do6f45ZzwbVDgDV90wy/+dQVvNKawyw115Uv98WgpH3ckwAIYyjssFAqBN/tIZF5eFrwRTOHrnawX6x5zWW8LlGJx/XCmZR34RVO8lw6PR4XqULZtKJvtA1yL/eWBN9bZtpcALU/WuB5KZz/uEKuXwiUBSUASsBLwwRvmFv4YVUfwhnVEneHbjbNnuSd2f/MY6LZ+89e4X37xcwJu18YNQBnHko10QDogHeivDlQB3JiHb+dXcR6DbTa836DNL0/gbYjBm4Vk9vFRPpbKx0eLvOPN5mkHPO6mi123cfPe8YYbJHQDIhzvgAPs6iV44yMyADEAJ/ZRU+52awp4g9EEmMT3q+F9YHj5Pv4IdPBY6qpVq4K71DhA4sMG/MsDb+edd15mXnfccUf7sVeCqdhjlizTuqy3BUr2epafaQneIBv0M8AbHj8FiPP/LHgr0jbkw/b1CrxtueWWrV0m7KeQe88997QfYSWwE3jze1nnkoAkkCeBEHjjrjcfvIXe89bvHW91Bm8/+c6p7oWtXzcGuj07cby744JzBd0E3aQD0gHpgHSgVjoQsjHKhoXs/G7DLGCL+X0Q1u9zgbchBm8Aav5hwZjdBefHszAO0IyQzqa3MI3XmU/WRxbwYmW8hN/uegs9ZvqlL32p48MKgDP92PFWBLwBaNXpHW8xw4nvV7PAhWF4/5j98mUsD4aHwJt9HxwMsNQ/Pmp6yCGHuCeffDIpGeFZFeANBeLDCvw6KN43538YomzbkHevwBtkBZlhRxseRU39E3hLlZTiSQKSgC8BgjfMedjxjR+gBN6K7ThYvWyp+/1BHx4D3PBo6SOT93Dr5s+rlaFl13nyF+tryUvykg5IB4ZJB8pCtlC6biFbKH0MttnwfoM2vzyBtyEGb9iFxp1oAGIxGGbjIF4IrhGsha5hUPEhXqwsDkAEbXjHGA++9w2PhuCGwtdMAdr4jjd+4ZS73eCmPGqK98XZd8jYd8vYX+DxCCsOH7zhvTU4+EgNDA3ueCN4+/73v+/bKH09D72U31aA7wmzkO2RRx5x73nPe1q7vdatW2ejZ/pD4A0JCJkOO+ywjnfJZWXGjytAB+68886sqO1rVYM3ZIyvqeIjCwBZIfhWpm3Il+mq3vGGnXr4Ei3qG/uYRVtgxiPwZoQhryQgCRSSAOY5znk+eMP8yLkS417ZHW+Yr7E+4OEvWjnn23VAaAHOsDo9anrT5TPcUztvNwa6rd9sQ/erz3/aXXvNNYJu2uEiHZAOSAekA7XUgRBAKxvGObpK1wK2mN9fU/T7XOBtgOCNEKpK135cAUCtyrz7lRfBW+xmtAtuLsL9G4eLdrgp4A2Qr8ngDS+wPvPMM93DDz88xpD685//7A488MAxkAbwBu98A7zBI6j2cVJmgp1w2JVm/2Lg7be//W1rJyMe28RX77CTzP7hgw+AZr///e/bwQCGp59+ersOv/nNb9rX4EEd0SYLFvGoKsp417ve5R588MGO+HknhHZ81NTGf+ihhxw+4AF5wMU5/8q0DWl7Bd6Q99133916PBaPyOKegazsH97vh7574okn2sECb21RyCMJSAIFJdAteMM8yx+77A9g9oexYQVv/3Xice7FrTYZA92e2/4N7kfnTm3kWq1fa0KVo11D0gHpgHRg8DpQFrKF0sVs/G7CY7DNhvu8oN/nAm8Cb7Vb8PULvOGRVxoBeeANj0/WeccbAQ+g0a677travfWNb3yj9QVRflhh8uTJzgdbAGsf+9jHWrAJ8fD4Jh67xAE/wvzdWjHwBhsO8mR5e+65Zyst8kIeOLePutLmA+A64IADxtTh29/+tsP75/xHSv/0pz857NxDW5EO+ePjDHx3HfMNuVngDfHxmCl2vCFv7IDDTjj+lWkb+8WXIfOEi2soD3FDf6yzLwfAyKlTp7YgJNJDVpAZ5IG+32GHHTq+IIu8Bd5CElaYJCAJpEggD7zxPW8Yy0I73ix4w/xL+DbM4G310iXuTx9+zxjghkdL/3fv3dx1c6+q3RpMBu7gDVz1gfpAOiAdqJsOhABa2bBuAFssrQVsMX+/QZtfnsCbwFvtFn3dgrelS5e2H1PJ2vFmwRt3u8UeNbXgDY+Z1u1RUwCjKVOmtKEXQAwP7IgCkIm9xw3vC8PjigRmTIddZYceeqj7z//8zw6bLAu8YdfVbbfd1oJszIcuQNDFF1/s8LEC/w+AC4Mk6sr4cHF+/vnnu+eee64jCR6dfdOb3tSOaz8a0RHROyHECu14Y1R+6RTlA2Jx516ZtvUSvKG+2EV49dVXtyCblRv8AJ24xvojvsAbe1muJCAJFJVACLxhLuSPUnngDfMrf+xKBW+Yz+3Clbvc7c732CIc4VhPDMp4uWXGJe7pt24zBrrh0dJff3aKWzXAug1KJipXMEE6IB2QDjRTB8pCtlC6rHm77LUYbLPhdj0xCL/Am8DbwBalsYF3kOANj2yG3vEWAm94nJLvuwFQqsMfIAt2fgGw4IAfcCblD3CL6eD6sCslD8YBpHr88cfb+cHvPwrJuNa1dUDdLTSy8eC3cbupq59v3nnZtuXl28119LHt97/97W/dZKe0koAkIAmMkQDmOc55mP/4I1QeeMO8yh+3RgW8/ffXjnEvbfnaMdANj5be9b0za7fuiq3HFN5MA1n9pn6TDkgHqtaBEEArG1YWrmWls4At5h8EbLNlCrwNGXir+iYbRH5Vgzf7GAv8fLwltOOt6eBtjKWkAElAEpAEJAFJoAIJ9AO8YY6272ht2o63tYuudg99YJ8xwA2Plj72rp31aKlemi7oKh2QDkgHGqkDZSFbKF0WQCt7LQbbbLiFYIPwC7wJvNXu5m8aeJs+fXrrEcoK7BplIQlIApKAJCAJ1FICAG+Y77DrrVc73poM3m77/oXumR23DEK333z6ELdq5crarbcG8eOqytROHOmAdEA60DwdCAG0smFl4VpWOgvYYv5BwDZbpsCbwFvtFoK9BG9451XVO94E3mppI6pSkoAkIAlIAhVKoFfgDfOy3ZnexB1v937p8279FhuNgW7Pbft6d/dZ36ndOktGb/OMXvWZ+kw6IB0YpA6UhWyhdFkArey1GGyz4RaCDcIv8CbwVrsFocBbhZaSspIEJAFJQBKQBCqQgMDbWKNv7cIF7pF99xwD3PBo6V/f+TZ3/ZVzarfGGqThprLH6pBkIplIB6QDTdCBEEArG1YWrmWls4At5h8EbLNlCrwJvNVuUdgv8MaXPMPli5/5jrc5c+Y4HPgq5axZs1zWxxW0460Ci05ZSAKSgCQgCdRaAkXBG+ZQfKwo9HEFzLvcfd7UHW+3X3ie+/vEzYPQ7bdTPu5WrVhRu/VVE4w71VEQQjogHZAO1E8HykK2ULosgFb2Wgy22XALweGYhs8AACAASURBVAbhF3gTeKvdwlDgrda2lyonCUgCkoAkMIISEHh72RBadc017r7Pf9qtH//qMdDt+W02dT8+47TaratkxNbPiFWfqE+kA9KBJulACKCVDSsL17LSWcAW8w8CttkyBd4E3mq3QBR4G0GLTk2WBCQBSUASqLUEBN6uddfNu8o99u5dxgA3PFr6xKQd3Q1zZtduTdUkw051FYiQDkgHpAP11IGykC2ULguglb0Wg2023EKwQfgF3gTeardI7CV446MtcIs8ajpz5kzH47LLLnM48FU3fN1Nj5rW2lZU5SQBSUASkAQqkEAeeMMciVcz4BUNfF1DyqOmmI+b8HGFO6ed7Z7b7g1B6PbAIQe41cuX1249JQO2ngas+kX9Ih2QDjRNB0IArWxYWbiWlc4Ctph/ELDNlinwJvBWu4VincDb7NmzW4YEoRtcgbcKLDhlIQlIApKAJNAoCaSCN8ybwwTeVq1c6X79mU8GgdsLW49z/3HaN2u3jmqaQaf6CkJIB6QD0oF660BZyBZKlwXQyl6LwTYbbiHYIPwCbwJvtVswCrw1yhZTZSUBSUASkARGQAKjCN6un3ul++tebw9Ctyd33cHdOPuHtVtDyXitt/Gq/lH/SAekA03UgRBAKxtWFq5lpbOALeYfBGyzZQq8CbzVbtHYBPA2Y8YMd+mll+pR0xEwNtVESUASkAQkAecseMP8h3kQO8DtjnA8ajosO97umvpd9/y2rw9Ct98f9GG3etmy2q2fmmjMqc6CENIB6YB0oP46UBayhdJlAbSy12KwzYZbCDYIv8CbwFvtFo4CbzLxJAFJQBKQBCSBeklgVMDbquXL3W+nfDwI3F544+vcT085oXbrJhmt9Tda1UfqI+mAdKDJOhACaGXDysK1rHQWsMX8g4BttkyBN4G32i0g6wLe8ILo2DvetOOtXgahaiMJSAKSgCTQWwkUAW/8wELTPq5w4+xZ7ond3xyEbn97x/buppmX1W7N1GRDTnUXiJAOSAekA83QgbKQLZQuC6CVvRaDbTbcQrBB+AXeBN5qt4gUeOut8aTcJQFJQBKQBCSBohIYdvD2k++c6l7Y+nVB6Pbg/u9zq5curd16SQZrMwxW9ZP6STogHWi6DoQAWtmwsnAtK50FbDH/IGCbLVPgTeCtdgtJgbei5pDiSwKSgCQgCUgCvZXAsII3vKvtd5/YPwjcXtxyY/dfJx5Xu3VS0w041V8QQjogHZAONEsHykK2ULosgFb2Wgy22XALwQbhF3gTeKvdglLgrbfGk3KXBCQBSUASkASKSmAYwduNs2a6J3eZGIRuT719W3fzZT+o3RpJxmqzjFX1l/pLOiAdGAYdCAG0smFl4VpWOgvYYv5BwDZbpsCbwFvtFpX9Bm/z5s1zc+fObR1XXXWVwztp5syZ4/SOt6JmmeJLApKAJCAJDKsEqgBvmG/nz5/fOhYuXOh4LFq0yPFYsmSJ47F06VJnF63Lly93OFasWNE+shbiWE/EDJ57vnWSe3GrTYLQ7c/7TXZrliyOpo3lqXAZ2NIB6YB0QDowjDpQFrKF0mXN22WvxWCbDbfriUH4Bd4E3mq3sBR4G1azTe2SBCQBSUASaKoEhgW8rVm6xP3xox8MAreXttrY/fzrx9ZuXTSMRpzaJDghHZAOSAeaowMhgFY2rCxcy0pnAVvMPwjYZssUeBN4q90CU+CtqWaZ6i0JSAKSgCQwrBIYBvB2y4xL3NNv3SYI3Z7eaWt3yw+m125NJMO0OYap+kp9JR2QDgyrDpSFbKF0WQCt7LUYbLPhFoINwi/wJvBWu0Vmk8Db9OnTHQ4YJPqTBCQBSUASkASGVQIEb5jzLr30Ujdjxgx32WWXuZkzZ7aPWbNmudmzZ7de1YBXNuDVDXiFA1/nMMhHTbGTDTva3GYbjjlaj5YuXlS79dCwGnBql+CEdEA6IB1olg6EAFrZsLJwLSudBWwx/yBgmy1T4E3grXYLTYG3YTXb1C5JQBKQBCSBpkqgqeBtzeLF7qEP7DMGtgHAvbTFRu4XX/1i7dZBMkibZZCqv9Rf0gHpwLDrQFnIFkqXBdDKXovBNhtuIdgg/AJvAm+1W3AKvDXVLFO9JQFJQBKQBIZVAk0Eb7dccrF7Zqc3BqHbMztu5W6dfnHt1kDDbrypfQIU0gHpgHSgeToQAmhlw8rCtax0FrDF/IOAbbZMgTeBt9otOgXehtVsU7skAUlAEpAEmiqBpoG3Xxx7dGtHW+jR0off/y9u7aKra7f+kTHaPGNUfaY+kw5IB0ZBB8pCtlC6LIBW9loMttlwC8EG4Rd4E3ir3cJT4K2pZpnqLQlIApKAJDCsEmgKeFs9f777y757Bne5rd9iI3fvsUfXbt0zCkab2ig4IR2QDkgHmqsDIYBWNqwsXMtKZwFbzD8I2GbLFHgTeKvdAlTgbVjNNrVLEpAEJAFJoKkSaAJ4u+38ae7vEzcPQre/v3kLd/tF59duzSNDtLmGqPpOfScdkA6Mig6UhWyhdFkArey1GGyz4RaCDcIv8FZT8PapT33KTZo0yS1cuHDkFokCb001y1RvSUASkAQkgWGVQK3B24oV7t6jP+PWb/6aIHT7y3v3cusWLhi59dSoGIRqp+CHdEA6IB3orQ6EAFrZsLJwLSudBWwx/yBgmy1T4G3IwBuA3X777eeWLl1aqwXmSSed5MaNG+fOO++83HoJvA2r2aZ2SQKSgCQgCTRVAnUFb2vmzXWP7rNbELitH/9q98svfDZ33SGDrbcGm+Qr+UoHpAPSgWbrQFnIFkqXBdDKXovBNhtuIdgg/AJvQwTeANsA3eoG3i6//HK39957u8suuyxp8Svw1lSzTPWWBCQBSUASGFYJ1BG83TZtqnt2wmZB6PbsxPHu9vOnJa07ZBA22yBU/6n/pAPSAelAb3UgBNDKhpWFa1npLGCL+QcB22yZAm8Cbz1flJ5//vlun332cQsWpD3mIfA2rGab2iUJSAKSgCTQVAnUCbytXLbM3XfkYW79ZhsGodsjkye5tXOvclhPyBjrrTEm+Uq+0gHpgHRg+HWgLGQLpcsCaGWvxWCbDbcQbBB+gbcagDfsBJs4caLbdNNNW8c3vvENF3rHmx/P7mybNm1aOz3zsdfxrji8M47X+vn+OIG3pppZqrckIAlIApKAJPCyBOoC3tZcMds99s63BYEbQNx9R33KrVyxwmHxLvA2/MagDH71sXRAOiAd6L0OhABa2bCycC0rnQVsMf8gYJstU+BtwOCNwAywjYMG/ABkFo4BnAHG8d1tBGkIY7rYo6YIRzx+qCEWj/lY9+KD1rmTN70helx+7Np2+Tad9Qu8yWyTBCQBSUASkASaLYE6gLc7zjzdPfemfw5Ct2e3f4O745yzW8CNi3OBt94bY3a9J7/kLR2QDkgHhlMHykK2UDrO0VW6Mdhmwy0EG4Rf4G2A4C0GwBhuwVtoEAOgs3GYzu50C6VDGIAfdtnlvXdN4G22mzVrlps5c2b7gMxmzJjhLr30Ujd9+vTWAYNkGP7uvfdet+OOO7orrrhiYM059dRT3b777useffTRgdUhteBbb73VbbDBBg5u3h/ahbiQL+Ssv1ckUESOr6Qq5nvmmWfckUce2Trgx1+VusZ7B32MfPvRpmISUOw69An1ZJBjbFlNGCR4W754sfv1lI8HgZvbbEP36N67urVXzumAbljQC7wNpwEYW9sqXP0tHZAOSAd6owMhgFY2rErgxrwsYIv5BwHbbJkCbwMEb3x01O5242ARetSU1+DiOnbFWXiWCt64ow7pAeBsvr3wf+5zn3Of/Wz6V8WwUOZNFHJXrFjheCxfvtzhsEoNOSxZsqR9LFq0yPHArj8e8+fPdzjmzZvn5s6d2zquuuoqd+WVV7o5c+a04NPs2c0BbzToYPiXBTzMoxdGIWAEwAehR8z4qxKGxMqoKjzVkIc8BwXcWEdAYtQB5738ow4VKYd1LJKmaBt6Cd4AiQGLobv863WbWGYv7lW2oYiLenDsgRuD55QL41qZsbzUvBgfLvLJu8dYdi/1zNYp5Of9kdJvrG+/7t1QfW3YoMDbmh9e7v466S1R6ParIw9z16x4+dFSf80g8NYbA6wXa0Xlqb6SDkgHpAP11YGykC2Uzp+rqziPwTYbbnnBIPwCbzUAbyH45YM3Qjq+ow1pANBSwBsfS2VapEP6foA3QLcDDzyw/YhsyoAq8GZNnTQ/DVVrUMIwhzGaB7psCUWMQpsuzx+CHrE0qHPMaI+lGVQ4DWMr91Bd0KYU6BhK220Y+nTy5MktEN0P8JYqk27bVTR9SAer0jXeN3l6ULTOWfFZZgrAycqnimuoC8Z5u0sVsvVBmK8boTak5mXrzXz98mycuvhDbY7VDXH7ee/G6sHwQYC3O759int+m02D0O25bV/v7jj7jMwf6gTe6mvEpawHFUf9Jx2QDkgH6qEDIYBWNqwK0ObnYQFbzD8I2GbLFHirAXjL2/EW28mWCt58iIcBLBW8VfGoqXa80WzpjUugAEO3278iRmGRsljHFPhUFQwpUr+ycWnw5wEXtCml7WXrkZWOxjvqCKCZV9esvFKupcokJa8q44R0sCpd433Ta9laebDMOoA3Wy/6/R15lL8/TqH+eaDdz4tlwGW+H/vYx8aAPhuvLv4i/dbvezdPRv0Eb8sWLHD3f2L/IHDDo6WP7bWzW3vFrNbud3/xbc8F3uphsMlwVj9IB6QD0oFm60BZyBZKZ+fpqvwx2GbDLQQbhF/gbYDgjTvRAMbsYMRwvr+N5348nOfteMuCdik73qoAb/q4Qp450911GqW+QRvKlUYqH/Pyd4jEjELCFKYLleXnTdDkp0UevBaqow9D2D6ks2AD8Vgf/xrrgnLwmJYtk/kjL7SfeYQABuXBOH692TZbL9smP72tB+LZtrEMvx4sA49PA1AgHstDW/w+tOXDb4137ErCuf3z64g8KSPUj3mgHNQNB+tq60KZ22v2ui3T97ONbBfrhLJQF+ZJ+TM+wmPtt3EQb82aNS29Yx6oA9v5y1/+si1bxLVx/Lr657Z+rCfKZvlw8Uf5IG/UhXHhMo7Nm+kZD+XwL1QmZGXLgJ9/1DPE4R/bjnK6vQ+Yp3X9MtmnflvZTj88Ky97DW2iTGO6wPh+WawT8sBBWft9QlnxfgjlZ/Oy/eNDRRsvq0yUgbjY8YZ6h+5d1qNfbr/A25ofXOKeeMf2Uej26099wq1ctqz9yomsRbvAW7MNPbs2ll99KR2QDkgHBqcDIYBWNixr3i57zQK2mH8QsM2WKfA2QPCGwQO71gDA7K43ADWEEbwhHsLsOdNZ8BaKxzJsPO52SwFvSN/tIfDWW7OIxrZvLPqlMp6FCjD8rLFqjUKm941VGtQwLvnHdH7YPffc04oSKptpfdcauUxn64j4Ng7O/ToyHWRi68S0CPfl4MuPbYKM8Mc8bTq/3FbEwD/UwaZDFD9/G2brzDJ8GSA+4oXCA1UIBjFvthGRCAMsMGBdISMbN1Q+84Sb+uenseUxH8bx+w51sHW1bWBahCFeKC3CbHqWjfipf0xjy2N9GUb9QXk2b/j9PvTTZt1ztj9Yhq9rTG/jhuTBvmed0X62jWljZfiyYjrmBddvZyh/Px8bh3kxji0jlj/jwkUcyJ/5MD3C2D7E8/vET8c8EY+ytnkxf8qdcZDOxssqk2XUye0HeLvzxOPcC1ttEoRueOT0R2ec1nqvK9/zCjdrkS7w1v0arts1oNKrD6QD0gHpQPN1oCxkC6XLmrfLXovBNhtuIdgg/AJvAwZvGIgI0QDCCMN80MZdb4yD60hngRrysvH4dVPuemNahJ955pntsno9GAq89d50ooHnQwRbMow83/BlOhqANAp5zuswMO0frhNWpBjiKXGYP8pi3r4BjDghI5j5s548Zz7MG24oT7+dTG8NZpZtZRiqiy2LfpRp84rlj/h+P7EM9gnz7NaN1YHhVnbUC8qXZTOuDWd94ab++WlC5bEsK3/k76f1+5J1YLjth5AuME+/HOYTcllf22a/Xqy/lSvyYlr2L+tpZYp49p4LpUMYy7BtRDjzZBkIC7Wd8Vh2LD+0LUs+zMe2NZaGcW3dUD/+8brNC9cYznSx/JkPXL9PKHu2l3HZboazLJ6Hyo/lhfpZWcXi+WWyLnVyewnels6f5x444P1B4NZ6tHTPt7q1My9vQTd8UEngrflGXK/XnspfOiIdkA5IB6rTgRBAKxtWFq5lpbOALeYfBGyzZQq81QC8DfugIPDWP9MJRh7gGw5rfNOos2GoFcNpUNIotMYs8oLBav+skUujlGlsPPpZjl8+r1sXdYGRjUEzVDavo1z7h3Dmn1VeKD3j4xr+fDmwHIZTHr4hz3i+a+uWlb+9VrQMv8y8c7Yl1G++jPLiUu4oM1Umtn5+mlh5vhyRB+PmyYt9bOvqt5N18vNkeMwNxffbFCof+fn3j5+OZSI8BHBs/6WWgTxDbWd6XMMf22XLsOGUeSvyP/4xja0rLvn1Zxq//QyHG8sL13xdiOVv80McO6Ywf799ofwRx8I/5GXPY3n59YrFC5Vp614Hf6/A26qLLnBPvm3bKHT7zaEfc8sXL259vZxfMhd4q86YGvY1qNonXZEOSAekA93rQFnIFkqXBdDKXovBNhtuIdgg/AJvAm9dP0qaN5hdfvnlbu+993b4MmteXFzHoyFZN51dcHMRbm8e7PDD+7B4LFq0yPHAjkAe8+fPdzjmzZvn5s6d2zquuuoqd+WVV7o5c+a0dpjMnj3bzZo1y82cObN9oB0zZsxwl156aev9YXiHGAySOv3BSISBScOQBjXCQgdhhG8U0lANpUEYrjMN/LE/ls9yYvEQDoOa5REA2Pj2OuPR9dsbKg/pGY/5+vVjm5iv79JQp3yy2s422bow/1A6XitaBtuS6rKcUB18GTEu62TL8OOmysTm4aeJlYeyrByRB+OyHXB96IN4fh8jzK8768Q8Q+1lHOsyPuuAa36bQuUjHsET6mLT+TrHc5bBMm0d88qwcUNt99OzDJbtuzY/1B15Io5/f7FdoX5hGUXyQly/jFi/t4T6j39+n8TKZltsGYxL+aOt7DPE53W/Hd2UaeteB38vwNtPvvwF9+KWGweh2/Nbj3M/Ou3kFnDjHM85364DstYLetS0e2MrZd2mOJKzdEA6IB0Ybh0IAbSyYVnzdtlrFrDF/FxLDMoVeBN4S4Jh3Q6mJ510khs3bpw777zzcssTeKvGxLIGHw1qayiGSvGNR+QRMpZtWj+NvUY/y/ehCa9bF3WEwQtwCiPerzPO8/LJKo/52x1zfny2iUa2rZ/1WxnbcN/v15n5+0Y60vEay04twy8z75zlhOrgyygvru2PMvX108TK8+VYRF5+HyOt307KjOWzDxgec0Px/TaFykd+IfCWd88hHcu0/ZdXho0barufnmWkyAH54X61ZVh5xfIKhWflRXn5ENCeW2Bm6+D3CcsO1Rl1sHpN2SCcdbByieXVTZm27nXwVwnerp49y/3hA/sEgRseLf3rbm92a/4/e2/iZlV1pf/XP9DP0zGtlt39U0GIMY6oSUBioqB0JG1EEhKkOxqDxhAao5bYKk6BisooIgLFJFMNDIWFgPo1DRmM2LGNZjCa1jQ4xMapxRkM4Po976m7bq27a+9z7z11b517b731PId9zh7W3nuddc49+8Paey9bIviPNPuBTPBW2wO7nn5rsjztgzZAG6ANlMcGkkI2X7mkcC2uXAi22Xj7PZHGOcEbwVteENbbLzCCt9IMsXQgqINDDC5DA1KtUcvoQFQHmHqt+WyoA1I7SLXpOC8kj5bBwFbbiXrdwTz6kw9MxNVn5Wudbn69Rt64P3dQHcoLOVY/Kt/GaVn3PhVah5YvNNR76/ZR4/UeQJ7aRSivtY8k7XXLaH1WLtrh6tG2DTLstVtWZVqdQ57Pltx7EAmO+UdlaxuQ1e1T6J6rvlW3eu22361e63TzxenI5kU+e48h322jXmvb3DbotdtXjbeh9suV5eq6EFlWrp6jnO9eajpCV7bq0G2TttXqC+W1rbrDMPLpn8pyy/S0TpVfCWGpwNv/mztbPjj5mCB02zlutDywYUP0ny8Eb+UZQPX2dx3r432kDdAGaAPVbQM+gJY0Lg6gJU2zgC10ngZss3USvBG8EbxV+VRTDP7Gjh0bwRE7OHMH1jqYtOABA+vJkydny/oGjxhIAn5hAKl/OLeDVR1c2jjI0l1NUc5tj8pyQzcfrm39CgNcaIB82kbNY/uq9bjyEe/Lr32yA2n0CfpCfvxpHq1X63BD1Om2Rcu68gEPbJzm89UBuflgg9sWe6331tYHmdC31a/aRSH3QfNambZO37nbx5AMnx41r9WP9kHj9P6i/fY+aD4bp20ppv2+Nqgctw22LuhCn0u0Rf/0vmhZxOPc5vGV03zop7bf9l3jkA+y7D1GnOa1bdR+2LLor30OIMuWgSzfn9svn94KleXKRzvdZwGybJz2BSH+tP5C7Br59V07YsSIrH61HSrL6glpPa1T5VdCWArw9tSkK+Rgv097oVs0tfSWG7PLRABwErxV90CNA23eP9oAbYA2UBs2kBSy+colhWtx5UKwzcZbCJbGOcEbwRvBW5WDNwzIdBCOAaQeGHS6f24+OyhF3tDgUQfMcbK1rOZxB+K2bjfNthPtdoEA4iBX+6SAQOtCqINpyNJ0Xz0++aH8OmjWelx5mm7rtn3Rc9TplkWaqzO3H8gTVwfkuvdQ6yw0dO8t6nN1pO3Eeoboh+rDvU9ap5WZTze+Pmp9LsTw6VHzuvUgr7YTOgIERtvtfdB+6rRmze/Wq/0Khb42uPctZGP6XKAt9s/qEO1y05FX60C6bbMti74jH+6VzaN9R/36F2qjrQd1WR2iLGSp7tzQtRHbNuSFbPtXjCxbDnLcZwGybJz2Q+vU+1aoXWtfrUxtg8qyOkZaKerUOtIOewLe2u+7T14d8SUvcMPU0ne+eLw8vKQpWo8Vz6MeBG+1MWDjwJv3kTZAG6ANVLcN+ABa0rg4gJY0zQK20HkasM3WSfBG8EbwVgPgLe0BGeuvLQ0AWFi4EoIKtdVr9qavaSCJXbvPRl/SWVLw9vDMO+XDE/sFodvOb50vHWvXZjdBUuiGkOCtugdqHGjz/tEGaAO0gdqwgaSQzVcuKVyLKxeCbTbeQrA0zgneCN4I3gje+tLYkX3NowH1wLKeO0kARZ5qmEwNpK6BYu1anw31mEu9A73cgKLB25o18vT3vyufHH2IF7rtH3CY/PrGydFO47rzOEKCt9oYpHGwzftIG6AN0AZqxwZ8AC1pXBxAS5pmAVvoPA3YZuskeOtD4O3+xYtlzsCBsqahIQvblo0bJ/NOPVW2rF2bjSvFS7Incrm5Qi+Pplhdn9UA4JoFbDrV0J0eWCyg6LMKZcerSgPF2nVf9nbDjS0GvK1vWiSvnfV5L3DD1NJ3T/+sPLTw3gi6bdiwIevtRvBWO4O0UnxLUgbtgTZAG6ANVIYNJIVsvnJJ4VpcuRBss/EWgqVxTvBWpeBta0eHLBoxIjoWjxoVhYiLezkRvG3MfuTjQ3/dunXRsZYeb1U1WGZjS6sBwAS7LpedYqo1FQsotBxCLWvr0HMX8NlylXIOMKntdUPojn/VqwG1TQuffb1RG6gGe/W1v1RxhYK3h6fdJh997v8LQreXLhghG5rX5Pwe0+OtMgZWcd+QTOM9og3QBmgDfdcGfAAtaVwcQEuaZgFb6DwN2GbrJHirUvCGFx+8yvQAhEsC3sr1AqXHW6mGOpRDDVAD1AA1QA2kr4F84G3lfffJ7y4dJ58c+bde6Hag/6HyRMOV2f/0wn+A6UHw1ncHc+X6DqVc2hRtgDZAGyidDSSFbL5ySeFaXLkQbLPxFoKlcU7wVgPgDVNHCd4eEH2AsBizXSPGftDrRz493tIfxLEF1AA1QA1QA9WjgTjw1jb/HnntS4O8wA1TS98bNFC23n2XwMNcvc3t77H9nba/39xcoXSDJg5AqUvaAG2ANkAbSGoDPoCWNC4OoCVNs4AtdK6sIK2Q4K1GwBs8zNwHCXEzjzgiOrCO24aZMwta4w0gT8thTThMUYVsO721ff78SJbmc+v3ebxtbmuTu089NSsb54iD7I1NTZG81ddcI3aNtwfa22XBuedGB87xMG7ZsiV7bN68WXDgAWq54w65o75eVt96q8wbPlxur6+PjrnDh8uG1tZoDRn90F9z993S2L+//Pjww+W2ww+XmWefLS0rV0pra6u0tLTI4ptvlpsPO0wWTp4sd3z5y3LjYYdFx/Svf12WL18us773PZl86KFy7aGHyo2f+5zMnzkz1dHTEdf9XnhQB7QB2gBtoLZtIM0fmhB4e/iWKbL3s/8QhG4vjzxb1q9aKW1tbQRvD3HQ536r8po2QRugDdAGKt8GkkI2X7mkcC2uXAi22fi0gJvWS/BWxeAt9JJSQGY3TcDmCbgGKIvbXAFpthxktd50Uw54gwzrYQegl0/ulvvvl6UXXZQFbbheOGJEdODcXm/euDECbHi42hctklkDBsja6dOzcfnA2/RjjpG2+fMjrzeEdxxzjNw7ZkwWvK297z6555vflLbVq6P/eW9ZulRuP+kkmTt6dDfwdmu/frJk+nRZsWKF3HXZZXLDoYfK9YceKreff74sWbJEFt5zj9w6dKjcfMYZaY6HIui2/rm/yi9e2i9PvHpAntzNgzqgDdAGaAPVbgN4n+O9jvc7oGqafy54u2/JEvn9RRcGgdvB/n8nT/xoQvS7CuhG8Fb5A6vQdyXjee9oA7QB2kDftgEfQEsaFwfQkqZZwBY6VwCWVkjwVoPgTUEYQvuS1PgQeFNgZ6GaLa/pFsxpugvsfB5vmlfD9RkPPHi7IQ7ebvCwa29qykK2lVdfLXMHbaGJswAAIABJREFUDZJNra3ZuHzgbfmVV+ZMNQV0m3HKKbJuxYrsejLuVNMFEyZE8G3N4sU5Hm/zvv99WbVqVQTels2fL7eecILcfPzx0jR3bgTempqaZPoll8jkI49MczwUDcgwONv1zkF566NPZM9eHtQBbYA2QBuodhvA+xzvdbzfKwm8tcyaKW9+8YQgdHv/5GNky+wZ0e8pPMkJ3vr2gE2/+xjSDmgDtAHaQHXaQFLI5iuXFK7FlQvBNhufFnDTegneahC8haBXIbuaoqzrvaYvSAVvPjAHqGenpYbaoLIA2VAPDgA4xOtU1FVXXx1BNp1mCvhmH7R84K359ttzwNuSSZNiwdvd3/hGNN10av/+smL27Bzw1nTTTVnwdt/ixdJ45plyx/nny7Jly7Lg7a5rr60I8PbE/x6IoNvHB0QOfMKDOqAN0AZoA9VuA3ifA77h/V4p4O3Ba6+SjwfWB6HbyyO+JG3LlkpzczPBG6eW5vwHsH4DMqzOgTfvG+8bbaDv2oAPoCWNs+P6Up1bwBY6VwCWVkjwVqPgzQfHCgFvCtcUigGg6UtW03yy1ZtOvexc8KZQTeUCvAG4WfCGejAddcGIEQLohmmm8HZDaB/KJOAN001b5s2LPN6wvttPMuu7YY235bfdJvB4q3bwhilV8O7AQJN/1AA1QA1QA9WvAbzP8V7H+z1t8NY0f778YfTIIHA72O/T8sSE8bJ69WpZs2YNwRuhW/b7Ub8jGfbdQTvvPe89baC6bSApZPOVs+P6Up2HYJuNTwu4ab0EbzUK3nzTQQsBb/alqN5vCtrygbc4jzcANbuZAurxgTfEzR4wIIJt8HTDxgq6qYI+mD0Bb+uam+WuYcOiQ9d4wy5rBG/VP0BlD6gBaoAaqDUNVAx4e/klefP0zwah2/snHi0P3NEYeYgTvFX34Mp+B/Kc95I2QBugDdAGYAM+gJY0Tsf0pQwtYAudKwBLKyR4q0HwhvXWLATTFybi4WEWWuNN89nQrt2m4M0H9QDpFNChvPV4Qzm7kYLK1+mmOtUU8eoZt2LChAi6udNM8YD2BLxhY4XpJ58cba6wbt26aHMFgDdsrECPt1obsrI/1AA1QA1UtwYqArw9vEUkZtfSV4YPkeZFC6O1ULEmKsEbB2n6nceQtkAboA3QBmrDBpJCNl+5UgI3lRWCbTY+LeCm9RK81SB40x1MLSBTb7c48AZAtnriREGoL0kL1BS8QQbiNY8CPZ1mingL3nCtGyfoRgrq7eZONUVerPGGKab3fOlLOZsq6IPVE/CGTRWwoyngW+uyZRF4W/jDH9bEGm+calrdA2y2nhqgBqgBVwOpgrd9e0WumxT0cjt41KfkicsujoAbdv7GQfBWGwMs/b5jyPtJG6AN0AZoA7ABH0BLGqdj+lKGFrCFzhWApRUSvNUgeMPDofANYAsHvNHa58+PPOHiPN4soNNyCuIUvEEWAJ3KRmihG+p3wduW+++PvN60DDzg2qZN67bGG8piV9NZAwbIkrFjc9Z204ezp+BNvd6wvhsObK7AqabucK/464MHD8ojjzwiTz/9dLbwn/70Jzn55JOj9X6ykRV0gjZv375dRo0aJX/zN38jRx11lFx99dWya9euvK3UvtXV1Uno+Kd/+id566238srSDG+//baMGTMmqK8PPvhA5s6dK8cee2xU5/Dhw+WnP/2poB/8owaogdrTQGrg7c/Pi5x1ehC6fXD8kbJp6q2yfPlygjeu5Zb9j1h8w/GgDmgDtAHaQO3ZQFLI5iunY/pShiHYZuPTAm5aL8FbjYK3crzwLHhTGFeOehS8rZ0+vSjwpka9adOmnF1NN27cKHrA400PO9W0ra1NcLS2tka7sGE3NiwOjSkz+B98/d98hBho2F1Nm5qaZOHChamO+LDodtoeb7/61a8iGIRQ/xROQZeV9vfJJ59Ei38DuF100UXRFOb169fLWWedJV/84hfl2WefjW3y7t275a677pI777yz23HFFVdEuvj2t78t7777bqwcTdy/f38kBxDPpy9Atx/+8IcRdMOPCCDnhAkTImAIe0V/+EcNUAO1pYFUwNvaNSKfOSII3V758umyat7d0e8gwVvtDa7K8V1HmbQT2gBtgDZQ3TbgA2hJ40oJ3FSWBWyhc2UFaYUEbwRvBf/vZG+BN0w19W2qoA9WyONNHyKCt3QGntUG3nbu3BkBNsAsQC39g7fb0KFD5corr5R9+/ZpdMEhQNvFF19cELxToahn3rx5EUQLgTfAuCOOOEK2bdumxQSwbtq0aVFd6A//qAFqoLY00Kvg7aMPRSZ8NwjcPsHU0kvGStOiRbJkyRKCN3p3Ffz9yAF3dQ+4ef94/2gDtIGkkM1XTsf0pQxDsM3GKytIKyR4I3gr+MOpN8Ab1oDDrqYhbzc8oARv3QeW9HjrrpN8MY8++qgMHjw48hyzeT/66COBx1qx00QhA15nixcvjgAavCcL+QPoA6iD592//uu/Rp5yrscbwOB3v/td+c53viPvvfdejtjf/e53MnDgQFm6dGlOPC+oAWqg+jXQa+Dtv58V+dIpQegmp31GNk65XuDhjYPgjYMwDsRpA7QB2gBtoO/YgA+gJY0rJXBTWRawhc7TAm5aL8EbwVtFgDfdzRRrwMHjTR8iDTe1tkYbLkyvr5c7nWPmgAGy7t57RY2aHm/5B5s6BRRTZwGIMLUSnlZYM6y9vT3ypIIUzXfDDTfIgQMHcgR//PHH0XpoF154oSDdrnOGdd1QVstjui7WIoN85MMaZVirzHqaQTg8uB588EH56le/GoGoQw45RC699FL57W9/mzOVEt51qOP3v/99NDVY24+wpaUlkaeadg7rrKFPPsileUKhessBpBUyxVQhH9aWw9TnX/7yl17w9uKLL8oZZ5wht956a44e0A6sIQdIiLXpcE/4Rw1QA+lowE6zD7UAyxS8+eaboeRu8b0C3lYsFhlwWBi6XXSByFtvRksqELz1nUEWB9S817QB2gBtgDagNpAUsvnK6fi+lGEIttl4ZQVphQRvBG8Fgzd98ModArzEPYj0eOs2NpNiPd4UiMHj6/jjjxe8lLBmGIARwNiMGTMi0IYpkJhyiXXPXn311ZyKdarm7Nmz5Y9//KMsWLAgKosQ3mTwzArV82//9m8RWGtoaMhCMl3jDJ5fP/jBD7JrrgEqAUwBCOo6Zhjgwstr9OjREXTC2mywC6zVhvYD6mnenEbHXCD/X/7yF7n22msFwA8v5WL+ACZvv/32aDroL37xi4KKArzdc8892c0cdLqu6/GmXm0rV67sJvfDDz+Uyy67TL75zW/KO++80y2dEdQANVB+DQCo4T8JEIb+pk+fHuWZPHlyKEu3+LKCt3ffEbnkW2HgdtSnRO66E668UbuwlinBGwdh5f4GpHzaGG2ANkAbqDwb8AG0pHFx4/ykaRawhc7TAm5aL8EbwRvB29q10cYKfWlzBQViAFo///nPs4M9wK8bb7xRjjvuOHnmmWeieAAvwCyAOfuHeKw59uSTT0bRCo2s14fW425WoEAPXlzw5sLff/zHf0QwDpsVoB36t2fPnsj7DOuu6W6jWtcFF1wgr732mmYV9VYrFkIBKgIuop+HHXZYZA/F7hSqIBLTVAHUkvxpv1zwFopHHeo1l2RqbJI2sgw1QA101wC82ADUQvBNoRvSn3vuue4CAjFlA2+/f1rki8eHodspx4g83rVRDppH8FZ5AyEOTnlPaAO0AdoAbaA3bCApZPOVSwrX4sqFYJuNVwCWVkjwRvBG8NaHwZtvCql6V+FFhT+d5mjzKjjDumM6XVThEEL9U/Bmy2oa4BK81lCfTlv1edYhP6AfoBjgKP60rkWLFqm4KITXGqZjFguh3njjjWgqrHrNwesOXn8WAOZU5LnAGmsoB4CY9E/7RfCWVIMsRw2kp4EQfEsK3dCTsoC3RfNE+v9dGLqNGSnyetd/aKhGCd44uOuNwR3roJ3RBmgDtIHKswEfQEsaFwfQkqZZwBY6Twu4ab0EbwRvBG99GLy5gAcDLF0zDLt97t27N5pyCnBmoZh6d9kF/RUa+cCbQjwdwCFE3YBpyA9Pta997WvRlElMnXT/FOBNnTo1StK6sJ6f+4c81pPOTc93DaiI/hYD0TDFE152WJuumPWb3LZov9z7EopHeXq8uVrkNTWQngZc+NYT6IZelBS8vbNH5F8uDAO3I/9WZMY0kYMHvQokeKu8gRAHp7wntAHaAG2ANtAbNpAUsvnKJYVrceVCsM3GKwBLKyR4I3gjeOvD4M23FpmCNztlUqeB6nRTgCHdQEFHaAqHEOqfAjMXJCHdgjdfnSoDocpxwZutS/Mjj7ZN2wTAp0ch3nCYPotptFqfyg6Fmn/atGlFry1nZWp7XX2pF2LcGm9JNoOwdfOcGqAGSqMBwDdMKbVHMdNLbStKBt5+84TIaceGoduJR4s8+jNbdbdzgjcO7npjcMc6aGe0AdoAbaDybMAH0JLGxQG0pGkWsIXO0wJuWi/BW5WCt60dHbJoxIjoWDxqVBQiLo0X1Za1a2XeqaeKtmPZuHFFtwOL459zzjkyduxY6ejo4OYK3YY88RFJN1dwAQ9qwbRL3Au7S+b//u//RnHwBMOmCYBy2HQB3mH6p9DIwjAFZr56LHhL6vFm69J2lAK8absLBW8AYvCQ87VH21VIqDp09aXTfX3tUWhp71chdTEPNUANlE8DFr715L3QY/AG77W500WOPiQM3UaNENmdu3mOTzMEb5U3EErjm4910g5oA7QB2kDfs4GkkM1XLilciysXgm02XgFYWiHBW5WCN7zwALj0AIRLC7wpBFw9cWIEAJOAN+xiiQP94q6mviFPfFxS8Obz0FLvKrt+GtZOw+6lmG76y1/+UrBZgjvNU6GRHWQqwHJBEnpjwZuu8RaaIhpa483WpRqy4E3jfCF2X8Wuruiv+we5AGlWB24evc7Xds1XSKg6dPWFdfSwnp7Pq03vl532W0hdzEMNUAPl1QDgm+8dVUytPQJvb7wuMvqrYeCGqaU/uVnkwIGCmkTw1vcGWhxc857TBmgDtAHaAGzAB9CSxsUBtKRpFrCFztMCblovwVsNgLc1DQ2perwpeEM7FAQW85IGwIGn2y233ELwVtDwp3umpODNt9sovNp0qqat6de//rVgF9SGhoac9d40j0IjO321UPAGGTqdNbSrKdqKteXwp3X5BrWFgjf0B9NJAR/tJgqAXJdffrlXB9pXG6q3ng+K2XyFnGu/XPCGsohDe7dt25YVpbvQWt1kE3lCDVADVa+BxODtsV+KnNw/DN2OP1Jke+5O1fmURfDGwVcx33bMS3uhDdAGaAO1YwNJIZuvXFK4FlcuBNtsvAKwtEKCtxoBbz4vM8TNPOKI7LFh5szsFFCFZfCUW9vYmM2D/JrP5sG5fXkCsmF6KaaZaj4Fbwg174QJE+Tzn/+8LF++PBunaRoSvOUb7uRPTwreAHJwf1asWCF2R8/m5uZua5XpBgJYK+3mm2+ONl2wLVPPq+9973vy85//PJqSWgx4A0QCdIOnGbwf0R5MQcaabIcccoi0trZm26SAqifgTetDfy666KLY+nQDAx+Q1GmgAJYHYjxHAARRl6/Nqkftlw+8AQhiwwvAT/yIwAsQzxf05btfKpMhNUANVK8GigZveAfd+eMwcIOX2/nDRP7yctFKIXirnQGUfn8x5D2lDdAGaAO0gUJswAfQksbFAbSkaRawhc7TAm5aL8FbFYO3uIcE0E3BGPIBpvmgGuIstMP5nIED5f7FiyNQBohmryFLQZstF2oLwVvRY5tEBZKCNwA3AC14TAHgjBo1KoJmmFrq+8PUS+TzwSOALKQDDCHP448/nt0UwQeSEOeCKMhob2+PdgeFDMgaP368/Pa3v81CN7RLAZWvHYV6vEEO6sPUZuxGivoA+LAgultfHHhTuIh64/56Ct4gG+vrYZfEY489NtLd8OHD5ac//akcDOxCGNceplED1EDla6Ao8Pb6bpELzomHbrdejxdfoo4TvHFwFvrWYzxtgzZAG6AN1LYNJIVsvnJJ4VpcuRBss/EKwNIKCd5qELy5kA0vQheW6bWFc8gH4AbQpl5r7rXNo55xPX3R0uMt0Rgop1BS8OYDYjmCnQu8vC688ELB9Er+UQPUADVADZRXAwWDt19sEznhqDB0O+4fRR55sEeNJXir7UFVT7/lWJ72QRugDdAGatcGfAAtaVwcQEuaZgFb6Dwt4Kb1ErzVIHhzvd30JYh43YRBwZteax7doVTBmy8f0txyWj5JiGmo8NzR6ajcXKH4sVFvgLfdu3fL1772NeEi/sXfH5agBqgBaiCJBvKCt7/+VeS2G8LADVNLzztT5KUXk1SfU4bgrXYHVEm+3ViG9kAboA3QBvqODSSFbL5ySeFaXLkQbLPxCsDSCgneahS82bXd7Ll6uPmAGl6eCt7sNFKANrecgrmevnAB27DG2Lx587JrwBG85Yx1CrooJ3jDPf7JT34SrbU2dOhQ2bVrV0FtYiZqgBqgBqiBnmkgFry9/JLIPw2Nh25TGkQ+/rhnjciUJnjrOwOsnn7bsTxthTZAG6AN1JYN+ABa0rg4gJY0zQK20HlawE3rJXirUfCWzyOtGPCmMA5TSzH1dN6gQdk14ErxUqXHW8/HROUEbxs3bozWPjvzzDOjddt63lpKoAaoAWqAGihEA0Hw9vAWkc/+Qxi6Hfv3Ils7Cqmi4DwEb7U1iCrF9xtl0CZoA7QB2kDfsIGkkM1XLilciysXgm02XgFYWiHBWw2CNwAyd0ME96VYDHhDWXjA4YCnm/WGc+UmueYabwWPe4IZiwVvQUFMoAaoAWqAGqgYDXQDb/v2iVx/VRi4YWrpuWeI7PxzyftA8NY3BldJvuNYhrZBG6AN0AZq2wZ8AC1pXBxAS5pmAVvoPC3gpvUSvNUgeFOoptND9UUIYKYbImge1zNOvdtcuKYwD95uKkPlxoXc1bTkYx+vQIC3J/73gLz10Sfy8QERDNZ4UAe0AdoAbaC6bQDvc7zX8X4fPOEhkeGD46HbdZNEAOfK8EfwVtuDqrhvOabx3tMGaAO0gb5tA0khm69cUrgWVy4E22y8ArC0QoK3GgRveDEqWLPru1lgpumFgjcFci7My/cSJngrw+jHIxLg7Rcv7Zdd7xyMBml79n4iPKgD2gBtgDZQ3TYA6Ib3+p+a1siH/erD0G1gvcj96zy/DqWLInjr24OufN97TKd90AZoA7SB2rUBH0BLGhcH0JKmWcAWOk8LuGm9BG81Ct6q6cXHqaY9HxgBvK1/7q8RfINnxJO7eVAHtAHaAG2g6m1g53vyxiUXh4EbppYO+4LI83/q+Q9JHgkEb7U7oKqmb0a2lXZIG6AN0AZ63waSQjZfuaRwLa5cCLbZeAVgaYUEbwRv2d1E03yJ/eAHPxAcaAN3Nc0z+vEkA7zxoA5oA7QB2kDt2MBXrtgkuz73uXjoNukykb0feX4VSh9F8Nb7A500v8tYN+83bYA2QBugDagN+ABa0rg4gJY0zQK20HlawE3rJXgjeKsI8LZ+/Xo555xzZOzYsdLR0SFxD92WLVtEj82bNwsONWiE8KCDDD2wK6ceGzZsED3WrVsnONauXSttbW3R0draKi0tLdLc3Cxr1qyR1atXy6pVq2TFihXZA7uwLlu2TJYsWSJNTU3RgQFJmn8ff/yxNDQ0yOTJk+W6667jQR3QBmgDtIEqtoGNo/9Z9vf7dBi6YWpp2+pe/dkheOMATAdgDGkLtAHaAG2gb9lAUsjmKxc3zk+aFoJtNt7ygjTOCd4I3ioCvNmXNz3eih9L7d27NwJvn3zySfGFWYIaoAaoAWqgMjTwwfsil40LAzdMLf3yqb0ytdRVCMFb3xpk2e8ynvPe0wZoA7SBvm0DPoCWNC4pXIsrZwFb6DwN2GbrJHgjeCN4qwGPtw8++CACb+5AidfUADVADVADVaKBP/5B5IwT46HbFReLfPhBKh0ieOvbgy4Ounn/aQO0AdpA37WBpJDNVy4OoCVNC8E2G28hWBrnBG8EbwRvNQDe3nvvPbnmmmuEHm+pjEdZKTVADVADPdPAkntFjjk0DN0GHCbtF36tZ3X0sDTBW98dcHGwzXtPG6AN0Ab6tg34AFrSuKRwLa6cBWyh8zRgm62T4I3gjeCtBsDbnj17eg7eHm+Uuro65xgtza/EjdZ2SOOYZtkdl6UUaY83yuiW/LXsbhnttN/tT500Pl6KBsXJ2C3NY5x6p+6IK1ChaTukUe0h7z3On3fHVKuTRqk6jbzSLKNVH1V5PyvUzPp6s97ZI/IvF4aBG6aWDj1J5Lln5Nprr01VWwRvfXvQxUE37z9tgDZAG+i7NpAUsvnKxQG0pGkh2GbjLQRL45zgjeCN4K0GwNvbb78tV199dWKPt1woYgFJ57kXeimoywtlejZW1LZ52+CILgS8AS4WIssRXfClttdCzHLWV3DDis6YH6Z1iYzPm6uTfDC3S2pFnRG8VdTtqInG/OYJkdOOjYdu3xsr8v57UXcJ3h6INlPChkq6wRLCuI90rBnLgWLfHSjy3vPe0wZoA7SB0tiAD6AljYv73U6aZgFb6DwN2GbrJHgjeKu4j9JK3Fyh6Y475Kajj5a7LrtMKnFX0zfffDM5eFOApt483tCFJfGgpWSDYtO2QuBVoeCtrs7tT6labL3dqtCrK0cNxdzjcN7ce1Iuvec0vDwXBG/l0WtflIpNcO6ZJXL0IWHohmmny3N3yyZ4I3irxAHk/YsXy5yBA2VNQ0PFfU9Wor7K0aatHR2yaMSI6MB5OeqgzE54sWzcOJl36qmyZe3aWD1vmDlTZh5xhCCsVd0Vqgvbf9pqpx31ln2UUt9JIZuvXFK4FlcuBNtsvIVgaZwTvPVB8IaPI3wkrZ44MQrx0aQvRaThh8I9fB9U+jC7P0Aa78qw10svuiiqc/U110Rt2NjUlG2DgrcH2ttlwbnnRgfO8bAhvPfcc6Nj4de/LvPPPVc2rV8v9uHZtGmTdHR0ZI+NGzeKHmvvu0+mn3yy3P21r8nss8+Wed/4hqwNeLwtvvlmuemww2TRlClS6eDt9ddfl6uuukoOHjxY9DDWeiO5cMum1eVMrwuDlqIbEFegB+Ct+5RSC8XK5fXWS3qJ01nJ0orpSyCvuX/lg50l63C8IIK3eP0wtTAN/N9bIt/+5zBww9TSwSeI/OF33eQ1NDR0i+vNiHvvvluampqiY8mSJbJs2bLoP6JWrFgheqxatUpWr14ta9askebmZmlpaZHW1lZpa2uLDvzerlu3Ljo2bNggeuhvNEL7+43fc/v7Dm+3SvF4028dAA+c63dUXwt7At7cb07ft6bVZ28NVm2dSc4BZfBtDDCRpHxcGego9N1dibZYzD3WZ8qOF+y52++QnmCTC848MwjHcF+s3Dg4pm1S3RYKm8plq+WSG9JlXHyhurAyXH3atKTn+g6Ku4/5ZMNOMTa2Y+J8ZQpNh57UfrRMb93HUurbB9CSxsUBtKRpFrCFzu33RBrnBG99ELzhYcePV+tNN3V7yfhePPpyQJq+MBBqPH683DQ3H15mFq5perHgDQ/j4rFjs0ex4G1dc7PcNWyYLLrssrzgbfaoUXLHV74iK5YurXjw9tprr8mPfvSjHoI3j4eWhQ06pTQHpphpqZqOkaAtl/Wg6+7t1AX2Rkvz42YNrbpGWZyzJlhXPS4ctANP613VHbyJiGl7Vo5t69Qd0tWmXDhnZXdOI3X0ZWTbaaZ1Vi+SC/+ifDlAM9MbI2t0y46cNePQr642dtdb19ppBoZl7kG2z1Zp0bnbLvTNlM/pQ7fCIr68pg/op/d+ZEW59ddJLujNZDQyfXqx9wj12Wu0IdR/N19dnXNvUb1jJ9mm84QaKFQDT+wQOXVgPHS7+Jsi777jlZg2eOMab7nTdUox2NNvoWoOVQ9x34G+/uEb0pbRb0ob55bzDWDdPJVwjb6UcxDvAqhSDq5Lqb8k99hXv4LMONtAOc2HcYmrI5XrwiLIjLtXat/oC2S45VVub4WV9Awk0UU5bFXfHXqPir0X2ib0p9iy+fKr7LTAW772FZOeFLL5yiWFa3HlQrDNxqcB22ydBG99GLzhBTVv0KAcuh/6AfK9XBGHHyvIcF8o9kFGPeUAbyuvuqpojzcFb4snToy83UIeb6sWLZJpJ54o877/fcH/4Fe6x9urr76aGLzlQgcPcHCHgAZ+eAFTKD0DfyyA6QJIXWBNYVQoLQRP0EzbF1tPZxdy4U423QKVLCREe7pAYagtNo+Fel69WDiVU0+d5MK5XECYIysDhILtUYgX7JMPaBnA5rZLr4sFb079WV27thRdx9Tv1hu0rU67tfc/V29d9uW2JahLc/+jZto+qZ69/WEkNeBo4MABkZmNIkd9Kgzd+n1aZNE8p2DuJcFbZU01xfdSaHBvv4Fq/VzBRD4okk8POkANDX4VqvS0nnztKEU6+hD3XdyTOnzf46q7ctXZk/bastrO0D22ee15Ic9aNKbJTAEN5VdbtYAmX5tcWT7927aW87zSnoEkulB9l9JWcT8BW+19LeY++OyimPJxeUP97Wmb4+osV5oPoCWNiwNoSdMsYAudWwiWxjnBWx8Hb64rNn5gfP/z4/7w2Jc/Xh6+Mvrga3qpPd4A3prGjo2mneDhWbx4sZx++uly+eWX50xVsVNYXPC26Ic/9E41nX/FFRF4W7FwYTfwdsf558u/H3qoTD70ULnuqKNk3m23CTwB0vz7y1/+IldeeWUij7ccbyUFLZkwDLkMLMmBIwZu2XgLTAy0yIEeNr8q05QLt0Uz54K3EHjpjO+CajmeTD7PLNOGLmgT6n8o3nqpGbhpZOf0z8TnwL1MV+P15r8HFkp19cO2y0I5IwO24Ls3XWrP9XhVXC/pAAAgAElEQVRzbCjSd0z5rr70XC+2j1ZvOfHG/iws7dJJ4B4SvOXccV4UqIHXd4tccE4YuGFq6eePE3n6ybwCKwG8Tfva1+TGz31O7p48WW446ii5/tBD5YZDD5UFN94o9y1eLHd8+cvREg03H3aYzLnwwm5TTVfNmSON/fvLjw8/XKYdfnjkgY7fZfs7HZpqet+PfiQzBwyQ9QsW5GyusGTs2JwlKfDRvvLqq2V6fb3MqK/3/sff+sxATaeb6fIX+t2iA0rMDPB5z9hvIC2DEN9KKhMhrm26ytXvIs3r5itEFvLooE7l+AazqFPTEbp5dNCJNti8Iajo5tG+uH3Ata3XTbd6sX2BfDcN1yjvtsntv/stWkjfbB5br8q27bF9cuvSsioPekGcXqOsLQ/daB7kQz1u/xCPPMjbct11kS1bnWp+bSvu7drGxrx61zZZWbYttj2IR181L/qA9CSHttPqNJ+c0LMWVw5tVN3YfKH4kO59dWvejiVLojpUL+5zpfdN9ap9990jzYO26r3x6chtv+ZFPPK7bdE2ID6fvWpZhLY9qj+tS/NpnT4927a48qwecK7yIU9lI8S1piFUvdt38gOrV0fvM1vO1qf3T9N9OlXZ7v1z++umo30+naIOzWv1r21w0/C8Ik7TffrUNmoehCpHdaTtxTJSKg9t9Olb2+XW7cqEbC2POpNCNl+5pHAtrlwIttn4NGCbrZPgrQ+CN31IfWEhLxKUs/n0xRZ6oeEBx8upVODN7mam670UCt50PRmEus6Mu8bbGqwD95WvCKaaYq0a6/GGAcY9118frW2z6K67ogHIrUOHCta+SfPv5Zdf7gF4c6bRFQROAnAipIQAtOiCLoGpiAZA5YCpQD05gMXXj0xcjizbtm6AyAAoNy3bNgPxrFebzW/qyKkbyEqn1Nr8WdkWhnV1OlumYFCIsqYvWfhk7qM7vdK0ucfgzddONMnUUQq92PufK8/0M6tno49sXEbHWf2be2va6p0G23V7eEYNdGrgF9tETjgqHrpddIHInrcL0lilgLdrDz1Ubhs6VJYsWCBLFy6UxjPPlBsPOyw6sCYqfjeXzZght/XrJ/f+4AfZNd6alyyRu7/xDWlbvTr6/dU1V+/55jdLCt4A3eYOGiSbWlsFa8Zuuf9+aZkyJTuIU+iGEN8zm9va5O5TTxUL3/A94xvc6HeTftdgsGPj8G1kryEDeTXOJxdl3Hwok0+WDrTstxfi2ufPj+rTAZMdTGmcHdypHNsG/a7LV1bzoazbXvfayld92BD5bbtsmrbb9lXjbBshww6GC+mbTw7q1rJ6/9z2oRwggG0nzt18KsfVEfpi24p6fDpCPttHXLt60j6gvNWRWwfa56tH49B27Q/KQp6tG+m+NmqZfKGrm3z5kV7KMuiT7Y/WjzrsvdB46MWNV73Ye6D3GGm2rNVVoffIJwsytbytQ/PaevReuvcO5WybIVPzInTbDZ3ExSEddbgy3XrcOrQf9j4gj68+2y7Idfvkts/m13eTlYt3I3Sm5RD68iEO9aGtNg/itCzkuraBNOSxffP1F/lUL1aG3k9bj6+8xlnda1lrC6hH89o2FVq36kbL+gBa0rg4gJY0zQK20LmFYGmcE7wRvGVfInhAfS8SxNkHWR9i+2JAHvsCgCw98IDjxRICb5BtD/wPNf6nWg9ssKCbK+BhDIE3fYDiNlcoBLwtueUWwf/WY3MFF7xN//rXc3Y1nX7JJZHX29xbby1o4FSuTC+99JJMmjRJDmBKU4/+DIxwwVUOnPCBDF/FHnlZ6GOgkzutT0VlAUh4fS7NitCCF7/HmwEpWjAWqJh+uvow13m9pUw//O3CVMgCPL4ybe4Cb937k18HxoOt0L7n3HtVnA276ykCXzn9Nv3TojnpXdNBc3Vkypn8uWCtU6Dte9c9QZppX7YvJs7cy9y6DRCO1ZV2iCE1ICL794tMmxIP3LCj6fzZItjhtMC/a665psCc5ckGz254vMHTe/7UqdnNFe694YYIus244ILoP6qi383ly6P/wJpx1lnSvGKFhDZXwLIP2PBo3YoVWfjWE483d1MmgDf9FkHog2yIx3qzgG8YaOAa3zd2QGRl6DeQDkZsmj3XfPZbySdXBzc2n5WDc1eWXse1wfc9B1k6QEO6vXbrd8vrYA2hbZ/GqzybpufaXrcOXOv3n5umZRFqHbZut33Ip7rUtmhfXdluWfcashCn37Xa/jh92/ptfaE2qEzNq23XaytP+4M4pGu7cI1DZbnxWreW99WhMly5uHafgbjyKscNIaeQe+yWw7XWp+335fHF2Xtn09EW3z2EXbl9VZ26+X16QR2uDNdmVV6+e2Tba89deUjT+4s2aV6tx+2PW151a8uqDMRpO1WeqweN13wo69aBOM2n9ei1K0/r9pVBHMq7fdIyvnp9cZrfhrCVkFw3n+1rqBzaafsW6q+2z7Vtq3vUH6pH772W12vVs7bdV3/SupNCNl+5pHAtrlwIttl4ZQVphQRvBG/Zl7U+4PoDqaH7QsLD7a4Npw88HmZ92DVEHGSEwJubFreraW+AN0yPgcfbquXLu4G3uy67LAe83XXttRUB3l588cUIvCXZ1TR2iGZhQw4cM9AiCzIyknLKeGBKL4G3XPAS00vbXtO2zhKmnzFwpgsCmfxWLwYYuWCn69pANJO/S3ZXH3oM3hTyFdp325euZpgz0++cTQwc8Orq1/SzSw+uzRSul3KAt6z+Y3VlVMHTvq2BV18RGfmVeOh22mdEnvzPovVUKR5vmGoKj2/d1XTR7bfLTUcfHU03tbua4rc0DrzB0w3TTX/Sv7+0zJtXEvCGbwRMPcV/3MHzzQVvrrebfqcg3n7ruIMfzYcw7ntH8+mgFt9RdhDmk6sDI3fAFCdL5eugS/NqqDJt3W6a1qf9cWXptxvSUdbXdsSHymt92lZXF5quYWgwiHTUbfsS6p/GF9s3tw8qx+oEMtEHG6dt19DVGeJd2ZoXodsvyLaDe8iz11rGjdP2Wh0hr+pe26w6RmjbgXO37WhbqB7Vrysj37XWr+3Jl9/VR778mh4q5+pb87t9R7zeN1dXPr348mtftXyh90jb5Ia+tmsbXX3G5dX2uO2z9SFN34ehOpDf1YV7rTJte0J60Lxqs+77IiQb5Xx90Xa7Nqz1INS2QLaNd8+RjvaoTpAOndtrLWP7ijitw302fW1WudrmUFkrV9uu/XVtwScjad0+gJY0Lg6gJU2zgC10nhZw03oJ3gjecl42oReJvlD0pYAXkO9wXyzIry/wagBvK2bPlh/36ydY423NmjUFgTdMu5nd0FD0IKqUBXbt2pXM460AmOCHGQa05EAZEw9QpWmBeuIAUqQfA2ayACRGcf62xhRAUqBtnaVMf7QvseIC+Yvsh117zNfvOL0VpYOS9T3Qb1e/OfA2dxMJXz+7qTqPHsN997XPF9etxq6IWF11ZeNZH9bAw1tEjj8yHrqNGSny1puJlFQpHm9JwdvK2bNlWmZ9N6zxtnLaNIHHm4K3Da2tMnf4cLm9vj573HPOOdKxfr3go7XQNd7U603XeLNTSBW8+b5fEIfvFXy3YDCjgx/7/ROXhu8nlYuyD6xaFcEi+13kk+sbGOWTpYMsba/bRpWpgzKbrmnaLpXlDtjcwRlkaRkrz1c+X/tteXuOcq7effK1D6pvN9R2+sqiPrdvKk/1hXLufzBrHq1L82r7NV3r1vhQG5AOGba/mlfvK9LdetwykBOqWyGGyoBcHyyADFcnhdSj9apOELr9Vz1o6LvHmmZDla1tt2n5zkN1QJavfcjv6sXXf9Qbitd7B1nI5+pT++PW794jX99c2ZonFO/rp+ZV2yrUFtxyWjdCVxe4trZgz9XOfXqAzjRvMe9ObYurazcest37izyhctpnbRPyuTbiXmudru59/Y2r28rVspCp8jXUNLUnbTPKax6Ebj7Ehfqdr+6kkM1XLilciysXgm02XgFYWiHBG8FbzgNqHzr74Oq5/kC4D7Y+yKEXG+KrAbxhPZrGE08U7GpaTeBt586dycCbnYKX46mUGRda2JCzTlcAWoTAiJVjvJ7iAFLUgpC8wLA1DF4CBRAdaFtnCeuxZaY8BsUF9BJbh0dYnn7H6i1P2dzaTHvVC04z2DbnhY5GjidvV3sNjEU9tg5jF9qEbmGevoXvv699Rd7bYtvarfGMqFkN7NsnMqUhHrhhR9O77hQ5eDCxGqoZvLWsXCkzzz5bZp19dnaNNyz9YMGbbrDQk6mm7kc5oBsGTwtHjIjWelPPNt/3iH7nIHQHlJoW+gbyDXp8Ax6fXDdfIbJ8ebSNCF2ZvjQdzIVkuYMzX9sh1y3vXudrj20b6nS/I/G9qYN2zav90z5ovBv62oI8bt80TutBnTqgdWXiGvXCrmwerQuybRmN9303Q46VYfultubK890HLWdloQ0qQ/Xk67e2FWlW98XUozIKCd16QmVUb27/Q/ltvM9mkF5ovOotdM/UTmydbntdXRd6j6xMPQ+1W+t02+naFeRoXtWn2z6tCyHS1Ba0nFsH8rk24qvXysW5qweffDePry4rN64vyKd14JnV/qtM95nx1Y286L/qxHeNOJ/MkLxQm209obKoR9Ogc1xrH937pPlsP5PW7QNoSePc3+pSXFvAFjpPC7hpvQRvBG85Hwj2gdeXiA3xsNoXj03THyp9CWialvF96GJdFcizaWlNNcXCzz856aRoJ7bm5uY+At4KWRdNp/5Z8OQDGbkeTF0L0FvAkbtZQBeQMdMJ7bA0D2ixWXEeBi9uTnOdB6hYmf4+FaAXu7GBBZihuvP0O15v5t5YD7OAzC5Zdh095555YJrRYGANNZPD9tP2v8R6sfcqd6qx0Ynpi82f997aPhQCCU33eVrDGnhxp8jwwfHQ7ZRjRB7/VY+VUM3gDb+vt590UrS5gm5sBPCG6abq8ZYPvLXccUe3XU03bdgQ7WjqrgWrH/H4ntD127C+m67xhjj9RvGF7oBS84S+kXwDGf0msgMen1x3YFSILLeMts+GobbqAA31IL9euwM2tx0heYjHgFbLu+VQh08Xtq16DhkWamg597sS+d28KsOGhfYNZbQu3elP9WPl2XO3ft+9RX5tg9sHrU/1prJVLjZusLrQdF89IXvQOrRu91plIkSeYm3Vli/0XPuHtsSVKTSfT0aorM82VXeqI8hD+dBYB/l8aW6dbl1aj9Ux6oq7J/nS1bZQt9WDey+RpnnVruPqteVD+TTe2ihk+3Rj2+bqwdWT7bPVFdpk67IyfTJsupWpulJ96LXm136hPo1DiGvbN19f3b6hnC8O8aE2oz22Hvda26TthxzE6bXbH1/9hdbt6jwpZPOV09/oUoYh2GbjFYClFRK8EbzlvFhCD7g+6HgI7YtQ4zV0H1LE68vJwjXNX0rwtnjxYjn99NPl8ssvF/s/5voxjzBuc4Vlt90mU/v1k/tmzZK+BN5ydrsMrmPmgjEHzGSnlRrAEZJlwEcX9HHlZ8aoFnZk5MVNSbQgJRe8xIx5bR1eoOLpq+lbbntM/00/o9ptPaZ859pmTv8DkEx7kVdvpnz3tdMsKIRE0+Zu7cpAV7cv2pBsaGQE8na1GTJNG0qol/D9D7WviHtr2+m1k6wyeNJXNLB5o8hnjoiHbqNGiLz+Wkk0Us3gDZsrzB09Wu446SRpXbYs2tUU3m7FrPG2cc0amTNokMw/91wBcMNGSyuvuipaz03BG6aZrpgwIbshE8AbvN7U4w3fHvjuACiC95t+i+DcTkn1fcvoAAZpWk5Dd7CmeV2vqDi5+m1VqCwdPNn2YPClu5qqHJWLtmq7bFxowKbyEaKsyrODXy1rwZvm03ZpnVYXiEM68qoOtT47cEScHYRqXtse2xfIXTxqVDQIRR5tn5WJeK1L+6Zyo/szaJAsOPPMnLZB7uqJEyP92bxat/bZrce2Af3X+lQnVpcqF7JQP6a6+uQhztWJytP2WFmoQ+8F4lHetgVxPn1EujAbjiBfqB6tz4bIW8g99rUnXz2qb7e/Wj9k+nSrcm2am1fzWJ2pXISIt7aMONUfZGlejXPvudtm7YvWpzar1yjv3m+tQ/PaerWNbj2aV9uDfChXiC1oPluP6sHqUnVn47Q9Wq/m0fa5/dd0V8eoz5UbpwfUp3Uin9t/9CUkz61L+2/vg7Zb+2H1aeO0/25daJure5WRrx7Vka1H+2fvEeT58hZat8rUenwALWlcKYGbyrKALXSeFnDTegneCN6yPxK+Bx5xeugD6D7Umo7Q9zAjDi+RSgdvGBTMPOssWXPffX0MvGXGhCFYE4QMBmZEwEZhihvfCZW6oEgXZOqCMV1x3UaobruC7SmPx5u2p6v96gHoa7PpuxdAeUCPL5/pcy7Y62xNQXrzAbWg7tx24V7m64tqBmEheU2ebtOa3fqdKalaVR692HuUC15N3R5923JeEIr6Cd70LjDct1ek4YfxwO3IvxWZPlWkxztNd6m72sEbvN4A3rC+Gw54uxUz1RQfrusXLIi83u6srxccAG/YTEHBGz7A2xctklkDBkRADrukW+im3ysK3zDwwWGhG/K4Ay/E6TcQvmlUjg31+0dlqueUDlpCcuMGRnGybJs0n60L6Spb0xGib7bd2i/32077Y/urg02Vh/oA+vCNZ8trWc3n04Uryw42tX1oq9snTUOYT0YxfYM8bberI6SpLO2TbRfK+dpvywHcoYyWdwfiyKsH6g/Js/dUZWicbRNkqX7c/mg/tS2+ulBG5Wu7QvVouhtq/XH1wG6QjjZpeS1nbUrTEGq621/Ng3Ju2zVN+6BtcvPpfbbt0bIIVS/wSFQZCN22qo5Vjtbrtln7ovdI69drhG4ZbY/mdev2ldG82h6Voe3UvvhsAXlRh+ZBiHKox9Wf9tPNq/Vpuu2T2wbf+8JXl8p026d9RBlfO7QNSLcy9FzviZZFPvTf1Y3qVPMhD/LavkGmladp2mdtq9btq0fbq/UgdNuubUF5lYVQy2q9iCumbpWLOpNCNl85hWWlDEOwzcYrAEsrJHgjeMt5QO3Dmta5TjUNPYz4X249Nm/eLDjsA7Rp06aiPd6w6PPU/v0Fa7y1tLR0A28rVqwQPZYvXx7t5rZkyRJpamqKjoULF3aNjlI4S77GWwqNZZXUADVADVSrBv78vMhZp8dDtxOPFnn0ZyXvYSWAN/3Nw++f7mqqv40I7a6m8BzH72lra6vA4w3H2rVrI283TDe1HujWM916rOP33P6+62++fgMgDH0rIB7fE6X6lsFAxx1klko25XRBJ9WFDvjcgaSmV0roG9jatiXph2/wbmXyvLu9lEonlfScJ7GdUumhluWEwFMt97kUffMBtKRxcb/bSdMsYAud2++JNM4J3gjeSvZRWoqHGjLSAG/wdsP6M2sWLyZ4K/lwkQKpAWqAGqgBDTSvEBlYHw/dzh8msvvVsnSW4O2B6D/aAN96G7xxAFw+0BH6dqwkABJqI+LzDeKLtR31jnE9YeLawLTS2Gex96rceq+WZ6Dceiil/HygvJR11ZqspJDNVy4pXIsrF4JtNj4N2GbrJHgjeCN4W7s2+7/x+J95eryVZcxIodQANUANVKcGPnhf5LJx8cANU0sbbxLZv79sfSR4Sw+81doAiv0pDagpRI/Fwhx6u/XevSnk/jEP70dftQG8u7BmJmAldOADaEnj4gBa0jQL2ELnFoKlcU7wRvBG8EbwVraBIgVTA9QANVDVGvjjH0TOODEeuh1/pMj2R8reTYI3gre+OgCs5n4XCt4wpRbrKHE6M0FPNds7215b9qsevVzj7YGcZS+SQjuCN4I3gjeCt7IPGFkBNUANUANVp4HlC0WOOTQeumFq6V9e7pWuEbwRvHFQW1uDWt5P3k/aAG2gWmwgqXebr1xSr7a4ciEvNxufFJiVqhzBG8EbwRvBW68MGlkJNUANUANVoYF33xG55FvxwA1TS2+9vqxTS11dEbwRvFXLAI3tJEygDdAGaAO1ZQM+gJY0Lg6gJU2zgC10XiqAllQOwRvBG8EbwZs7vuM1NUANUAN9UwO/f1rki8fHQ7fj/lHkkQd7XT8EbwRvHMjW1kCW95P3kzZAG6gWG0gK2XzlksK1uHIh2GbjkwKzUpUjeCN4I3gjeOv1ASQrpAaoAWqgojTwySciC+4S6ffpeOh23pkiL72YStMJ3gjeqmWAxnYSJtAGaAO0gdqyAR9ASxoXB9CSplnAFjovFUBLKofgjeCN4I3gLZVBJCulBqgBaqAiNPB/b4l8+5/jgRumlt54jcjHH6fWZII3gjcOZGtrIMv7yftJG6ANVIsNJIVsvnJJ4VpcuRBss/FJgVmpyhG8VSF4w80fO3ZsdOC8Wh7YQtv54IMPStyDtWXLFtFj8+bNgsM+EJs2bZKOjo7ssXHjRtFjw4YNose6desEx1qCt9QGkqyYGqAGqIFUNfDEDpFTB8ZDt2P/XmRrR6rNROUEbwRvhX5HMR8H87QB2gBtgDZQShvwAbSkcXHj/KRpFrCFzi0vSOOc4K0KwRseIhgL4Nutt95K8EbwJjt37pRJkybJgQMHUh8cyivNMrquTupwjGmW3XEtemGpDMvkHd3SlXPHVJQfLc2vxBUuPm13y2i/3P27Zdu8iTJ6cL/OdtfVy3Fnj5aJ87bJ7v3F18MS1AA1UOEaOHhQZM4dIkd9Kh66nXuGyM4/V0RnCN4I3ko5iKIsDsppA7QB2gBtoFAbSArZfOWSwrW4ciHYZuPTgG22ToK3KgVveEgA3SZMmEDwRvBWueAtDzzbuXhYBnTVSWrg7ZWtMnEwQF+9HHf+RJkyY5bMmjFFJp5/nNQDCg6eItverIhxNxtBDVADpdDAG6+LjP5qPHDD1NLJ/yayb18paiyJDII3grdCB0jMx8E0bYA2QBugDZTSBnwALWlcHEBLmmYBW+jcQrA0zgneqhy8wesNhlPKByttWZxqWvwYrSI93s4dFnmzjd+4J9ChnbL03DoZdMqgCL5Z8BYo0OPo7h5ve2XbDfVSVzdEGh/f203+nkemyJC6OqmfsFVCvehWiBHUADVQuRr4xTaRk/vHQ7eB9SL3r6u4PhC8Ebyl/X3G+jmQpw3QBmgDfdMGkkI2X7mkcC2uXAi22fg0YJutk+CN4K3ioB3BW/HjvYoEb1OXRmCtLgStXlgqI+sGyaw5jSmCtx3SGDsldo+0X1qeaa/F32WWoAaogcQa2L9f5PZb4oEbvNyGfUHk+T8lrqacBQHe/rS7+38QlLNOK3vhwoXS1NQUHUuWLJFly5bJ8uXLZcWKFdlj1apVsnr1almzZo00NzdLS0uLtLa2SltbW3RgTVVdX1XXW0Wo67AitGu0Ys1W+9Gq67rqOq8I4z7E8T3BQWLfHCTyvvO+0wZoA7SB0tmAD6AljYv73U6aZgFb6Nx+T6RxTvBG8FZxH6UEb3aoU9h5ZYK3HfLUHHizTZStHnexnctHSt0ps+Spx7uDt25rvEV5Rkvzrj3ybEuDjDwBXmp1Un/CSGloedbjjbZXnt3YKOMza7b1O69Bmp/bK9093jLg7dz58mxA1TtXjZa6AUNk/n91ZehsX6PseHOHzLp0iPQDvKs/TkZOmC87fNNS398pW2eMl2GZdkPe+Knt8qyrF+3nc0/J/Is6p7r2O89Mdd3zrLRPHS9DBnSuoYf+T5y3w9P/rrbyjBro8xp49RWRkV/JD90mXSay96OKVRfA2wUL/ie19hG8lW4Aw8EgdUkboA3QBmgD1WQDSSGbr1xSuBZXLgTbbHwasM3WSfBWxeDtnnvukXPOOSfapbOaHtx8bSV4K35cVangTZ6eJYPq6qThEddLY6csPa9OBs15SqRg8DZMxn1niNSfPV7mb9wm2x5slsYxnZshDIGc7N9eeer2IRGYG3LpfGnfvk22Lm+QYfUjpWGyu7mCTjWtk35jZkn70ztlbwGbKXSCtyEyZDDKNUrzg1oHANw4abebQry/Qxqxhlz9MBk/o1m2bt8m7fPGy7B6rB83UbbuyjY8o4tBMmRwPxl29VLZur1d5s/b1gnWdrXLeAA3yJnXLtu2b5XmqaMj6Ff/nWbZacTwlBqgBjIa2PawyPFHxkM3TC1tXVXxKgN4O+K636fWToI3DhLzfb8xnTZCG6AN0AZq0wZ8AC1pXBxAS5pmAVvo3EKwNM4J3qoYvOHFVovwjeCt+HFVxYI3eUpmnVIndZO3SQ5602mmT0sR4A2gqlF2vG/1k5EPzzmNjmTXyaCbd+TWuUt3W3V2SwUYO7vTgy7aibWunww5d7w0LG+Xp3bltFprkE7wVifdgFem7vobtL8K9jxryD03X0a668dlIGTdpe2OF9se2ToBbYTXX7YZ0cneR6dEcHPkcqK3XM3wqk9r4K9/FbnlunjghqmlXz5V5LlnqkJVBG9c440D2toc0PK+8r7SBmgDlW4DSSGbr1xSuBZXLgTbbHwasM3WSfBWxeCtFqEbXjoEb8WPASsXvIk8NWOQ1NVPkW2GYUVTPhWWFezxVifDFneHSztuxrTLRtmRUVvnTqnDZOkLrh73yrbJofXa9sjOB+d37WSKqaOZo/7szmmqVloneIurIzO9ds9WmQg5LniMhGl7xkn77ox01cUqp5+vdELD+qnaS9uazk0q6s5dSq83qxae910NvPySyD8NzQ/drrhY5MMPqkZPBG8Eb5U+MGP7CA9oA7QB2kBt2oAPoCWNiwNoSdMsYAudWwiWxjnBWxWDt1tvvVW4q+lmwWLL9uHBYsx2cWa7aLNdzFkXeMZiz7rwMxaBxmLQWBQai0NjkWgsFm0Xj8Zi0lhUGotL60LTmIKT5l8lg7fO6ab1MmW7krfd0jymTgbNyPioKWxqUfokGY8y45mWyTPxAXdRNM2r68jBMwzQbEoWxNn70n2NN5uaOeGw2UEAACAASURBVN+7R3Y+vVWaZ0zMriXnTh/NrvHmKd5ZR700Yk24/2qU+ro6Ge2CtEy5zrx10vh4JiLTz25TczPxw27GFNNtzrFVZo1Bnxty4KanaYyiBmpfA5s3inz2H+Kh24DDRFYtrTpdELwRvHFAW5sDWt5X3lfaAG2g0m0gKWTzlUsK1+LKhWCbjbe8II1zgrcaAm+ASljzDUCu0h/euPbR46348WBFgzfZIY31dZL11oq8twbJLEwzxV8R4C0LqDJFEXRCMIV0nVDPesCZrJ7NFWyq73yP7JjauV5ctB5dJktU54X+ddVyYJqnb7aWnLxIyOR3+6n51AvPH6oObA08pwb6iAb27RW5blI8cMPU0qEnifzhd1WpFII3gre4byemceBOG6AN0AZoA+WyAR9ASxoXB9CSplnAFjpPA7bZOgneagi83XfffTJ8+HBBWK6HrjfkErwVPyasbPAGOFYvdfWd00EjiKTTTNFVD5zKhWldeVwgheK5eYvzeNvZMk761RkI6FP93m3SgOmiY5pFffI66+ya3mqLRbugqsyEHm/d+vnolGjqq8/jz9bNc2qgT2rgz8+LnHV6fuj2vbEi779XtSoieCN4641vMNbBgTttgDZAG6ANuDaQFLL5yiWFa3HlQrDNxlsIlsY5wVuVg7cJEyZkIVutTD0leCt+XFjp4A1wrT6CUbul/VIzzRRdLSl4E+lc480P0yIAiA0KMruO7t0+JZoKmp326lP9m+0yHuDt5q711XJhny2k67Zlpn3qGm8TtjqbJaCM5u2+xls38PbCUhmGjRiCa7z1kyHnz+/aYMI2iefUQC1roG21yGeOiIdu/f9OZFm6ywGU4hYQvBG8uQMhXnNwTBugDdAGaAO9YQM+gJY0Lg6gJU2zgC10ngZss3USvFUpeMNNxPpudlopIJy97o2HsBx1ELwVP0SrePCWmW46aHKDTFRvMO1micGb6EYE33Gmgu5qlnH1WAutC7wJdl0djLghMuVB9WfThonI/t2y9QZMNR0kjY/rGnXqZVcnQ6Y6O6dmdiodlI3Pv6tpzg6mgammIjqFdrQsdXY13b1xYn54aLrEU2qgJjTw0YciE74bD9wwtXTwCSJPP1kTXSZ4I3grxzcXZXLQThugDdAGaAP5bCApZPOVSwrX4sqFYJuNtxAsjXOCtyoEbwrdanFjBTz0BG/FjxErH7wpgKrLTjnN9rLU4E1EMIUUmxr0G9MozQ9uk60tjTJ6QJ3U19c74E1EdrXL+AGAb3VSf8IwGT95lsyaMUumTBgtQ6L4ehk55ynpwm4K3uojecMuny/t27dJ+7zxMgxgb3Cj7Hg/2zuR93dII+Be/TAZP6NZttq8A8ZLuwVpQfCGdmbAIeTMwyYLW6V56mjpB288t05TPU+pgZrTwH8/K/KlU/JDt4u/KfLuOzXTfYI3grd8AyOmc/BMG6AN0AZoA+WwAR9ASxoXB9CSplnAFjpPA7bZOgneqhC8leNhqiSZBG/FjxMrH7yJ6LTObtMlywDeoME9j86Xief1i4Ba3YAhMn7GDnlq1eju4A2Z9++WHS2NMv7cIZ0gCzBrwBAZPWGWtP8htJNqo+x4c4fMujRTBnVMbZdnLXTTW/n+s9I+dbwMOwHgLwP4kNcVHQfeok51yukEgp1tDNapdTOkBmpJAysWi2BXUnizhY5+nxZZNK+Weh31heCN4K2SvtXYFg7uaQO0AdpA37GBpJDNVy4pXIsrF4JtNt5CsDTOCd4I3rJrxFXKy5PgrfjxYkWBt+KbX3Ul4jZXqLrOsMHUQDVoAJ5rl3wrDNsUwn3+uJqZWureFoI3grdK+U5jO/rOYJv3mveaNkAbgA34AFrSuDiAljTNArbQeRqwzdZJ8EbwRvC2dq20tbVFR2trq7S0tEhzc7OsWbNGVq9eLatWrZIVK1Zkj+XLl8uyZctkyZIl0tTUFB0LF6a7cDfBmztELe81wVt59Uvp1ECOBn7/tMgXj88P3S66QGTP2zlFa+mC4I3gjQNgDoBpA7QB2gBtIA0bSArZfOWSwrW4ciHYZuMtBEvjnOCN4I3gjeCtlsamvdIXgrdeUTMroQY6p4xiV1L1aPOFRx8ics8skU8+qWmNEbwRvKUx2GKdHOTTBmgDtAHagA+gJY2LA2hJ0yxgC52nAdtsnQRvBG8EbwRvNT1YLUfnCN7KoVXKpAaMBt7ZI/IvF8YDN0C40z4j8uR/moK1e0rwRvDGwS8Hv7QB2gBtgDaQhg0khWy+cknhWly5EGyz8RaCpXFO8FaD4O3+xYtlzsCBsqahoeKgWiEvCq7xVvzAkVNNi9cZS1AD1ECFauCJHSKnHZsfuo0ZKfLWmxXaidI3i+CN4K2Qbyjm4aCcNkAboA3QBkptAz6AljQuDqAlTbOALXSeBmyzdRK8VSl429rRIYtGjIiOxaNGRSHi8JARvG2Sjo6O7LFx40bRY8OGDbJy2jSZdvjhsnD8eGns31+W33ZbUWu8zf7e9+SGo46S6ePGyXVHHSXzbrtNuMZb6QeZlEgNUAN9TAMHD4rMnS6CqaO+KaUad9SnRObcIYL8feiP4I3grdQDKcrj4Jw2QBugDdAGCrGBpJDNVy4pXIsrF4JtNt5CsDTOCd6qFLzhAVk2blz2AIQjeHtA8BBt2hQP3tbcfbdMP+kkWdLQkAi83XP99XLz8cfL7B/8gOCtDw162VVqgBooowbeeF1k9FfjgRvA2ynHiDz+qzI2pHJFE7wRvBUyOGIeDqJpA7QB2gBtoNQ24ANoSePiAFrSNAvYQudpwDZbJ8FbDYA3TCkleOuEbsWAt/t+/GO54+STi/Z4U/B29+TJcuNxx1WUx9uRcw7IkXOFB3VAG6ANVI0NfLvhl/J/n+mfF7o9+cURctpPXquafpX6XUzwRvBW6oEU5XFwThugDdAGaAOF2EBSyOYrlxSuxZULwTYbbyFYGucEbzUC3uD9pg9NaKop8sw84ojssWHmzGwZO3V1bWNjNg/y23xaB+KsrNUTJ2anvqrnHYAg1ppDe7QcwqUXXSQLR4yQLfffn43f2NQU5YXMGfX1suDcc+WB9naxDxiuEX9nfX103DVokKy+/vrovOWOOyJvNwVvC7/1Lbm9vj46Gg8/XFY3NkbTTTHVVD3eAN5mDh4sq+bMiaaaLlu2TL785S/LqFGjZMWKFbJmzRpZvXq1rFq1KrpGHA4L3m4+7TRZMHt2xUw1JXgjdCz1YJ/yaFPlsoF+cw7I/G/8WD7RKaSBEOnIh/zlaks1yCV4I3iz31I852CZNkAboA3QBnrLBnwALWmcHd+X6twCttB5GrDN1knwVsXgLfSg+cAbIJgFaC4UU/AG8GUhHs5deIayLpBTqGc979w6tL0ueNvc1hbBOAVxD7S1ydxBg2TJ2LFZ8LaptTWKA3jbtGGDbNmyRTYsXCgzBwzoBt4WffvbMuuUU2TDqlXROm+AbgrfAN70WLduneBYm9nVtFDwtnz5ckHeJUuWSFNTU3RUyhpvBG+EJNUAENhG2ulpjbvlN184J6+X257PHC0XXf2zPg3c9HkheCN40+8ohhxs0wZoA7QB2kBv2kBSyOYrVyrYZuWEYJuNtxAsjXOCtz4C3twHc8vatTLv1FOzO58qeEMc0jS/C/G0nIVzyKvxScCb1qUhdjVdefXVEWgDcMNDhetZAwZI+6JFEXQDeMOx4qqrcsAbPN/g6bbm9tuzmytsALQbPlzuHTMmC90A31zw1tbWJq2trdLS0iLNzc1BjzeCt3SgwXk/E3nh1dy6297uXI+prYKnFQ59SGT72yL7dB34/SIv7BKZtCK3Lzq4tuG0VwpYb+rt/HKsTJw3vSEi+0SmBfQW6fqjrrr3fSTS8bPi63Hr5TV1CBu45MqH5Z2BR+WFbk9/YZh8ftqrhG6Z55TgjeBNv5MYcsBNG6AN0AZoA71pAz6AljTOArNSnVvAFjpPA7bZOgne+iB4U5hmvdsUvFlwhodZgRq813CtU0yt9xzifeUL9XhzXxrwiJteX58FbTrFVKefKnRD2HrnnTngDd5us423G3Y3xY6mgG6Ab+uam7PwLR94A3zzTTUleEsHHrwADuRApooHb5tEXtjfCbDeeE2k4zmRx/Z0Xu97W+SSAPhSQDXpDyIvvOU/3vhrRs5rxd2PS/4YMbcgeBv6qMi7EL1f5JldIh27RN7I9OGxR4urS/vBkHqDDfSf/VdZesENeYEbdjRtuvAm6T9nP6GbeUdUE3jD7ycO/EcW/kML/7GFAx7m+tur3ucIdedxhHZXcmyWZD9aN2/eLDjsd0DcRzv+I8/9xuA1B6u0AdoAbYA2QBsozgaSQjZfubjf7aRpIdhm4+33RBrnBG99BLzpVFDANsC1B1atijze1HPNB87wQlLwpvkA3Nypp8jnK18oeLPru6F962bMyPFwU/CmU0/tB7cPvOnabhpimimOGaecImvvu4/gzQzkqgmIVCN4WwnPMhF54Y+54CXyOBORZ36bG1/o/Rj66ww8+0hkWgGecyp30u8yUA2NCni8PbZPRA6KdGwybdsk8jI89j4UmVyl9qM6YGjuay/eyzN+/JL88dSheaHbuwOOlIt/9AiBm+feELzR440DxeIGitQX9UUboA3QBkpjAz6AljQuKVyLK2cBW+g8Ddhm6yR46wPgzeel5gI1HzjDi8rN55OFfL7yhYA3rOuGjRbsZgs61VSnlip4K9Tj7Z5zzpGNa9dm/9fc/k+6/R92/V93XePNnWqaz+Nt6dKlXOPNMzgsF9ioRvD22Ici8leRea6e/tgJ5N59JQEEWSHym4y322O/KLB8q0jHW511ykcZ+OYDbzs6gd6+3d3lztvdWf43O7qnleueU25t6Pqyf9siHxzzD3mh2x9OO1MGT32Z0M19X2SuKwm84fcPa53CA1w3HkKIzYjgKU6Pt9IMdDhgpB5pA7QB2gBtoBJsIClk85WLA2hJ00KwzcZbCJbGOcFbHwBvPgCm003Vk80HzvCQu+BNy0GmfQlovJ2q6vOOc0EbNla4+9RTo80VVB7AG7zbFLzhAcQ1NlzAmm/W461p7NicqaZY4236McdI2/z5BG+BwVvZYUYGKr3wXCfsya5ttk/kmedEhmq7fpEBQO+KjNU4E24HtDoosjIibhlolAkUWOlU046HRB6L5kdmMuwTeewpU5fK3STy0FtmvbWDIu++LdL0kAM4Mn3A1MqmV0Te1fXZDoq8/Eph67PF6Xnyrs52vvy8U6+2Myac/D+dZQHHsrqMyY926Fpx+94XmdEqEqnUA94mZWS//JynXRmdvPE/nrQ89cfpgmm1q88Bs/bJmq9dlRe4YWrp8gv+XY6Z/TGhW8yzRPBGjzf9TmLIgThtgDZAG6AN9KYN+ABa0rikcC2unAVsofM0YJutk+CtD4A3hWIKyxSmFbPGmwI6POA4R1mANVwrtNNprLhGvNYDGKc7lq6+5pqorPVww5pugG+AcCi36uqrc9Z4w0OGTRUA4uyupm2Z9d3urK8XADcYdsf69QKPN7urqa7xht1N4zze3F1N6fGWEAhkAM0+rAt2UOSFV0Q6nhd5ObNO2LsvdcmN4JqIPLSxKy4CMY+IRLM03xAZ+kjn2mjR9Yed5ysza40peIvqAmx7XuQhA8qeecrIteutvSXy0HMi21/LTNncL7Ldrl+W6cO72GBA1zp7XuQFTMPELE20K2aAHIRJrSIznutaQ62piGmikcyNIi8AAh4UaXN1FtOeabtEAELPy+QJgTf1avOu5aZrv71hdBpTZ1AHLNMn4NKXbtsp/z1ocF7o9v4x/yjfm/Rgn9BJT58JgjeCN3wj8aAOaAO0AdoAbaC3bSApZPOViwNoSdNCsM3GWwiWxjnBWx8Ab3gwAd0AxnBgjTZAM+xgqkBN4Zn1WEM5hWeaTx9yhW8qr33+/GjtOLe8Qj+tG+ANoM2CN/V60zxIt7uY6gOo8A2gDcfisWO7ba6Ah+j+detk3vDh0e6mWOcN67sBugHAEbz1AjTJQCsAqhyAY6ZIdmSgUcjzS+MtOIubaupuVDD0t52ADPROB7sdmU0N3PXWznsyA9/s+mXah/0ibXatsxUiz2TAV1ORAEmhVtQyV26BslQv6vGnfSs2DIE3BZneKazqoehscFFs3czfZZO1qotrvt8iH/b/+7zQ7blTz5ChP34x+4zWqj5K1S+CN4I3/QZjyEE3bYA2QBugDfSmDfgAWtI4HduXMrSALXSeBmyzdRK81SB4682HUOtScOcCOk0vJsRU07gH0U41xeYKMwcMkHX33pvd+Qy7oNld0ewab+3t7Vn4xjXeygQA1OPNs07Y2Oc7gVh2uuLDGc82Z7pp5An3V5EZBkjFgbff/Lp7X6L8KjdQjw6IH8pMU33sZxk5MX1QgNdm2qZy4sIZf+z01st62R10wGQB8nRtNwWXcfXFpRG8dbeXOH0xrTB9fWbmh7L5nO/mBW6YWrr6n68WTEWlbgvTLfRUq+ANv8v2d9r+fnNXUw4si/l+ZF7aC22ANkAbKI8NJIVsvnJx4/ykaSHYZuMtBEvjnOCN4K0k0xbUs02nn/bkpVcMeMMab/PPPTeaYqoPEMFb4QO5sgx6M9DK9SyL6lKvqbe62qjQKzvdNDPNdN+rXXlQNg68bX84N282v65j9odO4BfyFNM10LJtzvQhCwgNFFOvMF+dheoz62XnwMXY8k9lvPjeTjjN1fSB4K27vcTq3uiO+fy6G37Ts/LiiafkhW7whLvihx0EbglsiuCNHm89+bZi2fIMRqlX6pU2QBvoCzbgA2hJ45LCtbhyFrCFzpUVpBUSvBG8FQ3e4NVmAZtOR3WnmSZ9CfnAG6aZLrrgAsEOp+rxtvKqq6Ipp/B6sw9QoeBt/fr1Aq837mrqH0gnBgwZaJUzzVQHmQrezHTFsX/qBEq60YBCMHe6Yxx483mf5cClTJuKBW9ZEKftnyui4E3bF9WTYWIa+Mq5+tT17VSOm+5eN0WL3IkUItst617n6Mb0TafDeu9dZo03346nrnxel/iZMveoEnV74/eWyb7+h+eFbs+f8gX58q1/JnRLeD9rCbzh91eXfqDHGwetSb8XWY62QxugDdAGescGkkI2X7k4gJY0LQTbbLzlBWmcE7wRvBUN3nRaqa7JhrAUU0z1xekDb3gI106fHm26oGu8YYrp+gULZPPmzQRvO3fKpEmT5Mg5B9If1MZ5vPkW6N8o8jKIVWZa6GPYwMCut5YZpPYIvCX0ePNBrlKBN1dOPqAS6UVE2ordkMEzyA+BN93V1NfvI2O8APO1nem1CeI+O+N9efjscXmBG6aWtp03UT4z66P030+e56Fa7JPgjR5v+p3EsHcGmtQz9UwboA3QBjptwAfQksYlhWtx5SxgC52nAdtsnQRvBG9Fg7dyv4BC4E0fNvV4QwjoRvAmsrMCwZvPu0zXeFPvNh3wrsx4cz30aOeab74pnj0Cb7rG24cikzwDb53u6q7x5gNQBQOz/8js5KrrzDn1KkjLTrF10lU3UZin/Tl54+Rk0kLg7cgdnRtN+Lza1BvuNztqEyIVq8O+nn/kDU/LyyecmBe67e1fL5OuWEfgVsBzmc+mCN4I3sr9/UX5hAy0AdoAbYA24LOBpJDNV07H9KUMQ7DNxlsIlsY5wRvBG8Hb2rXS1tYWHa2trdLS0iLNzc3RsXr1alm1apWsWLEieyxfvlyWLVsmS5culaampuhYuHChzjJMJaxE8Cbuzp2tIs/8VUQOirRldjXVgabuQvpyZpMDH4yKYNGe3PXNFILlnWo6V0Q3RXBhWna9NetlF+O1p3UWMkU0O5300VxYdclzGTN5W2RsIQPyjMeeD4ipDosJg+BtrkgEBA+KdNjdXDdlvBKtjgppN/PUJHCa+p17Zf/Rf5cXumFq6bCb/1STOijmeStVXoI3gjffYIhxHCTTBmgDtAHaQLltwAfQksaVEripLAvYQudpwDZbJ8EbwRvBG8FbaQfGGWgVoaX9Is/sEunYJfLG/k7Y5IIvHZQ+czADo/b4YZTu6PnM8yIrMyBLIVgh4O3ITSIvZNrwxlsiDz0nEtxhtETgbahOrRWRN17r3NX0sbcz/XTBpK5/pxtCGGilU0BdT0HVXTZU3Zs19LJpRl4ceMu22XPvvGu/Gbm+uhiXC12rWR8n3LlHfnHmhXmBG6aW3j/iMhk4k1NLS3m/Cd4I3so9sKJ8Dt5pA7QB2gBtwGcDSSGbr5zCslKGIdhm4y0ES+Oc4I3gjeCN4K0s4O2F50Q63hLZlwFq+z4S2f5kGELoVMYQmLvktyLvKpzL7IpaFHgDINoksv3trjbB++7dt0WaHnLaVSLwhkH30O0iv3k3t05AuJtanTpjwJtuOBHSTXZwXwLwBlnn7RB54aMMIBQR3LuOnzntJXAr7XNT4fq84N+fkNePOzYvdMMmC9eNX9mndJN9/sp8DwneCN58gyHGcZBMG6AN0AZoA+W2AR9ASxpXSuCmsixgC52nAdtsnQRvBG8Eb2vXZnc27atTTS+btFWeHDxC3htwZN6BNbxZeFAHtIHy2ACeQTyL373y4YqAV0fd9YnMuGiWHDjqkLzP/c6TTpVzpzxTEe3uLRjWm/VUO3jDDuI4sJs4dzXlILHcg0TKp43RBmgDtIHS2UBSyOYrp7CslGEIttl4C8HSOCd4q1LwpjuLLhoxQhaPGiUIEVdJL5gta9fKvFNPjdq3cMQIWXrRRQW1TzdXwAf68OHDpb6+Pjrmzp0reECL3Vzh/vvvl40bN0ZHe3u7bNiwITrw4Y8BgA4GsM5bCLytXLmyZtd4u/RKuHuVByJQLvVKG0huA5f86P+lCrFOvuMteeyMfy7o/bB1+MVy7MwPUm1vb0KwNOoCeLtgwf90uaL28hnWMtV1TbHGKdY6xZqnugYqfiexJirWRtV1UrFmKn5X8fuqv7Vx4A2/1x0dHdlj06ZNObuW64ZK9jsg7sMd3xOV9F3EtpRuEEhdUpe0AdoAbaD3bMAH0JLGxf1uJ02zgC10ngZss3USvFUpeMOLZtm4cdmjEsGbwsHVEydKT8CbAjd9EO0Ht36EW6PGh7r9cCd4i58iCO8awpHkcIS6o+7KZQN4NtMAPKjz2w2/lDc+OzDvu+HjfofJTd9dklo709JPGvUCvP1p995exm1d1RG89d4Ah4NJ6po2QBugDdAGKskGkkI2Xzkd05cyDME2G295QRrnBG81AN7WNDRUpMebgje0D95uST3eCN66Bj6hs57savrBMf+Qd3BdLrBAuYRWtIGwDewZeHSvA61+cw7IvG9Ok4NHfirve+GlE06S8278Xa+3MQ3oVQl1Aryl+UfwxkFgJQ0C2RbaI22ANkAb6D0b8AG0pHGlBG4qywK20HkasM3WSfBWI+AN3m/25aPTPGcecYTgwJRPxGme+xcvljkDBwq80eAthzwAZJoOeVoW+VpvuinKjzwK1HxedkjXujSfgrfV11yTlX/LLbdE00fnzZuXjdO63ammBG/5h1o9AW8u+KiEASbbEO+lSP3Urn7SfB5Pa9wtv/nCOXmBG9r4yFlj5bgZ7xG6lXlDBfusE7xxcwX9TmLYe4NN6pq6pg3QBmgDD0lSyOYrp7CslGEIttl4C8HSOCd4q2LwFnoJAHgBnCloUwBmQZmCN8C1DTNnZuGX5lV4hjosxFM4hxBADnK0HVrWhYCabsNKBm9Yj0bXp8FaNVizxq7xdt9990Vr22CNG13vBp4Aaf4RvNUuiLEDb57X/n1OC7z9y1Xb5J2BR+WFbvuP/ju57ZKFBG69CNz0ua9E8Ibfw7g13vB7yjXeOGi13388pz3QBmgDtIHqswEfQEsaV0rgprIsYAudpwHbbJ0EbzUI3nwvM8A1C8oUvLmQDPlcGAd5Gq/gTcvrNfJonAV5vrbki4PHGw7dXKG3Pd4I3mofbuhAliHvdaXZQKnB23d+9NNYSNZ/zn5ZPOpG+aSADVb+cvwJcv6/Pxkrr9L0WUvtIXgrzuNNvyXyfXMwvfoGgLxnvGe0AdoAbaB3bSApZPOVU1hWyjAE22y8hWBpnBO89QHwBjim00YViikks+AMLzCAOOvtpi81N796t1kvOsiy11q22FA/lqsBvC1evDjyeqsUj7cDBw4U73jnDriLl8AS1AA1UCoNlPp5HPYFkX2BBflffUVk5FfyerlFMPDib4q8+06pekk5CTRQKeANv3u6q2kle7zpt0Sx3yDM37uDOeqb+qYN0AZoA5VvAz6AljSulMBNZVnAFjpPA7bZOgneahC82amhAG4AYuqxVgh488EzF7zhBQm5CukUxLkgL8mLVD+WKwG8rVmzJnaqKcFbgtEji1AD1EBYA6UEb4//qhOqPf+n7vU9vEXk+CPzQ7d+nxZZeHf38ozpdQ1UC3jD76Yu15DmVFP9lkjyHcIylT8I5D3iPaIN0AZoA71nA0khm6+cwrJShiHYZuMtBEvjnOCtBsGbz2utGPCmMM2+zHzgTQEfZCN93qBBOWu+2fLFnOvHMsFb4eM6XeONHm+F64w5qYGK1EApwdsV3+kEaz99sKur+/aJ3HhNfuCGdnz+OJEn/7OrLM9S1QDBG6eaFvMtxby9NyClrqlr2gBtoNZtwAfQksaVEripLAvYQudpwDZbJ8FbjYE39TxzvdbgiWbXbvOBNLwwkM+uBacvES3verQB8uFAPELN35OwFOBt06ZN0tHRER3333+/bNy4MTra29tlw4YN0bF+/XpZt25dtJYcIF9bW1u0CLRd461Qj7dFixalOiDrE+Bt9zZpXP5Ujp53TK2TurpG2ZETW2EXe56V9qnjZcgAtLVO+g0eL40bn5U9RTRzzx+apeH846S+rk7q6o+TkRPmy443ixAgIt1kTG6WZ4tpRHHVMXdSDZQKvP3vX0SO+lQnYFu66FTX+wAAIABJREFUoLM1L+4UGT64MOh20QUie95O2guWK4MG0gZv+J3DhkL5ppqWyuMNv+M47Efr5s2bBceWLVuyh350u6F+S/Tke4RlOZimDdAGaAO0AdoAdzW13yJJzwneagy84cXgwjP1disEvKkXm/V6U0in01btyweyAerg7YZzmxZ3nm9XU3wwhzze8HGtH936EW4fAP1YLzV4051N7a6mOtWU4K0Mo8wckTukEdBpai5iq3jw9v4OaRwMWDZMxs9rl23bt0rzDSMjgDZk6g4JrLyV0/OdLeM6gdvg8TJ/4zbZtnG+jD+7Xurqx0nzrpyswYu9jzfKEEC/MY3S/OA22doyRUbW10nd4EbZ8X6wGBPS0ECpwNv0qV2A7ZbrRDZvFPnMEV1xbj16ffQhIvNminzySRq9Z50xGqhk8IbfRxzYBbw3wZsL2+w1wRsHy3HfoUyjfdAGaAO0gcJtIKl3m6+c/a0u1XnIy83GW16QxjnBWw2CN/V6AyjDAe+3tY2NBXm84QWk8M2Wb58/PwJsrseb5rWgrpCXWKnBGwCcPkDFgDfr9ZbP482Ct+XLl0eLSxO8xYwSS5pUneDtqRmDpK5uiDQ+novYnpozROrqBsmsp/Mo6c2tMtEHyBToDZ4luT6AHnl7d0jjKXVSN6ZZdtrkXc0yuq5OBs3IK8GW4nm5NaAATMOk9Z3cvwuyHfePXecq1xeeOlDkP3+VtEaWK7MGKg284XdQN1coFLzByxy/uzjU+xye6OqVDg91/U8z/S3X33b9jzbr8Rb3wU7wVviAqpDvNuahPmkDtAHaQN+1AR9ASxoX99udNM0CttC5fk+kFRK81SB4K8dLUb3eivFqS9oO/VguxuOtGPCm003141+nmyYFb4Bv9Hgr84hTqhG87ZTmy4fJcectzQVeUNXjjdG009Etu2MVt3vduCjfxAdzwR0K7XlgotTV1Uvj47EiZO/2KZHHXMMjroy9sm0yvPGmyDY3KV4kU8upAReIJalr7ZrCQJuta8xIkbeKnL+cpG0sk1gDlQDe8HuHA7ualgK84feY4K3vDuSSfieyHG2GNkAboA30rg0khWy+cknhWly5EGyz8WkBN62X4I3graDpofB0K9arLekLsRzgTdd50498/E+7C94A+nQHNt2Rza7xFvJ4I3hzxpEZqNT46B7ZMUPXNquX486fKPMfNYuKvdLpcVU3eZtnyuUe2TqhTupOmSVPZeRhfTQ9FFhlp5rueVaaJ4+U4+AdVoe6GqT5D6YubeL7O2XrjPEy7IT6TlkDhsj4qe3d1zqL6hwtzbv2yLMtDTIyk7/+hJHS0FLc+mxatQ33bBwf1d8dhtlcIp39Gy3Nr+TGR1cZj7Vhi3P82LplfGoOvO7Ql25JsrtldGGed92LMqZcGrAwDOdJ/r76pcLBG9aBm327yMGDSWpimV7UQDWDN/y+4nA93vQ3GR5v+J2mx1vvDqSSfqexHO8TbYA2QBvoWzbgA2hJ4+IAWtI0C9hC5wrA0goJ3gjecsAbpo5iaipCfaHqGnHuNFNNL3Xogrf6+nrBMXfuXNGH0V3jLZ/HW7HgraWlRQDfCN4SjCozoGzI4CFSN2C0NLZslW0PLpUGrEtWVy/j1qmX1x5pvxSgrKG7x9Wb7TJep0G++axs2z4/uq67fL5s275Nnnql00WrE0wNkSGD7fpljTI62shgSO5UTp2eifXWZjTL1u3bpH3eeBkWTeWcKFstmIr6MEzGfWeI1J+dWVvtwWZpHNMvAmZD5iScnrl/r+zc3hitr1Z/9vy800QLAW/uune5dyzj1VY3xb8BxaNTov5MfMADKXMF8aq3NNBT8PZfjxcO3U45RuTRn/VWz1hPDzVQbeANv6P6n1kEb31rgFbq70LKo/3QBmgDtIF0bSApZPOV0/F8KcMQbLPxaQE3rZfgjeAtC9j0habTSnWNN4S9McVU61fwFvcw9iZ4W716dbRoND3eChw1qodat8X/d8rS83KnNoY8vzrj7RpocVNN66TbRgVPz5JBAHdZQLZXtt0A8Nd9vTV5br6MrKuT+glbu3Ya1T5023zgKZmF9dLgiVegOjTbzsXDOr3s4Ll3dqM8VcCmBjtXwSPNP5107yMNnfKcDSe0vs5wtzSPAdwM7Pya6ad6EOaW5VUqGugpeJvw3cLA26gRIq+/lkoXWWkyDVQDeMPvpW6uQPCW7iBJv6kY8j7QBmgDtAHaQE9twAfQksbFjfGTplnAFjpXAJZWSPBG8NYNvPX0wexp+WoBb8uWLYvWuuFUU2cQmYE5vimQCouyHlZ7tspEgKic6aYZT7ictdHiwNswWfqC0wZdE07leuvRMuoVNk7a1Rkvpg87bo4BWSrSE+58HLuaGi+7AeOl3XrZecrIC0s7oeB3nI0RZGcGqHXf6TVXDMFbrj6q4Kon4O313YVBty8e//+z936/kVxXnmf8B4NuwO70AIvpapWBVUONVgnbQHEwwoxoSQvXrMZuzlSPTUDYLrBlrECpuz0cuVumqtWm02WpipatEl2WynTJlk3qh4tlWW3Ku95lvWjBWoyA8mLdKD0YoLAjLDiAdsEHPfBBhTmLExnfiBM37o2MyIz8wcwvgcSNjLhxf5x7Mk6cD8+9V2T//zkCwmATrQTGCbyp/fOt8UbwRueu33dA3k8dog5QB6gD46cDvUI23329wrWy+0KwzZ4fFXBDvQRvBG8Eb2+8Ea89Y9d4s1NNfRFvupObOh7f//73Y/j20ksvWf9o6Md7e3vy+OOPy+3bt+vX3Y+j76stgVbeRf+Tdd1a5xAvBuhlppsm00xPXbFrl5WBt0XZLsyUTPKf3pCYpb3bjjcYmHvFlpk1vrPWWZRtVJD0IQWEWdZk3TVfnSZTt8Mkyi7KwUX/TXub83Hb0ymv19Zk4b6WtB6ej3clLZ9qSvDml+oYn+3n93ihXQ28aR13fELkr/8nkff+cYyFwaZZCYwavKmd0380qd1T+6d20N3VlOBt/JwlOrAcE+oAdYA6QB3oVwd8AK3Xc2UArddrFrCFjgHARpUSvBG8EbwRvOWddevp9XIcQyv/Yv6CDRXM9Eh3180OBHM3FCgDb75plA54S0BaaEplCLz54GF+3bWkHrPxg24A4bsvL8qDzuYRuumBb+OEfGbZv74qCyc768ulGzx8vCvLOkU2hZjOTfFXgM3yNd66bfLgK5nnBiSBXsHbxx+L/NHv53/Lblmh7//+fxD5X98W+a//dUCdYrFNSIDg7R9E13PVD5abKHtBR/R8v84G76fDSh2gDlAHqAPTrgO9QjbffWW2u9drIdhmz48KuKFegjeCtyMJ3vRHqS/eeAn3ba7w85//XN588810pzTdNQ07qGnq29X0tddeixeD1og3/ehaNfof/FdeeSVe5+2HP/xh+l9+RrwFXMmyiLdkJ85s7TUROdyRZd3gIJ4WmkRondnK1luLq+kTvPUY8eYDaM2Aty47lgZEmzv923WZjSLxReXZfOmuph7Ax11NraTG5NiFY1WbdXWzHLrp7qX/3X8r8rn7RXQduPZTIldeFPmffyHyf/2fIv/f/1u1JuYbkQTGHbypnUTEG2yobq6gdtW3uYK1x+6upmq/8cELq7X3av+7vZwTvNFRnnZHmf3nb4A6QB1oSgd8AK3Xc93sdy/XLWALHeN9YlQpwRvBWyXwtv3mm/Fup7rjqR439SP2lYOXZU3LfngueAN8w8v6IMCb3WBBwdv6+jqnmrpOaEl0GdZ4cyOsbp4/0dnd9P3ObqZFmNQneMMab3YDhbTdiAorrvHWHbylhRQPPtyWpfvulBbWmcvlwBRQM8U2dz358u6azByPxJWXXt27ckqiChFzbkRhVk3S79ZycVfZLBOPhi2BXsHb6X8tcv+MyP94WuTJL4usfUtk6zWR/+N/F/nP/7eIRsTx70hLYFzAm9o9TDXVf0apXdTPIMGbhW563A282fcI33sGz9EZpQ5QB6gD1AHqQHUd6BWy+e4r8+97vRaCbfb8qIAb6iV4m0Lw9pOlJXnu05+WHy8uxqnuYup78FjY9ovXXz/y4O2nP/qRnP/jP5a106fjyDdEvGmK/8Z3i3gjeKvgtybgLXJ3BP34lqzprqZ3t2X30Ckn3oW0JUtPLHYAnHsdmyWc3c3d2Ik+qzDVVLrvahrZKLuSqL18xFuuOc6XZJMIhWPOJgqH7yx3dl1d2ZVCV20pCTDM7biq1z/cksVWFIB6tgCNKNyVtu7EetrZoCHZuOHEeay359zHr6ORQK/gbTStZa1DlMCowNuXvvSluJdY460f8Gbtro14+9nPfpZGp2ukuv0Hmr6wErxVd45873M8R/lRB6gD1AHqQD864ANovZ7rFa6V3WcBW+gYAGxUKcHbFIK3qxcuyMV77pFXn3qqFLwpkFNAp/kthDuqEW8//sY35Nwdd8jG8883Bt70v/662DQ3VzDeZwKtWq2WuBsCRNGMtG/4UNNNWVU4pGuWPbnjgVF7sv5AJFFrXtbe3pGbH3TKqA7eROSjXWmf1DJmZeH8hmyX7TDaCHgTkfc3ZF6n0WqdF3VX023ZWJmTY9rP+9qy+5GRG9a/w4YQyaXO5gotmX1kTbau78j2ZlvmjkdSAJuaH9DTrKGnpw9vtGVG63xoWTbe1jKW5ZS2y4Wjpjk8HJEECN5GJPjxr3YU4A3QTaUD8KZ2r9eIN4I3On79OH68l/pDHaAOUAdGowO9QjbffWUArddrIdhmz48KuKFegrcpBm8xgDtxQkIRbxoZp4BOo90mAbxd+rM/k2/PzspPNzcL4O2NZIMFjXhzo950zRp3nTedXgPnQ3d4I3gzTiug1TsHsnt+IZ4qGUXHZOZMW7be80G3zr17l2clilrBjQkOf70m83e1OnAu2VCgFnjTaj66JVsrCzKLcu6alYWVLbnl7oqKPtww/UoOq0e8JTd8eFPWn5hL5BCJbo6weHFH9t2ZfwHwpqXsvd1ON1eIjs902myhHZoZAG96+eDddVl86M54h9SodaecemKj2G+Uw3R0EiB4G53sx7zmYYM3C91UNGrnsKOp2j+1g5hqimmmaivd9d2wxpvaWYK30ThMdFQpd+oAdYA6QB3oRwd8AK3Xc73CtbL7LGALHQOAjSoleJty8Hbp3ntjsOb+EBW2KXRT+KbXLHh7vd2WC5/6VPpBHlsGouVsPgV9Ns9PL1yIy3jt61+X7z34YFre+he/KLo+yytf/rI822rFn++cOCE/f/XV3JpvusbLS1/4gjzTaqWfzW9+MzdFBZsrvPrCC/LMHXfIK1//egzdNOrtG3/wB/LS4qK88O/+nXzt935P/v73fk8u3HefbP7oR7L+9NPyd5/8ZPx5+tgxWX/22dwGC+psnHvoIfmbT3xCnvjEJ+Q/fuITI3XZ9vb25PHHH5fbt2/Xb0fTjn4JtCprXLwJwN2rwomPZVLitYmXQNO/x4kX2PR0cJjgzYVuKuUmwdvVq1djW4zpppxqSofQvh/ymPpAHaAOUAfGSwd6hWy++8oAWq/XQrDNnh8VcEO9BG9TCN6qPMgUkuk0U0TDAbwpSPvB/HwK0PTY5tOy9V7NZ0Ebzv34P/yH9F6AN73/2ksvxef1+vlWK/4ogNMf31tbW3LpgQfijx7jB/n9L3xBntOIvY2NeP2XV595Rr7ZasnGuXM5+KYv9OuPPy4X7r5b3vjhD3PgbeX3fk9+uLIi+p/4K3//9zF8iwHcv/pX8pOXX47/c7/6+c/Lyh/9kbx86VK6s+m3/+Iv5IW//ds46k0jAJ798z8fqfd35MHbR7uyfHckp67sjVSOrJwSGLkECN5GPgTj2oBhgTcfdFOZ6LIKiHi7cuVKXxFvFrzZHU3VXtv13fRYX1jdNd7wHhBKubnCeDlsVd47mYdjRh2gDlAHxlcHfACt13Mh293PeQvYQscAYKNKCd4I3lIQhocdIJvdwRTnMPUUeRHZhqg3RMpZOIe8eu75e+6Rf3jttbhOgDcL4/Sa5tHPW6+9lkK2H335y7J6/LhsvfhifO71Z5+NI+EUtuGF/Oc//amsPfCAvPjv/33uxV03VVDoplNN9aVe/8OOiDeNdtOpLwreXn3llTjibeUP/kB++K1vpdNlLp89K0998pPy4vJyHPWG6TXqeOh0G3VEvvfccyP11Y4qeNt7e1VWzy/Lwn0tiVqLsv3hSMXIyimB0UuA4G30YzCmLRgGePNBN5wLgTedZoqppj/5yU9S2/nqq6/GSzf4pppa8Gaj3XzgDTbept1ezgnextd5wzshU44RdYA6QB04OjrQK2Tz3dfNhvdyPQTb7PlRATfUS/BG8FYAb4BpNmIN4M3COH1YArQBvCGyzd6Lh6qes9FtAG+aIs8vfvYzufTgg4LppvjhKWiz4E2j3XT6KaLd8EKuU09fuP9++dkbb6TwTTdV0GmmOt3UBW861RTgTeHbd+bm0ummWKfmB+fPi043DYG3tZUV+Zt/9s9G6qodVfC2/9ZCZ6OBu+Zl7dfh9d9GKlxWTgkMUwIEb8OU9pGqa9DgDYDNCsWeqwvesGaqpmpf9YM13gjejo6zhfczphwz6gB1gDowvTrgA2i9noN/32RqAVvoGABsVCnBG8FbCr3wMNXINDeyrRt4Q4Qb4BqmqKJMTQHlANqqgDf9r7X+KH3gTdd/s+u74fhbd98tWz/+cQzeFMA9/5nPxJ+t114rgLfLDnh7/t/+20rg7dl/82/kbz/xifjztX/xL+S7zzxjfZWhH48VeBt671khJTBBEiB4m6DBbLYrgwRvFrCh1e45BW/r6+ui0d4vv/xyOtUUEW8a7WYj3gDeXn/99Rx4U+g2SPBmo9302L6H8Hh6nUaOPceeOkAdoA70rgO9QjbffU0CN5QVgm32/KiAG+oleCN4y72UuhFseEDVAW/u+m4oA1AO67n1C9503TedXopoN6Sq3Fgj5vXvfjeOdtOoN0xnsVNNy8CbTpPRqDc34u3SV78qT37iE7L2t38bOyDqiLz47W/DVxlJ2hd4+6PfF3GdfX6nTKgDo9cB/W3yjxJIJDAo8OYCNq3Od06XVagK3nzTTBHxVgbedEMk2O/Q+m5q6/Gi7UsJ3np3rPC+xpQypA5QB6gD1AGrAz6A1us5n+3u95wFbKFjALBRpQRvBG858KZTRt3NEvRHVxW8AdwhAs7+YPWc7l6q00n1fD/gDRFwP710qQDe9KUcL+663tvq3XeLrvMG8KYLOesab+fuuENc8HbRRLyFwNt3HnlEnvr935cXz52LwZuu86bTTd//T/9pZA5iX+Bt7r8fPWAg5OEYUAeKOqC/Tf5RAokEBgHefIDNd+6//Jf/Urqxgka92Yg3C94wzdSCN+xm6m6s4II3/EPNTcte0Ane6Czad08eUx+oA9QB6kD/OtArZPPdV2bDe70Wgm32/KiAG+oleCN4S8Eb4JoPmuFaaI03e4/COzfqDdNMNcXDrx/whp1Ov+2s86ZrvOmGCwredLqpTjv9wV/+ZQrdFL654E3/+w7HwAVv6jxcuXAhXuPtpaeeiheQvvzMMzF4051NdcrN5eefl+U//EP51r33yn/+x38ciZPYF3j7335ZdPgJQSgT6sDodeD6r0byPGGl4ymBQYC3Kj3d39+Pp4ZqxJvaPP1gk6Ef/ehHuY0VNjY2RO1mCLy50W69gLdf/OIXjHj7Zf9OFN7FmFKW1AHqAHWAOtBNB3wArddzvcK1svssYAsdA4CNKiV4I3hLQZhvUwX8COuAN70HoE0BnH58UXT9gDf94Sl8++4DD+TWecMupwreNs6dk2fvuEN0uqn+Fz0U8eaCt9X77pPNH/0odR5c8Kb/2Vfo9tVPfjJe4+2rv//7cvErX5Gv/uEfytf/9b+WF198Ub73ve/J2tqavPDCC/L888/Ld77zHdGHwOrqqpw/f16effZZ+Y+zs/Kl3/1deeR3f1cePX5clv/iL+SRf/pP5cmFBVlZWZG///u/l7/8l/9SzvzO78SfP/+d35G/+fM/l7/7u7+LP2fPnpWvLi3Jwh/8gfzbf/JP5PHHH5fbt29X8aOKeRS+ff4BkT/8b0YPGwh8OAbTrAN/9M9ENNJt538p/k55ZqoloOBNn/v4wBY8/fTToh+1GfajdkQ/X//616Xdbsefc+fOyTe/+c34o3ZI7ZHaJbVPaqfUXqndUvuldkzt2UsvvSR2fTcL3rC+249//OM44s0Fb3Z9N/0HVxl4c6Pd1I67kW76neCNDiLeTZlSF6gD1AHqwHB0oFfI5ruvDKD1ei0E2+z5UQE31EvwRvCWgjeNWnM3VRjFw8ydJqLfQz9CfQH3vZjrpgq6uyl2OHXBm/6XXae6wAmwO5uqo6CLQuO/9rrOG6bQqHOhjgb+268LTKsTouve6EedE4C37373uznw9u1vfzt2cC5cuJDCt2eeeSZ1gr7xjW+IftRBUkdJHaavfe1ruQ+cKjhaSP/qr/6qP/A21e4sO08JUAKUwPhLQMEbnvlIYRNcW2GBG2wLgJvaHUA3tUcK3tQ+WfCm9gvgDdAttL4boBs2VoDtVDtqwZvaWdhctb9qh23EWxPgzff+MIr3GNY5HEeQcqacqQPUAerAcHTAB9B6PRfy6/s5bwFb6BgAbFQpwRvBWwzeEO2m00RH/QDzvTiHfogh8Lb5zW/KuVYrjnrT/5p3A2826q0beFMnQ6fXAL5h6o06JToVR6MDFL5dunQpGPXmg28aiaAfOEkWwCFyIQTj+gFv+5tzEkVR/Gnf8Dmfu9JOrkenN2Tfl2UY5z7YkDm0I2rLrqfO3ZVOP6JoTjY+8GTo61R3OWT1azv8beyrCYO+2cp4xSfhQTeA5VMClEBIAgreFLT5IJu1EYhwgy2BbVHw5oNu+oJqoZtGu6n9QrSb3VTBRrupHVR7WBW8AbppWgW86Yux7x9rZRFvvveHUb/TsP7hOIWUM+VMHaAOUAcGpwO9QjbffSG/vp/zIdhmz48KuKFegjeCt5GDNt9D0n15Dv0Q9QXcB99UwRW44aPgDfAN/2XX1DoCWOdNwVsIvsHJsODNjXoDeNNoAY0aUCfm4sWLhSmndtqpRh8gGkFTOEpwnDBNCKk6Vvbz5S9/ueeIt6MJ3iKJPGAoA1/DB29Z3QrdBlF/yB1v8DzBW4PCZFGUQLMSUPBmn/sAbLALmsJmwIZYu6J2BpFuan/cKaZqp9Re2Wg3tWeI6FbopvYO/3RywZtGh7vRbjbizdpba4d1GQjYaNhsTX3gDTY/9E7gvjv43i94bnCOGWVL2VIHqAPUgcnUAR9A6/VcyIb3c94CttAxANioUoI3grcjDd70B9oUeMN0U4A3TeFEYLopwJumcD40VYdEdzfFdFPAN40awJRTwDed0qMPhG9961uikW+IftO1duzUUzhMcKCQwrGy6dLS0vSBNw/cyuDXIMBXOOLNwssjC92UERC8NUtKWBol0KAEFLzZ5z6OYRuQwnYgVbui9kU/sDlqf9QOqT3Sdd3UPunabmqvbLQbppmqfbPRbmr3rD10p5laO2p3MwV86we8lb2YE7xNpsNHR57jSh2gDlAHRqsDvUI2331ldrzXayHYZs+PCrihXoI3grcjAd70ZTr0QwyBN1Vy/Pcc/023Gyzoi3/ZOm8ueNNFo9W5gLNRda03wDc38g0ATqMO4AxpiqgEdZbsB06UTeFoPfHEE1MI3opRbyMBbzfa6VTdIw3dFBAQvDWISVgUJdCsBBS84Zlv7QCOrb3QY9gSa18Q5WbXdLORbmqv6qztpvZQ7aLaRxvxBvCGSPIq67upnYbNxkuqO9VU7X3oXcCFbvqdjtpoHTXKn/KnDlAHqAOToQM+gNbruZAd7+e8BWyhY7xbjColeCN4G8sXU98LdOjH6ANv+rLuA29l003VMXCj3rDJgjoU+lHnwgfe9L//OgUHUW+6Jo7daEGdGQVvLnzTdXXUAdLoA0z9AYhDhAKcJ01dxwrfv/KVr4wIvJkosHT9tUjmNgMrweUgVc0pmRYKmbrsunRdwVuh/pK2Fnxm01esdeeUZ9tSuF32ZeM01qBL0m7TZW8U17Vz+5h975Tpb0O1ugneiqPGM5TAuEhAwRue+W5q7QRshwI3a1fUzgC4YU03QDe1TS50w9puatfsFFO1d/qPJ9hCQDeAN2yqoPAN0W4WvIWi3Vzw5kI3/U7wNhkOHB1xjiN1gDpAHThaOtArZPPdF/Lp+zkfgm32/KiAG+oleCN4G0vwpg9jF76Ffoz6Iu6Dbxa86X/RbdSbffFH1BvAm6b4bz3Am0459YE3G/XmTjkFfNPoAf3YyDed0qPTe/QD+AYAp86RBXE2WgEOlXWy9Phv/uZvhg/eAiAMGzW48C0/HTMPoPywyHF3bX2n57KNFgDBRCSDUMWpptm1fN1xe00ZTq3mqwPebHuiSMr7YO410NBXd7CdCaQLXk/LdftevW6CNzPcPKQExkwCCt7cZz9sgrUTgG2wJQBugG6wPWqHFLhheilslf7TyEI3d4qp2j0feMPSDBa8Wbvqbqqgdpjrux0tx4uOMseLOkAdoA5Mpw74AFqv50I+fT/nLWALHQOAjSoleCN4OzLgTUGc7wdZBt4sfAN409QH3tQpgJMA8KYp4Bui3tzppnajBXVQsN6bOi760fXe9GPhm7vuGwAcIBweGNZx8h0jOu7JJ58cOnizIC2DTjayygAgA6kyIGfzVtgB1JShGytYAIUys3OmbnWebWSaiTKzfUAZYV+7BGAp9CqBd1m7TD9Nm2zdWV5/mbnrZudUe95fXve6Cd7Co88rlMCoJaDgDVFsPntgz8GGALYhwk1tjV3PzUI32CrYLqzrZsGb2jsL3bC2my/aTe0nbCrWdrO7maodtna5yjTTUMSb+486/U7ncDqdQ447x506QB2gDjSvA71CNt99Pn++33O9lUhJAAAgAElEQVR47ylLRwXcUC/BG8Hb2L6c+l6kfT9KgDc36g1Kjpd5+4LvgrduUW8K3wDe7Fpv+M+/RrvhUwW+udFv6gjpB5EI6iTho45T2UNErz311FNDB28W9Ph2GLVOapbXwB/NYGBaBu/snebY5I3rs98TAJXVY8FbGeAru2bqjg+7gLdQ1JtppwViWmTaXgPt0nOB8oLXTT3peJhzVeq245GW4YqB3ykBSmAkElDw1s0WWNDmwjYANxvlhumlVaAbppgCvNm13dQ+qp3sFu3WK3izdt73HuB7X6Dj1bzjRZlSptQB6gB1YDp1wAfQej3ns+P9nuv2fqTXwQZGlRK8TSF4+8nSkjz36U/LjxcX4/Rnly8PHL794vXX5eI998jlz39eXnzwQfnB/HzXOn0v0r4fpX0ht2vC2B+VnWoKAOfCNxvxpv+l17VpEPEGhwLwTR0ORL658E3XwgF8011OET2g03fUuXnxxRfjaafq8FgAp86QTv3RjwviEBGnTpXvMwrwlosiS6c56jROB6751jbL5e9M/XTBUMGzNRAJUMiNWMuglAFvnvts2baMcvhXBG9xm03kWrHvTrSdp9+dqbmZzLx9MA0OXvf1M9c2zxTbuD1Z3QRvRtA8pATGTAIK3nzPf8A2/OMGUW0AbZhS6gI3tT9qj9QuYXqp2iu1W7Bhdm032DpsqGCj3WAjAd7s2m5qT33TTGGLkaqdtnbb2nNr533vAb73BTqH0+kcctw57tQB6gB1oHkd6BWy+e7z2fF+zxG8DQlq+QZ03M6N0wPg6oULMQR79amnhgbett98MwZuCvv6AW/6cu37YeKl3L6o6zFe4quANzfqDeDNwjcXvKnjAWfETjkFfNOpOvpRZ0YdG3zU2cF6OoBvOuUHHx+EC8E4jWo4e/bs0CPe1Ce10Apru6VpGsVlo8pC8Ke4Q2nB5/WBJbEwbE7m0s0LBg/eMlDo9M9MZY37UAl+Ze0NgrVEIMHrPvnUrJvgraB1PEEJjI0EFLwhEtoH2WAj8A8cgDbYFTutVO2P2iHYJIA32CwFbxa6YYqp2jv848kH3tRe6seCN0C3smg3hW8WvLm2HDbeZ/990E3PjdN7F9vSvBNImVKm1AHqAHVgeDrQJFvx2fJ+zxG8EbwJlHScHgwAb3F64oQMI+IN4E2j7TTarUrEm8rM90Lt+2HipVxT+8IO8KapC990UWdEvalDgA/WpFHHAfAN/83HJgsK4OB86H//XfimDgs+cGQQ/QZHB1N7LIBDFBxSdZQshINDhRSO1tNPP90IeMtgkvE1LdBJYZq5roc2j4nq6pRnwZSJrnKK6PrV1mHhlhcuZSAr1zZ7X1KhhYeVI95cOdi2RaZurcO0zytfp+NBsJbkC163bUA/a9bdTVZOU/mVEqAEhigBBW945sMGuClgG2yITWFrYHtgixDlBlsF2wXwZqGbL9pN7SJsJKCbBW+wrRa82U0VXOim9tracWvfffbf954wTu9cbMvwHEPKmrKmDlAHqAOD0QEwjSZSny3v9xzBG8Hb2IO3S/feKzoNtMpDSmGZThdVYKdTVS986lPxR78DrOGcC9ZwHeBN0yp1+l6o9Zz747Qv5ha+WfCmx5jSoqm++AO+WccA4A3TTdWBgFOhKeAb1npTAAf4pg4KIt+s86LRA3Bq3KmncII0tZFw6iTBaULEgjpVvs/Xvva1nsGbBUMarZaHTxaaVYhKUyfUwB5MCQ3CojpOqw8sxfc7bYzBn4Vf9roL/squuY0z0XUueLPrtWn99nqw3W75ne/dZBW87qvHd85fbeds3fxlZfEaJUAJNCoBBW++5z9gGyLa1G4AsmmK6aTW1iDCTe0RbBOi3GC7dE032DT955KFbmr/9B9QFrqpfcQ/rKwdtfZV/9kF22vtsWurAd5c2+7a/tA7QpX3C+YZjHNGuVKu1AHqAHVg8nSgCeCGMlxb3sR3gjeCt7EEb70+DBWmKVjTqaIK0gDTANsUwGnZGkGnYK4qXCtrT+il2v2Bui/neGl3X+btiz7gWy9Rby58U4fEhW8WwGG9HAA4RL9ZCKeOEBwj6zS5x4BxSNXZWllZ6R285aZrlkwFzUE5C6ws5MpPP00jvCyMM1AqCJF87moZFLLlF8Bbvk2AgVqFjXZL2+qrOz5XDt5y0WJBWRmwGehPN5kEr3vLs+PUve5cHxA1F5QHL1AClMAwJaDgzcI12ADXRtjvsCk2ug12R+2QQjdrn2yUmwvdAN4sdLPgrddoN7XFrq2GDXdtu2v7Q+8IZe8VvDZ5DiHHlGNKHaAOUAcGqwOAZk2kri1v4jvBG8HbxIE3BWp2aqrCNgVvNsINQA6Arp8HYeilWs+7P1L3BV1f3N2Xed90U1/Um91oAf/BV6cCkW/qbOhHHRBEvtWBbwBw6vTACYJjZFNEwWnEgu8DB+vrX/96H+AtPFU0Xa9NYZYLYizoiWGXA+0MYFPnNANGTj5f2T5v1tbntqVQfh4Gdq3faauverGAMpA/30cTXWfbXpBVvq1ZGfnzaFPwuq3Dysee71I3wRukzJQSGD8JKHjDM99nD3BO7Ya1IziGrbERbr1AN7V5sIGwiT7oZtd2wzRTX7SbXdsNNlvtt2vTXZtf9n7Qz3sH7x2s80b5Ur7UAeoAdeDo6UATwA1luPa8ie8EbwRvEwfedKqpnZqK6DZEu+FBqiBuHMCbD77ZqDc4ARr1ZqfDqMMA+FYG3qrAN52ug491cix8U0fIjYKDk6QpHCdNEcFg02984xv9gbfYx8xHR2XQzQ+AOm5p4B4Lfqz/WohMM1FYNp/v2AIkX/n2urvOGsrL5ekAwPzUWmT0pV0i3uJbTJ4oknwUnUdWHoAXBGtJk4LXbd8K8qlWN8Gbb9x5jhIYDwkoeLPPfRxb+2Dthj1GdFsIusFG+aaX2kg3C93U/oXAG2yotavDmmaqQA7vIkyPnnPHMeOYUQeoA9SB8dMBQLMm0iZAm1sGwRvB25ECb4hUw9RRO61UH4AK044SeNP/lvvAW92oN4A3TfW/+oh8w3/8NdW1btQhQdSbpromDqbqWKdGj7GGjgvf4BRZh8k9tk4Wjs+dO9cAeBsP55KtoAQoAUqAEihKQMEbnvk2dW2E/Q6bYlO1O7BBrm2CzcKabrBpat+wphtsn0I32ERrJ3V9t6aj3dSeuy/ZjHgbP8eMzjLHhDpAHaAOTKYONAHcUIZrz5v4TvBG8HakwFu3B+W4gTd3uqk7LaUueNPoN/vfefzH3m6yACdDUzgfAG+Ab9hsoRt8g8MDB8iNhrNQzjpSvmOCt6KTyjOUACVACUySBBS8+Z7/9hwAm8+ewNbA9ripD7qpPQN0c8GbtYcAb4BuLnhDdLmmNuq86jRTF7yVQTdGvE2m09ftHZXXOe7UAeoAdWBwOgBo1kTaBGhzyyB4I3gjeHvzzb6nfJS9YLs/Oh98w5oxNrVRb9YhCME3OBU26q0bfAOA08gBfNSxcZ0dfIdT5HOYLISDY6VTh/B55plnGPE2SR42+0IJUAKUgCMBBW945rtTR9UuhGwHbAtsjZuqXYKNQqSb2q+60E3tI/5hZf+J5dpYgDcfdFM77bPjrq0vey+g4zU4x4uypWypA9QB6sB06kATwA1luDa9ie8EbwRvBG8VwNvTTz8t999/f/zC7nuYl71g6zX7Y/W9sIemm4bgm13vDU6Epr3CNxfAlcE3OETqKIWcKJwHgNP02WefJXhznFR+pQQoAUpgkiSg4M0+92ELQqnaEdiUUGqhm0ZpA7j1A91stJtd181Gu6n99YE336YKjHabTifP9z7Ic9QF6gB1gDowGh0ANGsitb57U8cEbwRvBG8VwNujjz4q+gk9SPsFb/rSbqPd9Bgv/YBv7n/kffBNp9Bg2qmdYoPFpTH1VKfjYNqpTtGBI4O1cpBWAXDqLCFaIeRc6fnz588TvE2Sh82+UAKUACXgSEDBW5kdgK0IQTZ7Xu0PbBFS2Cq1W77ppbB11v7pP6RgG/GPKkS7udAN4M3aX9c2+/55RvA2Gicr9E7G8xwP6gB1gDowfTrQBHBDGU3BNlsOwRvB20SBt0E8ZPVFXaPdXnjhhSB403r7hW9lUW8++KYOA+AbnAlN4WC4U07hkNj13qoCOEzxUUeoCoyDc6UpnDCCN8dD5VdKgBKgBCZMAha8WTtggZrvGLYFtgagDWkIuMGGqV2DjesG3dROKniDDbX/1NIppmXQjdFu0+fIDeK9kmVSj6gD1AHqQPM6AGjWRGqBWVPHBG8EbwRvvyz/4avz8LnPfS44zRQPzm7gzU45Df3H3IVv1gFQh8A6CHoMx0GdiDrwTR0UF8AhggARcHB4kMIhQgpHyedE+c5duHCBEW8T5mSzO5QAJUAJWAkoePM9/33nYENgU5DC5iDFlFLYKMA2TS1wU7vWD3TrFu0Wgm422q3KewDeGZiWv3tRPpQPdYA6QB2gDtTRgSaAG8poCrbZcgjeCN4I3rqAt6o/+Cov3PjxVQVv3aacAry5kW+IekNqnRFEBXSDbyEAp84QHCQ3LYuGI3iz7imPKQFKgBKYPAmUgTe1D67NwHdANpu6wE1tUlXoBtuHFP+YspFuajftP7N6jXYjeKNjWPU9kfmoK9QB6gB1YHA6AGjWRAqfvcmU4I3gjeBtiOCtW9Sb/ke9LOqtbMqpOhFwLjSFw4E0BN+qAjh1gqxThGM4TmWpOlwEb5PnZLNHlAAlQAlYCSh4KwNs1k7AhtjUnVJaJcrNjXSDzUNq7aL9Z1UZdFNba9d2g232/dMML+VV/vmmeeh0Dc7pomwpW+oAdYA6ML060ARwQxmw7U2mBG8EbwRvQwZvgG++F3g9hxd8+9Jvp5x2g2922ikcD6R23Tcb+Qb4ZqefwuGxKZwipNZhwrF1rOzxt771LU41tR4qjykBSoASmDAJKHizz317DBthU9gSpNbe4BhRbmqf3KmlFrrZTRRg8wDd6kS61YFuiHarCt0I3qbXISQM4NhTB6gD1IHB6gCgWRNpk8ANZRG8EbwRvI0peLORby54c+Gb/S++HneDb1UAHCAcnB83haPkptapssdjBd4+2JC5KJKotSjbH4Y9392VSKJoTjY+COepfQV1r+wGbj2U3ZUZiaJIWg9vyN7HgWxjdXpfNk5HEp3ekP2xahcbQwlQAsOUgII3+9y3x66twHfXtuA71nCrAtzqQDe1kYh2c6eXwtbiH1/4R5imoX+W6Qs1wdtgnSk6q5QvdYA6QB2gDnTTgSaAG8oALGsyJXgjeCN4awi86cOgzsu3/pBDL/L2ZR8OABwCpOow2A0XfPANAA7//UeqTgo+OgXVjX6zEXBwetQJgkPkS+FEhVJ92Dz++ONy+/btYfqB/roAvxRuPbotB/5cMnzwdii3Ls9LK4Zu63Lro0DDxu40wdvYDQkbRAmMQAIK3kI2AOd99gPnXNjmi3BDlBtsWAi6qf1zI91c6OYDb7C51g6HbDWhGx3Bbo4gr1NHqAPUAerAcHQA0KyJtEnghrII3gjeCN5GBN4U0oVe5u0Lvx7DEQB0Q9oUfFPHpSqAA4iDo9QthbP17W9/eyzBWxS1ZOlXh14XddjgbW8zgW73tWX3yEA3FR3Bm1eBeJISmDIJWPDWzTbgOmyKm/r+IaR2ygK3YUA3tcEhW13nn22al87XcJwvyplypg5QB6gD06cDTQA3lAFY1mRK8EbwduTA2w/m5+XiPffIL15/vfGX2KsXLsiFT31KNO31gV33RTz0Qu+DbwBumm6cOyfnWi35yblzceQbot9CkW9Vot96AXBwlrpFxH3nO98ZP/B2el7mW5FEdy97QdcwwdvBr5ZlRqe/njxq0E3JAsHblPEVdpcS8EpAwRuAmi/1RbTBhiBtAriFIt3wzypfpJvaVf0nl2t7Qza6rq3v9Z2C902f88gx55hTB6gD1IH6OgBo1kTaJHBDWQRvBG9jCd5+srQkz3360/LjxcU4/dnlyykImzTwpj/G0Iu96wCoUwD4BvCmKZyJH/zlX8ozd9whl7/0JfnmHXfI5sWLoiAOU26QYsopUjeCAACubhQcHCc3VQdsLMHbyq7svTIXr6d24uyuuHFvQfD24U1Zf2JOZo7rGnCRtO46JYsXd2S/ynpsmOZq1ng7vNGuBt0ObsnWyoJT764zVTaBYNq3t5bklLaxdacsXLklh0nd7Rsi+9dXZeHksbj90fEZWTjvb//Bb7akfWZGjikUjFpy50OLsvaOOzmX4M1LIXiSEpgyCQC8uTag2/cQbPNFuPmi3GDbkLr/gNI13WAnm4BuarcJ3uo7RXQkKTPqAHWAOkAdGJQONAHcUAZgWZMpwRvB21iCN40406i2V596qgDeBvVj1XKbiHjTcuq+kIfgmwve9DvgmwVvCuPUmdDot9W775YffuUrOfDmg2/qoAC8IfUBOAvhQiBOnaZujtXzzz8/fhFvMfza62wMEM1I+908evOCt/c3OlFyx+dk6cqW7Fzflo2VuRhMtR5alZvdpog64O3wvfVOeRrp5vIs67S/vyULMUSblYWLTr26CUOaN4FgJ2dk5vicrF7bke3NVdn4tYgkdc89PC+t43PS3tyWnetbsvbIbGddOWe9u703Fjr9um9B1q7tyM7bG9I+rbCuJfObWY2MeEuFzwNKYKoloOCtmy3wQTY9p/YFn5Atgq1CCtBmUxe6WeBWB7qpvfX9U4zQjU7jIN9DWTb1izpAHaAO9KYDgGZNpE0CN5RF8EbwNtbgLQZwJ06IjXgb5MNoVOBNQV0d+KYOgQveFL4BvMXpH/+xvPrCC3HEGxwR65zg+OrVq6IfODKahpweF8LBSQo5Ujivjtj4gjcR+e26nIqnea7KTeM2F8Hbnqx/ViPI5mXjfZNRRA7eXorh1cxztoR8nvibBW+AeFEks5dueTLj1IFsP9rq7LDq1Hv4zrKciCI5dQUgLAFv0QlZVdhm/1B3of0HsnVGI9oWZRvw78NtWdRpuKct1NPCDmX37AmJolOy/lsUzog3SIIpJTDNEgB4w7M/lMJ22LTM7lj7BJsFG2ZT2DpN3Si3EHTz/YOrSeim9n2Q7y0suzcHjXKj3KgD1AHqwGTpQBPADWUAljWZErwRvI09eLt077259dzcqaYWluk1XaNNPzpVFcBOU/2uU1jtQ3b7zTflxQcfjD96bMtCPpSpKc4hH+qy1zTP+he/KM/fc49sfPWrcr7Vio/feu219Pwb58/Lt44fj6/p9Ve+/OUYvFn4dvV735MLx4/LM61W/Fl74AH5+U9/mq4/s/nNb8ZrvCmAs9NPNeJNwdt3/vk/l6uvvBI7H9YZ0WPrqOAYzkwdCAdHyTpP7jEcr4sXL45pxFvHTb753Ew87dKCswJ4+/VqDLlmLwNyWRd7T9YfUCjXzsE7myM+Bvx6ZFmWT+qabnMyp6kn4i69N7mnZaanptckqfeB9STqDeBtWXazTJ0j1P3ETmFabWfK7ZxsfNDJur+pU3BbotNSC3+/XZdZhYWpHAjeCjLiCUpgCiWg4A3PfNcW2O+wHWWpD7apfYLNsqlr46pCN9+abmXQTW103Yh2vDcwnSwHj+PJ8aQOUAeoA+OlA4BmTaRNAjeURfBG8DaW4K3sQaaQy26uYCGYHuu9AGrIh+8K2fQY5QPI4T6Uhe8K6hSuWWDn5tFNHrQeC98UvClQu/Tgg/IP166lL+q+8wrdNK/COPwwAd1+9Nd/HU91+fnVq6LgzcK3V595Rr7ZasWRbwBvSN2pNeqE6Mc6J9ZpsccWwOHYOkBljpLvGpytF154YazBm8hNWY0BWBbJ5YK3/TfmYzi3/I7fo3bze3MBfsURdsuy86GI/Hq1fI23G+243tmzOsV0x/lsy+ppBXdLshPPlE0gWAriTCuSuk94ovI6oC2Lkuv0ZVaW33Dr0ymnqzKn7U8BHsGbkTIPKYGplYCCNzzzffag7Jy1M7A9NrV2yh5buwZb59pA2EabDgO6MdptvJwyvPsx5bhQB6gD1IHJ04EmgBvKgE/eZErwRvA2MeDNwjF9mAKI4bymNgpO8+g5wDn9bqEajnG/LdNCNl85Cti0rq2XXkqhm76A63mNdLPnNRJOo+P0mv6439rakksPPCDf1Qi3q1fTNWYUtGkE3E8vXYqj3vS7RsNp5BvWfbNOhet46Hc4JdZRsQ6Me2ydHntsHaQyR8peW1tbG3PwJnL4brLJQTK90gVpHTgV+aPARMTN7/W+Ad6c6Z6IuPNt8oB6dSOH8AfRaiUQLKl7bnO/0DTU0YlwS8oora8zDbVTUkmdhZp4ghKgBCZVAgre7HO/7NjaEWtf7LFrk+x3a8dg23x2z9pFPVZ7GYJuvmg3+9LNaLfJc9T0HY4fyoA6QB2gDhx9HQA0ayK1tr+pY4I3greJAW+IUsODE1FugGQuiMN1C9YA27CbKu5Fmbju1qXfLdRTiKYwTaGafVH3ndeIOI2M02uad+vFF2X1+HH50Ze/nEI3XeAZUXAK3NQ5AHjTFI6EC+B8TggcFKRwXqxD4zu2zpDv2DpROLZO11EAb9n6ZZ3NA1yQ1mjEW2HaaLJ+XNSSxbew0Frinr+zHAO3wnmv914CwSqDN5Hds86ab966cLKkTmRhSglQAhMvARe8wRbY1Gc/7Dmf/bHnYLNgw5D67J2FbtZOqg31fdzNFOzLtrXlVY/x7sD06Dt0HEOOIXWAOkAdGG8daAK4oQxr/5s6JngjeJt48GanlypIw3edZnrR2bgBYE2nl9pIODxo7XWs72ZTADmtR8HbP9QAb5iWqtFwCt6ebbXiD9Z4Q/rDv/7rAniDA2EdC+tw+BwSOCs2hUNjnZzQsXWUqhxfunRp7CPeYq/4o11ZvruzgcJ8PIUTkWSdKaG6kYFvqqZgrbWqa7wVwJvZ5MGJhtPNH3RNtfAab8dk5qG1ZG25EghWA7ztXZ4tX+Pt+IycuoSNJErqnHjUwA5SApQAJKDgrYo9sHlCNsaeh22y9grHPvtm7Z+1i7CVvpTQbbwdKryHMeU4UQeoA9QB6oBPBwDNmkibgm22HII3greJB282as1GpmmkGyAcfrwAa68+9VQM3lz4Zu/HPb5U68S99j/jZRFvFrzpdNTXn302XfPNdQjUabARb9aJsE6GHsMB8Tkneg7Oiy9VZ8c6P1WOrUNlj48MeNN9O3/V2aG0M63TgDeFa112NT1xHjAKrqiTYqqpD7yJyN7lU3F0W+thu5toAraiOVl3djXdv7YY76aa1VsCwWqAN0E7T6/L3se2D/uyFe+wmq0HJ1JSp72Vx5QAJTDREigDb1Xsh82j9sdnl3AuZNNg81xbaO2ke+zaWPuibG14nWPfuwHP0VmkDlAHqAPUAerAYHSgCeCGMux7QFPHBG8EbxMD3uyUUX2guRsn6DlMN9WppArd3HsA3jTF/RbO4X73PvcBasGbXsPLehXwhqmn3//CF1Lwhh+8dQ5C4E0dCtfhgCOiachZgTNTlvYC4uBIfe973zsaEW+xW3wg2zFc0umWFryJyPsbMt+KJDo+J0tXdLODbdlYmZNjGpF2X1t2P+riVwNoBcCbRs5txJF2kZxKdw019bZmZeFivt7opK23BILVAW8KATfnY6jXum9B1q7ppgob0j59LAaDMyu7ZmfUkjq7iIOXKQFKYHIkoOANz/y6aTfQBtsUsmHWzrk20AVt9ru1q7C1NoX9rpO67wT8Phgni3KlXKkD1AHqAHUAOgBo1kRq3wOaOiZ4I3ibGPBm11gDILPQDD9KhWY6xfTSvffGIA7nNbXgzX63UXN6v04v1by4V49tnn7Am77c6w6nutOprvOGH7uu/fbi5z6XbrjwWrK5ggI460TYYzgfm5ubMjs7K8vLy10j4LpFwcH5sWkVB+togTcR+WCrA9hc8KY+8oe7svbonMwc72x2cOzknCxe3JH9XGRYwJnuCt46kC3eNTSakdVfm3IObsnWykJab3R8RhZWtuRWDvaVQLCa4E1rPvjNlrTPzMRgUSMAj51ckPa1Wwa6aa6SOk3zeUgJUAKTLYGq4M3ajyrHIdim5wHcYO9sau2h73gQ0E1tON4NmNIhpA5QB6gD1AHqwHB0oAnghjLgfzeZErwRvE0MeMP0UKy55oNu+uBDJJsFZXgguuBNz+Mcpo7qOcA31OWW5YI3vUdfxqtEvOG/6oBvWOtNdzrVHU/xAAB409TnUOCcOiGXL1+W++67L07hlMBZKXNocK2KY9Qtz1iBt8n2fdk7SoASoARGIgEFb91sQZXrsD1lKWwYbJqbwgb60m7ATe0sbHHdFO8TTIfjaFHOlDN1gDpAHaAOqA4AmjWRwt9uMiV4I3hLlfSoPrQAxjSt0geAt6r5q5RZNU/dF3jkD/3orfPgcy5wTiPd/uzP/ixe9Np1TvBdnZgyJ8deq+I4uXlefPHF8ZlqOhKXlJVSApQAJTDZEugVvFn7Unasdgo2K5TC7oVSazdDthW2t25a9V2A+egkUgeoA9QB6gB1oFkdaAK4oYzQ+0E/5wneCN6mDrxptFooGm4YD8C6L/LIX/ZDhyMRcjS+9KUvxdNM9XrIWXHPlzk/Zddc4IbvCt4ee+wxuX379mR7nuwdJUAJUAJTKoEy8FZmN8quubYp9D1k/+x52MoyewqbWzcdxvsD62jWSaM8KU/qAHWAOjA5OgBo1kRa9p7Q6zWCN4K3qQJvo4x2cx/sdV/qNX+3HzqcCutohI5DzkvoPKb1lDlIZddeeuklgrcpdcbZbUqAEpgOCSh4K7MDZddgY0I2KHQ+ZOPsedjGbja0F7vs2nZ+nxwnjmPJsaQOUAeoA0dHB5oAbiij2/tCL9cJ3gjepgK8YbMFXZNNI97G5SHay0t+FQCnDwPrdHQ7Djk0Vc7DWSpzqPQawdt0ON7sJSVACUyvBKqAN9iMKnM9yCgAACAASURBVPYllKebTbPXq7wc92qLx+Vdgu04Oo4hx4pjRR2gDlAHBqMDgGZNpFXeHermIXgjeDvy4O0oP7x6fdmvCt/qAjg4KyFnp5/zusEDp5pOr0POnlMClMDkS0DBWz92InQvbFOdtOoLcT92+Ci/f7Dtg3H8KFfKlTpAHaAOjEYHmgBuKKPqO0SdfARvBG8Eb78czcMBD+V+Xvrr/NjrOCw2b8gRqnue4G3ynW72kBKgBKZbAk2CN2uH6hzXsYv92F/YcKajfYei/Cl/6gB1gDpAHVAdADRrIq3zLlE1L8EbwVuqpHxoje6h1c/Lv95b9QePfHWcGF/eutBN8xO8TbdDzt5TApTA5EugV/DmszN1zsG2VU37tbl8Xxrd+xJlT9lTB6gD1AHqgE8HmgBuKKPq+0SdfARvBG8EbyOOeLMPjn6dgTo/fs2rC07XcW6q5A1BOYK3yXe62UNKgBKYbgmUgbcq9qNOHrVfdW1evzbW2mse0/GjDlAHqAPUAerA+OgAoFkTad33iyr5Cd4I3iYOvNmNFF588EHZfvPNsdlMocrDuV/HoMoP35cHu77ZtI4T1C3v97//fa7xNt0+OXtPCVACEy4BBW/dbEGd69Ye4dhnv6qc69e2VrHfzDM+DhjHgmNBHaAOUAemSweaAG4oo8p7Rd08BG8Eb2MJ3nTn0ec+/Wn58eJinP7s8uVK8Ewhm8I2C9zsucuf/3zu2rg+kPt1EPT+ug8DX344OkjrOExu3n7A2/7mnERRFH/aN3ye6660k+vR6Q3Z92UZxrkPNmQO7VjZ9dS4LxunO/2I+zPKtnpaV+VU97FwSrEyKR1D574x+mr7DD10U79eNtkJR3dUll4da7LOQZTVy2/V0/dx77/V+yM5Tr2Nfb/gDbYGqc8u1T3XhD0d13cFtmu6nEqON8ebOkAdoA6EdQDQrIm07rtGlfwEbwRvYwnerl64IBfvuUdefeqpWuAN0W4K7uyD6Qfz84KPhXI2zzgeN+EwVHkQ1MkDh8imLmTzfSd4c+FBW3xorjd3d3h3WQjVHTYZyAIgGc3JxgfDa28TNdk+u8DNfp/bHBzy3V0xwDaR5SDra0Ju/jKMTlQBzxZgpTpkZTGmvyPbboK3QhSctR84rmOHquRtwn6O43sB2xR2uigbyoY6QB2gDkyvDjQB3FBGlfeMunkI3gjexhq8xQDuxAmpGvHWDbwpkDtK4E2NRxPOA8qo+4Cokx/OUyhdX1/veaqpBR9+2FPTmfcTgf7PljjbeXAyprCgggS6j4UppEQeJtfYH9o+W9BWPB4UVLTQ9ujqTmeg6/xWbb8tbHOOpwhsjfuPRSPeQjYA5+vYlbp5YeuaSOm8Ta/zxrHn2FMHqAPUgaOnA4BmTaR13z+q5Cd4I3gbe/B26d57RYFatwegQrULn/pU7oPIN0S76Xc97lbWuF5vwplAGVUeEE3m+cEPfjC14C0Pbo42OLF98UNQgwZutNMpwkczOqvTl/I+5+HQYPpZB1YZ+Y/lYY2+WHAbOb+b3LVBAc+xFOBYN0rBW5N2o0pZsGlNpONq+9muo+cAcsw4ZtQB6gB1YLg60ARwQxlV3j/q5iF4I3gbS/DW64MqFPHWa3njel8TDoYto+6Do5f8owNvxtE3U9WCgMTAok5EUw2n3sKAJArHQpuo6zTLYluL7bSgpy27tr3x1D1Thvs97r8DMFI33txXMpXR9qcMvOUj/LIIpU5/uvUhbZQUy/GNR9b2uHwrE+1LGhGV5YvHtspURxHp2mdTXzpeji7YfqR5nLI7+uaMjyk7F2GXa7uVZyLrtM8+Wc7Jxg2zHmEMtWwZPr1COY4Mo0hsf5Crk9oytV3aN3N/rg/5O+NvRoa+OqxMi7ro1m31IF+XHd9Mxs444BbTpixvJIX6bT7PWIhnXH19tG3TOux3rd93D5o6inRY4M3aryaOx9XWs13Dddoob8qbOkAdoA4cXR0ANGsi7cXX7XYPwRvBG8HbL4/uAwbGoQnHw1dGtwdInesjAW/W+TXQDQ6z67S6Ti3yaVpwrH1era1Pne2cc+0DRqYQe6/b1pzj7gEKOVBmwIZbDr67wKNy3XnHv0wmFopYOXZk3q0PKpfyfuTHrjxvXP/puWzjC8hBU1cWZkhwaPWi2Od8X9LrQZlmehCSUQ7Q5nQoA5hZu0v67vQtWF+sX/l+FMdMRIJ98kGtknZB/k77IO8szZeRH/MsV/Eof5/tSya3zl1BmcRtdOBbaCyS/qRjr0VbWeV+v+KByb5x7bTP6l6uH5Bh1WdTUUgDOdM0ePPZpSbOwXYyPfrvPxxDjiF1gDpAHaAOqA40AdxQRh0ft2pegjeCt1RJJ+GhNS0Rb6GxasIhCZVR9aESyjcK8Gad1swptoAhgyDWUc4cfJvXccJ9bqt1to1jnDrMjgOeFWHqMTCie/srAI+0TgsjTL+lTt3VwVvcNwMqMpnqFVOnyiltYyYRC0S6jp0D6dK63PFIZWvrt7LI6rdHdhzSsfSNr41odOrO+pCUbGSTXTNjlLZV84fOW4hj9NOUncpCS7EbNOTK1zqsTHxjYq6be61ssn44daXja8pQ+ZlyrLztsS0/L3vTX3tDrp8mj1cmAbmavFY3M/lZnTFl2OmwdvzT/ksexpvztp92zOx5C2Rz5005jiiG/rUJ8BayQU2cD9lOnqfTRh2gDlAHqAPUgaOtA4BmTaQhf7af8wRvBG9HCrxtv/lmvDmCXcvNbpYw7eANBqMJB6VqGVUfQKMAb5mj7AMJeZ80y2ucdc1iHGgLFvJ3J99M3jwkQESLddhNCcbRz9dhQEXqXJtzFvSkxQVAgDOtMa2nVt2DAG8emVg5pv32yDi9FupzWFbZeHePZsxBDi9w64yvBSZWb4qAybTLhU/peFi5mP7Z/EZOubotfDL5y/ts2uTTq7RdrrzMfV3HI/97KsolVeLcgW2373eV6rLeVUcmJq+FWrnK0y+mn1WmeNqyU7nYMpznTA58Ztes7uXHOKATaXtHc1AHvFW1MU3kg21kerSdKo4fx486QB2gDlAHQjrQBHBDGVX92zr5CN4I3o4UeAv90HCe4C3/MG7CYWmqjCtXrgx/cwUDC/IOe+bYdtxT6xADkhXTvOPrcWyts50AGoUC1nn2wYbc9RDYSQGKbavbD21T2CG39QBW2HN5GZn+p3Xn+4IyPJLonDLyz8uuvA+2TcU6fPeG+uzL22laeR35Htm8fhlZSJbca3UhBS8o17Q3NN65KYQmvxmL/FRmM165MjMdyQCWp70B8IMWd5eBiWCr2nfbF1RUlhp9csch1ZOSPNk9kInVj7z88vraaVRQBr5++GTgO2f6a8tHf3znOrcEdMKUN4pDBW9N2YwmysG7AdP8uwHlQXlQB6gD1AHqwKTpAKBZE2kdoFY1L8EbwRvB2wSs8VblwdmEE9NPGSMBb06UV+Z4J0526jCHHfDcPQWA4ri21rEOgRNPtIx1rnP1eQGKbSsAgm1H2CG39fgc++51E7xBblbi3mOrCwW9MWOUG+MQ/DH5U511pi0Gy8kg28DBG6ZaVu277YtXiOUns/6YiNZK4C2TSQ5Ue2TojneuTje/HWefDHznTBe7/T7zbQnohClvFIfjAN6q2EPmocNJHaAOUAeoA9SBydKBJoAbyqgK0+rkI3gjeJtq8Hb16lW5//775emnn5ZpfPj2A9Lq3tsUePNFotjpZb6IstgBtU6vcZg75XWDWRVdWFuHdcL19hwQyAMzn8MdrrFbW8MOua8e37lw3QRvefhRIqkyXSiJSvSXGBhTo1Pe34VTWAaNLHhCpnK9qqUnDfW9vL3abo9casoEvY9Ls2vgpc+I/G81zW/qscA61Q+fDHzn0gL9v62w3D19N2WN6nDY4G0a7Tb7PFmOIseT40kdoA5QB5rRAUCzJtI6QK1qXoI3grepBm8vv/yyfOYznxFN+dD75UCnCPUD3vLQqmSNKXWWXeDl80Ct05zk7+7k+wpyzpU61hZsOO007ekOUGw5PigQdsi9Tnytuv1wwJFC9jVYdpc+lMnRey3U53A9XllkLc8d1cmb3uhtJ66G24Uc+TTQv9I68iXot3Id79Km4FgW68kBMUTBIZttc5eINyv3yC0n15+q01zRiG6plYUPUubvt+1Mf7+2n+kzyZbr/nb912zZKdSLqw/oRL5pQ/82aPBGO92Mc0I5Uo7UAeoAdYA6MGk60ARwQxlVYVqdfARvBG8TBd7qPkA00u0LX/iCvPXWWwRvzpTbuhFt3fL3Bd5sZEsaiZKfloeok8w5tY5s3nm2zmzqKBuwYKPmymGF49d6nW2Tx9aRW8DeONH2vMmftrPLWlw56OGADdvvTE516h4SeMv10YLW0JiaPuT6bPPnQYdfFmaszGGdvOltXXTBlpnB4lB7q/TPyClQd7kuh+pGj0wbuuqohXyR+HXXwDJUUUhtnf7fO373oTpSPffJxPy+sjHQRth6oTe+c50GZ3LtPgb+cc//rrK+5M+nfYmrNe3J6XxBiEM9MQjwVteuMz+dSeoAdYA6QB2gDkyfDgCaNZHWAWpV8xK8EbxNNXh79NFHp3aa6SANkg/C9Qfe8rsVwtkupGlkSeJrWmfbB+wch9U60F3L9rmztj63LXF+Czcc8GAhQKGtcP61EFuGPY8GhR1y6/TnnPjKdZeBANRvUlOuhQnd+6BlmH4U5GFhjpM3N6ZhWQVlYZqPwzp5cU9u+nMVXXD6mJeXkUWuf91+F3ngnOl3/nynzWFZpX0y41n4fRQi0kybnb6l97p9SSsyB6V1JjDOla/9HRbqzvc9k4kf7FX/nThRrLYNTvtK63RkEtY9I1/nHiO9oR+GwNsg7Q3Lnj7nimPOMacOUAeoA9QBVweaAG4ooypMq5OP4I3gbarBm/uD5ffmH+KAcH2Dt9iFtHDAOsp5ZzrvbQbucZzh9B6Po59zvtOMnoMSZzvNbfPkNmDQHMaZBjAotNP2pyHwFjeuSt3DBG8diVnw0AE2dfoclpUtt9v41snrHefCGKa58jvexmPu02UzNl7IYvuZ/C48+TLg46vDluGTMdps2hLUUeS1ZWq7tFxzv6eNuDOfuuXgt+/rB+703BOqz/Obj2xUH4qMU9N+9N+zYUpX8Oo8B1S3fXoY1j3TjlC/cu0ezhcL3mhPm7enlCllSh2gDlAHqAPUAb8OAJo1kdYBalXzErwRvBG8OVMs+TDzP8z6lYuuo/fYY4/J7du3h+MBshZKgBKgBCiBoUpAwVu/toL3D8YGU66UK3WAOkAdoA5Msg40AdxQRlWYVicfwRvBG8EbwdtQHCWCt6H6v6yMEqAEKIGhS4DgjU7dJDt17Bv1mzpAHaAOjK8OAJo1kdYBalXzErwRvBG8EbwRvA3dPWWFlAAlQAlMngQI3sbXIaGzyLGhDlAHqAPUgUnWgSaAG8qoCtPq5CN4I3gjeCN4I3ibPP+XPaIEKAFKYOgSIHijUzfJTh37Rv2mDlAHqAPjqwOAZk2kdYBa1bwEbwRvBG8EbwRvQ3dPWSElQAlQApMnAYK38XVI6CxybKgD1AHqAHVgknWgCeCGMqrCtDr5CN4I3gjejjB4u3rhglz41KdE01E+SH8wPx+347lPf1qura3Jiw8+GH+233wzbpe2728/+UlurjB5fjZ7RAlQApRAKgGCNzp1o3wXYd3UP+oAdYA6ML06AGjWRFoHqFXNS/BG8DaW4O0nS0uiEOfHi4tx+rPLl3Ng6Revvy4X77knB3cm/UGrcEuBFmCW9nccwBvGCmOk7SN4S/1QHlAClAAlMDUSIHibXodn0t/B2D/qNnWAOkAdGG8daAK4oYyqMK1OPoI3grexBG8KlBSsvfrUU17wphBKP9PyAPTBrHHpuw8Ium1jxNvU+N3sKCVACUyxBAjextspcW0zv3O8qAPUAeoAdWBSdADQrIm0DlCrmpfgjeBtrMFbDOBOnBBEU+mDARBKI60m5UHRrR/osxvx1u2+YVwneJtiL5tdpwQoAUrASIDgjQ7cMN47WAf1jDpAHaAOUAdcHWgCuKGMqjCtTj6CN4K3sQdvl+69V3RqKX5cgFA+8KbndM0z/ehUVQvs9H57XfNoVJ2vbAVcr7fbaVnuOmpoQ7d8aDOmhKJtvmg9lIk8gGzuvXrdvaZ5UFeVfmoebYP2X+9VWaFen1xt2ThW2dr70C6Vp7YPbdT8WgfXeDPeKQ8pAUqAEphACRC80RHCOwJT6gJ1gDpAHaAODFMHAM2aSOsAtap5Cd4I3sYSvJX9SAGoLCDCOQvS9JxOVUVZAE0WtOk5C+hQjkIkC8d6zad1A5wBjmn92k5bPiCWe25rbS1uP9plYZavbD2nZVg54JztJ84Blmn5eg5gEm3Vc90+Wp9tl6+tUwXeDm7JxsVt2e/Vqb7RliiKZG6z5xJq1by7EkkUtWUXd32wIXMDrH/v2pKcuqsV9zE6vio3h9zf/ettWX8XnR3zdMiyqSKNgr5UuYl5pkYCBG/dbWY3m8rrlCF1gDpAHaAOUAfq60ATwA1lVIVpdfIRvBG8TQR4U2DkgiX7wHLhF665EAzQyAVXAGOAfVXzueWjXi0HdaAsC6+QD2koj9sv9zvu97VDgZkrM18+lBFKCd6sT70vG6cjiU5vELxZseD4N2syE0XSeqgtW9d3ZOfdfTkcJlxK6mrfQIPGPB2mbCqKguCtoqCmNBvBW31HIWRbeZ6ypA5QB6gD1AHqQHUdADRrIq0D1KrmJXgjeDty4E0h2EVn3TcX/rgPKb0O0OW7BugVAlwAUi54w30o080XAmF6HtDLvQdl2TTULrf8qv3Usn15UY9es/WXHWteKweUYc9pO6djqmkD4G3IDnsBpAww4u3grcU40m35nSF3EtUdNfCGdo9RWtCXMWobmzJ6CRC8VXcQyuwqr1GO1AHqAHWAOkAdqKcDTQA3lFEVptXJR/BG8HakwBsizxTk4GEE0FMGi1w4hHs11WuAcijLQiPNAziGOqrmAxjD+mluqtd9fbLt0+NQfSgf8qjaT7ffqC9UD677UrdOXxnaPoK30TvFvhYUQMoAwdv+5lwM3kYWcUbw5lOBWucK+lLrbmaedAkQvNVzEnw2lecoQ+oAdYA6QB2gDtTXAUCzJtI6QK1qXoI3grcjBd70IeRGvPlAj/uwsnDNdw2gLVRWP+ANkW1uvfgO8IZoOpy3aahdPvAGiGjv12MXkPlkEqrHLct+d8v1lTGe4O1Abl5ZTNcbO3ZyQVav78teDIfmZOODxEUGrHnnQHbPL8jMcV0TrSV3PrQoa+8cZH50Aqx0fbb0s5KunJbl63bkTi9Mym3fOJRb19qycPJYXH7rrlOytHlLDkXk4N11WXzoTmlp3cdPyeKVm/H5fFUHsnsR/W3JnV9cld0PRQogJQVvt+L65pP12FQ+7Wud+vLlVvm2K20rl+Q4BnBufyWJGlTZ7e/I6pkZORbnPyYzZ1Zlx7f03cEt2VrB2ESislm8uCtmdJJ+mrGJkjFO+1ssuAMKjS6kYyGyf301HYvo+IwsnN+R/Y89sqjQNs9dnVMh2ZzekFvvbchSOuYzsrCyJbc+ykoC5Fz6lWqI83ewLYtRJCfO34wvxDpwekP2dH3CJ07JnS3o+JJs/MZK0ejLh7uy9uipzti07pRTj67F+uTUxK9TJgGCt/qOgrWnPKb8qAPUAeoAdYA60JsONAHcUEZVmFYnH8EbwduRA28AOxZU6XEZ4HIBFR5oAGooC2UDxLn5FDLpuar53PJRnk1DZVXJ4/bL/Y4yfO2YbvC2L1tnFGC1ZPaRtXi9sa2LCzITtWTm5AmJAGXUaU7gx8zJGYmOz0l7c1t23l6Xpft0g4CWzL+RAJvDfbl5fUuWH4gkemC5s4bZe3loUckHd2ELwNDD89Ly1L94dllmWqdkOW7Xhiw/1GnX4lu27n3Zerhz/tSTG7J9fUe2zs/JsdaSLD2ukKW4ucKJkzPSas3K0pVt2bm+JaunO8Bv5pwP6nXr2YHc0jrPzsbQcOHSjuxc35FbH2byzTaTwHTdeZlvHZO5laS9FxdkVoFQa1G29T78vb8lCwpDW7OycHFLdq5vy8bKXAyEWg9vyF6S7+C9Hdm5tGDqvyn7yqQgX89mFiHwNmfH4vqWrD0yG0PP1qPbOdgnFduGrhRSVxcAJe+ekZmW0V0dS4WTJ9tyE5ztwy1Z0HNP7BQg7ME1lcMJWf11p8YYvD0wL/MnszK3N9syF0PmmTSf5u6A2hmZORnJsdOrsZ5vX1lKxmZetgCsC53hiWmQAMFbb84CbDVTyo86QB2gDlAHqAO96QCgWRNpHaBWNS/BG8HbRIA3gCUb7aVAC7uaAm7Z6/pQc+ET8jUF3rQOhXo6xVShGB6kegyIp+cAzOw5jYTDrqa+ttr7UDba362fofJwv9t/zR/6aJttfl8Z2r5xmmp6eH05BiVzrwDLdFxiXehfF//3gbeoNS8b71vXeU/WP6vAZ1l2ADsARprcXCEBQwqctmxQ1m/XZTZu6ylZ/61p1+GOLOl5A4GC/X1nWU7EZRTBWyyDXH8PZecJhXdOfabqboeIwspNNQ3BJYWam/nx6QCjSDKoeCDbj2qb5pyxETlM+nbqiikjqStXfw/gragLB7J1RvVmUbZT3lmzbT7hBWUTyczKbg6oHf5qKdbprL9o05LRT60kOX/3qnTi3QDTimXKr1dj/TjxHHJmeU+czdcvv12XU7pxxpNF0OfrGs9NpgQI3sK2MmRDeZ4yow5QB6gD1AHqQP860ARwQxlVYVqdfARvBG8TAd70YQXgg3XUfBFwColwXVMLjGwZ7nmAPYAx1NUtHx6igG+oG+XguqaYcoo8obJtuwHsAN5QXrd+aj7N4wK6UL9Qri/VcmxbfWWMF3hTIKKQxAUSBkp4It5mLxuAk/jMCjt0WmkGghCt1eCupgBvhcilZPrmn2ZRXZ1m7cnGn9qdVRWYhfq7J+saoeeJePMClAT2+WRRBSPUA2+e8Xl/Q+aiSNLouEQ2Le+U3qRvD6ynUW+IXuwbvBXGQmTvFV2/rjgttXLbfAIMgjePbCTprwFq2MwiN900iYTLAB1g2mwe4Mbt2ZVlBbNGvp2INx98LdMzX+d4bhIlQPDWv+Pgs7M8R7lSB6gD1AHqAHWgXAcAzZpI6wC1qnkJ3gjeJga88WFU/jAatXxefvlleeyxx+T27dsj9jdvSlunLAai0m4+559qmoM16AHAzzlEBA0QvBn40ak+AW9n3XXk3DbclNW7I4kKgC4pZcUP3lK4hb7GaQJiTDRd7nKXL7XAmwFIabGJvNMIrARMzZ7VKaad6atZui2rpx3g2FDEW1p/2jCRTt+y6ZuAfJXbZspKD0PgLaC7HSg2n0VGIvrRgMJO1GAenHXus9F6aEGiY2a8O3lNhCSyCuCjkYG5xsPpkADB23jb4VG/B7B+6gd1gDpAHaAODEoHmgBuKKMqTKuTj+CN4O3IgTf9sWqUlX4G9cNluc0bhfEBbwlMCMCLDkAxkUsx/ChOZYzdaESjpVDMhV49ONsubEnqKIKwpB9p3ajLbUN5fwsgJVifll9eFloQSmuBN9/4OPJGeelmFvG0WYVt9uOOZSQ5iFrS34IudM2blV27bT6hubqAqcwF2Nq5uTOWpr9yKDtP6lRcRMi5umHv88G04ngX9MW0G33Oyddc5+HkS4DgrXnbyfcRypQ6QB2gDlAHqAPddQDQrIm0DlCrmpfgjeDtSII3TP20Uxz5QOr+QBqljMYHvJVHvO1d1g0ADLxI4IcXJiRTH7MIKD/YqOVuu7AlCHuqgrcGI948EVR1+uYFM25/AZcqgDd5Z9mZ6tulNb6xDMpXpKALJXkLfavbNl/T68hGsehZBY75yDWs7xdPN03av3AtXYgurjUM0+qBt468fFNWfZ3juUmUAMHbeNvhUb4DsG7qBnWAOkAdoA4MUgeaAG4ooypMq5OP4I3g7UiCt0H+aFl2xygAbmLNOZv61s/rJrfxAW8HPa3xVow4E8Eab9kaWuMI3rD2Vh7IdJz+pL2+Nd4KkXQiWGx/KGu8VQFvyZpz4XXUjsnMQ2vpJgKY/pmDqAmMKvYJcjMQtg54q9s2H4UJgbeWLzrNs6ZdXGYCXp/Ykb14N9OiHtQHb0YmabtDmzmkGXgwBRIgeKNT1e1dgNepI9QB6gB1gDowCB0ANGsirQPUquYleCN4I3gr2bFzEA+FaS1zfMCbCKKAau1qerItux8Zz/njW7Kmu5re3ZZdd1fTwHpq5u7woQtbgrCnasSbiO7WqruXFnbCTHdxNSAnqa+4c+eebDyc7CD6Qbj5ZVcKUWGa2e1vnYg35I3mZD23A6vI/rXFeJfPE+ex/l5W1/I7ppWI4juzJbk4sPc3ZF7XArTRj8GxwBpv2VRTqds206T0MCQb346vb3d2NfUB4pvnT0jUWpKlxyOJzHpvqKc+eAvr0glnt1XUwXQ6JEDwRmdqWt9x2G/qPnWAOkAdGK0ONAHcUEZVmFYnH8EbwRvBG8HbUNbKGyfwplBkK4ZILZl9ZE22ru/I1sUFmW21pOXClgR+tPTafQuydm1Hdq6tycJ9CqFmpH0jpW4iuqZWvIPojCxv7sjOezmUU83zdmFLEPZUB2/art2VGYmiUH+L4E37Gx2fk/bmtuy8vSHt08fi++c3i7u7VuuYD05lMCwDRiVRg4CCNhoPgKw1KwsXdZOFbdlYmZNjus6bC0sRhfbwmmxfvyn78dCpbHRDjUhmziS6cGVJ5o63ZP5h/06lWVuznnuhYp22JeNudxANQknVxeiYzK1syLbpb+thd4fbpH2/Xo3Bq47/8nWrr53r9cGb/k5cXfLIOxMPj6ZEAgRvo3U66PRR/tQB6gB1gDowrToAaNZEWgeoVc1L8EbwRvBG8DaF4E294APZj7ydigAAIABJREFUvbgop+5SgBbJsZMLsnp9X3biXT6xGH0GhtrvHMju+QWZOa5RUMdk5kxbtt4rQgx5f1uWPquQKpLo4S3Zr+twDwS8aSMO5da1tswn/W3ddUqWNm/JdnBX01tya3Mpk89nF2XtnR5Aoum/F065/UWkWJWppij74JZsrWBsIomOz8jCypbcshGKcd5DuXlxXu6M4WpL2u+mBXR0IR7bRBe0r3HbzLTKIAQNQEUtvmrb6oC30xty670NWXrozjiqT8dy8eJuPmIPXYvTZBqqd4qqSH3w1pbdD3dl9cxMB3C27pR5r7xzjeCXKZAAwRsdvml1+Nhv6j51gDpAHRitDjQB3FBGVZhWJx/BG8EbwRvB25SCN58XnESstdrl64L5buU5SmDgEiiJBiytu7POW27abWl+XqQEepMAwdtonQ46fZQ/dYA6QB2gDkyrDgCaNZHWAWpV8xK8EbwRvBG8TR14u3numNx535Jsf+g4lx9uy2IrktaTO5LGsiWRSLkF+Z3b+JUSGI4EegNvh+8sy4nolKz/djitZC3TKwGCNzp80+rwsd/UfeoAdYA6MFodaAK4oYyqMK1OPoI3greBgLerV6/K/fffH68D9Cd/8iei63vxYTTah9Go5T9Oa7wdvtuWmSiK12xb1TXMdI23eF2vSAqbChC8TS9FGLue1wFve7L93KqsntW1CyNpPbpdMhV17DrKBh1RCRC8TbedH/V7Buun/lEHqAPUgenVAUCzJtI6QK1qXoI3greBgDc89BS2fOYznyF4Y1RdrAOPPfaY3L59eyxcyoPfbEn7zGyy3pdZF8xdxqwf8IZ1u3S9twqfoxNVlwCgCn2K++1br20stOCoNaIOeNuX7Uc6G2Lc+cU1uVlY7+6o9Z3tPQoSIHibXocH731MqQPUAeoAdYA6MAodaAK4oYyqMK1OPoI3gjeCN0KxoUQjjlPE29Ac2I8P5eDgoPLn8OOhtazvig5r9OvgIJ2423e9LIASoATGVwIEb3S2RuFssU7qHXWAOkAdoA4AmjWR1gFqVfMSvBG8EbwRvBG8ja8fy5ZRApQAJXBkJEDwRseHzi91gDpAHaAOUAdGoQNNADeUURWm1clH8EbwRvBG8EbwdmTcWjaUEqAEKIHxlQDBG52tUThbrJN6Rx2gDlAHqAOAZk2kdYBa1bwEbwRvBG8EbwRv4+vHsmWUACVACRwZCRC80fGh80sdoA5QB6gD1IFR6EATwA1lVIVpdfIRvBG8EbwRvBG8HRm3lg2lBCgBSmB8JUDwRmdrFM4W66TeUQeoA9QB6gCgWRNpHaBWNS/BG8EbwRvBG8Hb+PqxbBklQAlQAkdGAgRvdHzo/FIHqAPUAeoAdWAUOtAEcEMZVWFanXwEbwRvBG8EbwRvTbq1B7dk4+K27Pda5o22RFEkc5s9l1Cr5t2VSKKoLbu464MNmRtg/XvXluTUXa24j9HxVbk55P7uX2/L+rvo7Hilh+9vy+qZWbmzpWMSSeuuWVk4vyP73t1uD+TWZibL1l2nZGnzlhz4uvThTVl/Yk5mjnfKjY7PyNwTG3LLm9kp4P06+rAvG6cdfXKKG/rXAevz0Psz5hUSvNHZGoWzxTqpd9QB6gB1gDoAaNZEWgeoVc1L8EbwRvBG8Ebw1pgzm4CH0xsEbz6Z/mZNZhQoPdSWres7svPuvhwOE7wldbVv+Bo32nMqB5VNdHxO2pvbsnN9WzZW5uSYyuu+Vbl5aNt3KLsrMxJFx2RuZUO2Ne+Tp6QVRTKzsiu5rO9vyLyCvNasLFzckp3rO7J1cUFm9dzxBdn6wJbrHu8lIK0qCCZ4cyU4bd8J3uj40PmlDlAHqAPUAerAKHSgCeCGMqrCtDr5CN4I3gjeCN4I3hrzjhsAb421pVpBw4x4O3hrMY7kWn6nWtsazzW24O2WrJ2MJLp7WXY/yvf68FdLMVA7dWUvvaCQ7oRGJb6SndOLe6/MSRSdkNVfI+uBbD+u0YVzsvE+ziXpb9fllEK9J3fyoM5k65TXiZIbVgSmqb6ZQ0a8NSPHiqUQvNHZGoWzxTqpd9QB6gB1gDoAaNZEWgeoVc1L8EbwRvBG8EbwVtGp7J6N4K1MRvubCoYiGVnE2biCt/1tWdTptyvphF8jxl1payRcGkV5KDtPKkxbkp1caJuIHO7IUg6m3ZS1k8fMvaZY6RKdlkTKzZ1dHujUY9uigRwTvA1ErKFCCd7o+ND5pQ5QB6gD1AHqwCh0oAnghjKqwrQ6+QjeCN4I3gjephS8HcjNK4vpemPHTi7I6vV92Yvh0JxsYAoeYM07B7J7fiFZJ6sldz60KGvvmEWyEgdfwVL68YKUkMuanE/qSyOMknLbNw7l1rW2LChIUbiSrOml7OXg3XVZfOjOODIqOn5KFq/c9EQxHcjuRfS3JXd+cVV2PxQJR7zdiuubT9ZjU/m0r93ylNulP/HlBB5Z2QDAuf0FEFLZ7e/I6pmZeLqlTqucObMqO76l7w5uydYKxqYjm8WLu7n1zjr9NGOjUWA6xiVgpgMKjS6kYyGyf301HQtdMy24FluFtpVL0AVvN2X17kiiP92QfLyblpLAtLtX5WZ5oVleu75fes+ebDzcioHdXr9rvFX9/ciutHX66wPrnn6J3HzuhETRgmx9mI2ZAtyu45COb5P6nAqKB44ECN7obI3C2WKd1DvqAHWAOkAdADRrIq0D1KrmJXgjeCN4I3ibQvC2L1tnFGC1ZPaRtXi9MV33aiZqycxJdfANbEnAwczJmWz9rbfXZek+jTpqyfwbCQk63Jeb17dk+QGFB8udNczeM2DOcVCDX10QBXDw8Ly0sP6XqX/x7LLMtE7Jsq4L9vaGLD/UadfiW7bufdlSkBK15NSTuibYjmydn5NjrSVZetxZDD+p78TJGWm1ZmXpiq43tiWrpzvAb+acD+oFe5NcOJBbWufZ2RgaLlzaidcau6UQxe0v4NHpeZlvYQ0zsy5Za1G29T78vb8lC7ppQLqGmVkb7eEMTh28tyM7lxZM/TdlX6kl5OvZzCIE3ubsWFzfkrVHZmPo2Xp0Owf7pGLb0BVv+uvVeFppCxA3iWqLzvqi40R2z+p4Lsq2HX5fwR9uyUIuki7LtP/GvLSiU7L+23L5ZHfgyBNFV/X3IyI3z+tvb7ZTL4qM0wQ2ntnqyBdjVmUcBqLPucbxi5EAwRsdHzq/1AHqAHWAOkAdGIUONAHcUEZVmFYnH8EbwdtAwNvVq1fl/vvvl1arJX/yJ38iL7/88lDgzih+5KyzmnFRHXjsscfk9u3bxk0bzeHh9eUYlLhrZKUL3HvAW9Sad9bJ2pP1zyrwWTZT/hqYauqCqAQcRK1F2bLRXr9dl9k4giwBJBAlwIyBQMH+vrMcQx3frqbFdcEOZecJhXdOfai3Quqdaur2F+BNoeZmPqbr4FoHnGVQ8UC2H9U2FdcwO0z6ZtdGA+TLTXUFxKkB3oq6cCBbZ1zgVbNtXvlhc4OZbN026ANAnHNfJ7LPgGPneufroeyeVcjVkkyWScYPtuLNGE5dTmRfIp9i0WHwVpSZ5/eTQMZZ1I0KkvNpWyGDwm/SMw7IW9CR/vUZzWOaSYDgrZo95HsD5UQdoA5QB6gD1IFmdQDQrIm0DlCrmpfgjeBtIOCND5JmHySTIM/xAW8KRBSSeNbIEjjuBlwkYKgAA3RJrV8txRFUKRAANErX48oc0spHLogCOHjCXQQ/mYJYmHK4Jxt/6qwJ9kSov3uyrhF6drphUp930f0E9vlkUaV/9cCbZ3zcaY9oqxdCJX2zUxcT2fYN3gpjgY0NjN7UbVtBgAfJzqWRzDxnJo5CH7x9xtRh045CudpWjWiLpBChJ/rbaEl00kxVTepLpz57ystOhcGbT2eKv58kss2OGSLhLOCGDOqMg28TiT71Oes3jyABgjfa/kl4X2EfqMfUAeoAdeDo6UATwA1lVIVpdfIRvBG8EbxxqulQohHHB7zd7KwlFYBjnbWkDLjwwRp4mYAr5wBGBhjxVgAtCXgrTDl021C2JhhATVvSiYuloGVXljXKzkTTQRRV0lrgzbdOWdK2EwBRgKJnt+KpqzvXO1NYO+m2rJ52gKNvLEv6G5pqmtZvOt3Ja3YUrds2U5bIgew8ORND3ZmV3fy6ekl7/RsxYDyN/ubKPZRblxPoZqbhIovuOtuKTHSdXiiRD+7L0jB4y8FO3JCU3Up/PyJ7l3U6sp1u2tHfHAhO7qs0DqXt70+f0Q2mmQQI3o6eo0LnkmNGHaAOUAeoA5OgA4BmTaR1gFrVvARvBG8EbwRvUwbe3MXqM6dRjwqwJQYoxamM8V2JU59BEBd65cuu9C0BNmmEURAcJP0oADm3DeX9DW+uYOe1ouXlZSFXKK0F3nxg1JE3yks3s3A2b+icNxCqIfCWjo3pKNoCwITvlduGsj7ekw2sP3guv0FEnAVTiQvAtVNAZ403T7SgHMjuuc5adMfObMjex6gwST/clsVWJIU1/IL659wffw2Bt6q/HxH57bqciiJJI+RutKUVtfI74Za0CXLHOJSDw/702SeBaT9H8EbnbRKcN/aBekwdoA5QB46eDjQB3FBGVZhWJx/BG8EbwRvB25SBt/KIt07ETRdYA+86mfqYRd640AsZa6SNg7cGI94AfTxT/Kr0sABF9Ca3v2XTdR3wJu8sO1N9u7SiJngr6EId4FO3bdr0j27KarI5xvzl0A6yyXj6wCRkV4gW3JPtx5MIuid38htAJCLD2JSDwkh80DGTegi8RXlwhhsKvx+9kKz9lkw33V1pSeT2p844lOSVPvUZ3WCaSYDg7eg5KnQuOWbUAeoAdYA6MAk6AGjWRFoHqFXNS/BG8EbwRvA2ZeBN17FypiCmfmN4jTcfcMAaVUu/0u0x9W8cwZsuIq/99e106QElCahId9FMehYnocXvbZ6SY8CdNBpJ8/YD3pI1urxtVYDzwDGZeWhNMBEYdeXqT/qbRlil7YfcDIQtgTiFvtVt20e70o53yj0mC86mEmmT4oND2XlSN5TwRLUlICk3LVP2sh18fRF0SeGHH9z0TNfdkZ03luNNPGaT6bw3P4Cu51vV+ebRp8L4ZvcVfz+da51NNGZl/b0OZMzAdnJvnXEYoD5nPeERJEDwRudtEpw39oF6TB2gDlAHjp4ONAHcUEZVmFYnH8EbwRvBG8HblIE3keAunzfaMhNPVzSwJQEH0cm27H4E91JEPr4la7qr6d1t2U1ZRAIeChsemPu6HbqgIggZqk41FdHdWk9EkbjrhWW7uBbXePPtQrnxcLKD6AfdOuG/XoBTms3tbxm8TGRRmNobzcn6+/k696/pemWRnDifYre0ruV3TF5EPZ3ZykeCvb8R7+4Z75iK/gbHAlOUbWQXIFSVtmGHzeJOrqal6SHG092Vd+/yKYkis86cxo/F54pjnxbW7aCkz8Vb0WejT7V+P0mJH27JQhTJ3BNLMptb7y25XtKmgo5BZwo7oO5Jv/pc7D/PELwdPUeFziXHjDpAHaAOUAcmQQcAzZpI6wC1qnkJ3gjeSsHbCy+8IK1WSzSdhB8k+zA6wzI+myuoc7wvWzFEasnsI2uydX1Hti4uyGyrJa2WRocVwZv+Dlr3LcjatR3ZubYmC3F00oy0b6TUTfc5TaLLZmR5c0d23juo74m7ICoIGaqDN23X7opONQz114CSpD7tb3R8Ttqb27Lz9oa0Tx+L758vjcYq724Bimh2t7+1wJuIAJC1ZmXhom6ysC0bK3NyTAGqC0sRhfbwmmxfvyn78dCpbE50NjI4k+jClSWZO96S+Yfn8roQHAsfeKvRtt+sJcD3lCyeX5VV3+eKXe8tG89TT27Itvb5yVMxaMzB1YPOum0K4+afDJR7flv2yoYt2GdANvNbwdjZXXKT8a32+0FDEJUaSfTZ9WL7gm3yjMMA9RmtZZpJgOBtdDaW7zeUPXWAOkAdoA5Msw40AdxQRlWYVicfwRvBWyl40x+vQrf7779frl69SvjG6LiedWC8wJs6igeye3FRTt2lUVyRHDu5IKvX92VnxZmGmoCD9jsHsnt+QWaO6/VjMnOmLVvvWeiWOJ/vb8vSZxVSRRI9vCW+LQoyN9Vz5IKoIGSoA960nkO5da0t80l/W3edkqXNW7Id97cI3uY2b8mtzaVMPp9dlLV3egCJposDAW9a/sEt2VrB2EQSHZ+RhZUtuWUjFON2HMrNi/NyZwxXW9J+F41LdCEe20QXtK/xWBiwFBwLD/BJi+7eNsildH21wppuB3LzSqa/GM/cCCW6VFquhWRos02Dfa4H3ir/fpK6MQ3VN8W7bMMEyDKdTpy2v3l9tmLicUcCBG90+qbZ6WPfqf/UAeoAdWB0OgBo1kRaB6hVzUvwRvDWFbwpcPvc5z4nCk74MBndw+Soy378wJvPVU4i1lrt8nXBfLfyHCVACRQlAHB9o3ip7MzBW4sSRQuy9WFZLl4bNwkQvPEd4ai/q7D91GHqAHWAOnA0daAJ4IYyqsK0OvkI3gjeKoE3jXjjdNOj+RAaF+MxTuDt5rljcud9S7LtOvUfdqbm5Ran7xEcjJtDzPZQAiORQE+/nz3ZOB1J7nc4ksaz0roSIHjje8K4vHOwHdRF6gB1gDowXToAaNZEWgeoVc1L8EbwRvDG6aNDiWQcJ/B2+G5nEwVds21V1zDTNd7idb0iKWwq0BM4qOuuMj8lMKESqPH7OXx3I17fbileT3BGVn89oTKZ4G4RvE2Xk0OnluNNHaAOUAeoA+OiA00AN5RRFabVyUfwRvBG8EbwNnXgTf3eg99sSfvMbLLel1kXLLdIVrb4f7pmVB2nOYEO5Wts6ZpxnU9PddRpT2N5sb5X1nb0wZsW1idrrCEsaNwlUAO8yburnd/j8VOy9Fbplg/j3uupbR/BGx2wcXHA2A7qInWAOkAdmC4dADRrIq0D1KrmJXgjeOsK3t566y35whe+IE8//fRQAA0fkpP5kByniLehecUfH8rBwUHlz+HHQ2tZ3xUd1ujXwYFnE4q+W8ACKAFKYNwkQPA2mfab72UcV+oAdYA6QB0Ydx1oArihjKowrU4+gjeCt67gTX9khG982Pb7sJ1K8DZuXjHbQwlQApTAACVA8MZ3hX7fFXg/dYg6QB2gDlAHetEBQLMm0jpArWpegjeCt67gjdCND79eHn7uPQRvA/R2WTQlQAlQAmMgAYI3vi+4tp/fqRPUAeoAdYA6MAwdaAK4oYyqMK1OPoI3greu4O3q1avCXU35wOz3gUnwNgZeMZtACVAClMAAJUDwxneFft8VeD91iDpAHaAOUAd60QFAsybSOkCtal6CN4I3gjdurjCUtfsI3gbo7bJoSoASoATGQAIEb3SWenGWeA/1hjpAHaAOUAf61YEmgBvKqArT6uQjeCN4I3gjeCN4GwOHlU2gBCgBSuCoS4DgjY5Tv44T76cOUQeoA9QB6kAvOgBo1kRaB6hVzUvwRvBWCbx97nOfE41Y6uVHwHv48FQd6CfibX9zTqIoij/tGz7XdFfayfXo9Ibs+7IM49wHGzKHdqzsemrcl43TnX7E/RllWz2tq3Kq+1g4pViZlI6hc9+4fvX0Jx5L73jbTujYtyWnFbasrvfbsoZwfKOd/ubw24uiOdn4YAh191jF7gp+W+Pdzh67dyRuI3ijvec7H3WAOkAdoA5QB0ahA00AN5RRFabVyUfwRvDWFby98MIL8RpvutbbKH5ErHMyHt4Ebw50ixwIcyTcapF64M0AUQDJMYc34WFwxw+QJ596wXAK2JwxT89HEo0ReMsAVr5vAHBzmyND2+HhEZGs3QRvpYIa4EWCt8mw13zv4jhSB6gD1AHqwFHTAUCzJtI6QK1qXoI3grdS8KbQrdVqiaZH7cfH9o6XwZh28JZBAYUZDoAZoCPcdNG1wNuYgqVeZJIfPz+Q6oApF/pYYOeM+zjKxxvp5vbX7WMvEuU9kygBgrfxsrt8D+J4UAeoA9QB6sC06EATwA1lVIVpdfIRvBG8lYK3afmhsp+DN0rTDN4srDrK0E1Bge2LN7rL0gQDccY1Sso2N3hs+uGfVupE9uWmEB8t8GYBoztm9to4RegFx40Xhi4BgrfB21K+r1DG1AHqAHWAOkAdKOoAoFkTaR2gVjUvwRvBG8EbN1cYSjTj6MCbA0WSKY8uVEg9VBey1Jka6YlgsqCq+xpZxbYW2+mAHNveGPiYMtzvcd+dqKu04+a+EhnZ/pSBtxykSaeZRtLpT7c+pI0y0wcRdeWLtsraHpdvZaJ1p9M4s3wxQMsBsqxO98j2pTgeyG37FEksG6sPRgYpfLXXtY3BdqOOJHXz+XTUKbtaH+x0TY+e2DI9srO60Yn+85QRd8EZhxJ9E6meN+ujT0fy4xNun6mv1u/HGaMp/UrwVnQE6BxRJtQB6gB1gDpAHRi8DjQB3FBGVZhWJx/BG8EbwRvB2+SCNwsKcuCjA3FciFIEB4A9CUjp5kzb+gogxQcDTIH2XretKTjS/D6AYPtjwIFbDr670KRy3dUj3jIIkslQYUcRvPmuaz/L+5Efu/K8Hcg2l218ATlo6srCDEnn0JYdAknJTQaIxe0LyjUpJ3jdyCQ39nn5d+BRljcHQoNll+th/jfQpb9GVqHxLsDmYLs6/ciNa528ZWu8dSknJ7cuetfRpRFu4GJkPo6HBG+DdyzovFHG1AHqAHWAOkAdKOoAoFkTaR2gVjUvwRvBG8EbwdvEgjcLETLn2oIrAyGMc545/zZvBQhhynChSPzdgSiZ42zqMSCoe/ttNBdKs6DIXrfnTb8tyOtadx78ZDJF3U7qgqj0sumvwi+PXCzIyeqx99k+2L4B7omIOx5p/0LlpA00B6ZsTztNxnx9aV5bl6NDTvuyfpo67XqAJn9XHTV5VfeysnMt9nyxdWdQT8vI6nRuM+Oc1WPKSeUe0h8ro2xcu+t/lldblOmMPe8vOw927biYdud005635TuymPKvBG9FR4DOEWVCHaAOUAeoA9SBwetAE8ANZVSFaXXyEbwRvBG8EbxNLHjLHHE/3LE+cpbXOuF5eJNBBXunOXZgRxG+BRx2L7jQcg008IIcX3kWEOT74gUZteoOgRMjA3toys5DG9OvCtMkbZE5mJbKJNTncD3ZeHeBUnZM0/pyLcq+ePPaNuTHI9cXA6e0wKx92Rhn58LlpDpq2+KUnTU4cGTvtdGBOM6VZ/qXOy9m6qyvD3V+k93zhmRmp+/mddC2z0LFkC7V1P2AaCf9NMHb4B0LOm+UMXWAOkAdoA5QB4o6AGjWRFoHqFXNS/BG8EbwRvA2seDNOt15COaACwu4ABc8acFxd71oD7BQEGKBl29qY+66p9647SnUMKDDRkOlbTHgIL2nc9HWA0Bjz+VlZKKdTDk2P8pIq3YPKoE3dyzy8irW4et/qM++vGFZuM2Pv9sxNXLomjeFdOE25MBbmr9TcgbZAK1sOWZsHH1JddS22ynb23bvyZI6U1kY2TttsfqUjqPRCXs9XffOtqNO3q6wEnK0FZi2+/qTnuvcU0v3bTVTdEzwVnQE6BxRJtQB6gB1gDpAHRi8DjQB3FBGVZhWJx/BG8EbwRvB2+SCN2cXzryjb9f3KgEMFiZ0AxgWduSm9xkH3zNlzzr0hTam9QNQ2bbinPXsTV0VwEG9urtBMduOUESR5invg21TCmzSon33hvrsy9spqLyOtDLFOdIujIG9nh3bMlMAVtZXqy+ObvUK3tJpuyVlZy2ueWTLTCMVrXwqAMHKv8lO26xMC78NR7+LMvNHDma9Nm1Py/KdK7alqJdZqdN8RPA2eMeCzhtlTB2gDlAHqAPUgaIOAJo1kdYBalXzErwRvBG8EbwdKfCWAQ3j3logkDrQ5roe2jwpSMEUszCgcUop/2rrcEBKPvouD8wsXOju0Hdraz1wUK/uaQRvFt5AX3xqYOSeg64l41WiL0WIVFKOrzklZfuyx+cq3FPUF9Pv0G8vVKGtr/CbdG6qkLcoMzt2jHhzJDqQrwRvRUeAzhFlQh2gDlAHqAPUgcHrQBPADWVUhWl18hG8EbwRvBG8jT14y0Mrd00uCySqrQWVKy8BZD6nvbZnauGAC95ykU9OO82UOi9YzDXE9jcP8DrZwiCkCE3KotJylaZfvGWkV52DYL+69KFMjt5roT6H6+m1H3HUlTu2tk0KkHIAKtyGHAx2yvTpo++cI/Hsq22TU3aWyT0ycvREZubam8LFkv65xZd9N7qSRu2F8gfyeuVj8hZ+W95rRga5cawJnUNtn/DzBG+DdyzovFHG1AHqAHWAOkAdKOoAoFkTaR2gVjUvwRvBG8Ebwdv4g7fcdL/wdDaFIlnEmAUC+WgXC11SZ9w44RaceJ35kPPcDXbYOtKpelqYcfbteZM/bWcO4DUA3mrVXRM+eNuv/bVj4+uDvV5lTI38crDElpOvx+pApjOhgbWRU+X6F9nxi4sLtyEHshw45tU7I8+uOtpNFwNdtXIpTO00UWl2TbbcPWk/fP2257r9Juvk7XTGK7OQfufOW90I6VJN3Q/Id9JPE7wVHQE6R5QJdYA6QB2gDlAHBq8DTQA3lFEVptXJR/BG8EbwRvB2BMBbeKpoDg6kTn/i3lr4kIMGCTzJQZoucMUt2+dB2/q8+S1McCKjLFQptNWCAVuGPY8G9QAOKtddEz6YcjNwqO3s1gfNY/pRkIc75dPkzY1puB4Li6qAt7hFK92gm4WEGA+fXiXjVqIvfojkK8u0yepcSdlZy3xHVmam7NwY5KFZfjyL9+TG3rYrV2Zynx2/OnkDmyvEPexSTn78Q7pUU/d9op2CcwRvg3cs6LxRxtQB6gB1gDpAHSjqAKBZE2kdoFY1L8EbwRvBG8Hb0QBvsdMaggIuCLAebuAeCylsdgOLAPXyjrnN7BxbBz9Uvs2Ti9DTsozjTVafAAAgAElEQVTTDyhRKMf2pyHwFnejSt014YORZQ6+VAJvHdlaQNYZjzp9DsvKllt5fENy0rEqjFOn/UkvZOO0BVKJvlpdcO4Pgbe4PCPXoI6WlG1bFjz21BHX5bTT3m9l2mlX6Hf5/7f3Pj+zXWedr8cZMCOKB6hHGcWTRH1GThQkW0gRg1j0xAqEQAwkToKE2i2kJhZHsgxCpOXrxLlx33TjA46TYNpJyIHoDu6V+r/hN8yYIar1faPP8XOes/auvevd9b5VdT6D0tp7ref3+u5da31rV1Wdl1KXoe3lsrM1e4iYG5B8DxIp10ElAdufQqzDzAPjF38g8fboRsDNkTURA2JADIgBMXB8DGxBuGFjKZm2Rk7iTeJN4k3i7YyIt4vft5qgFbACVuBsKyDxdvyNhZs3aywGxIAYEANi4FEMQJpt0a4h1JbKSrxJvEm8SbzdGPH227/927t/+7d/O9tNpYFbAStgBazAdAUk3h7dCLg5siZiQAyIATEgBo6PgS0IN2wsJdPWyEm8SbxJvEm8SbxN7yMdsQJWwApYgYUVkHg7/sbCzZs1FgNiQAyIATHwKAYgzbZo1xBqS2Ul3iTeJN4k3iTeFm4qFbMCVsAKWIHpCki8PboRcHNkTcSAGBADYkAMHB8DWxBu2FhKpq2Rk3iTeJN4k3i7EeLtT//0T3d+1XR6w+qIFbACVuDcKyDxdvyNhZs3aywGxIAYEANi4FEMQJpt0a4h1JbKSrxJvEm8SbzdCPH2Z3/2ZxJv576rNn4rYAWswEwFJN4e3Qi4ObImYkAMiAExIAaOj4EtCDdsLCXT1shJvEm8SbxJvN0I8fb222/vvvzlL+/+9V//dffv//7vM1s3h6yAFbACVuDcKpA/zslTzW4ujr+5sMbWWAyIATEgBsTAwxiANNuiXUOoLZWVeJN4k3iTeLuRjdI777yz++IXv7j7m7/5m90///M/X73+8R//cfcP//APu7//+7/f/d3f/d3ub//2bx95Rd6XNRADYkAM3DwGRvfk9OWenXt37uH/9E//tPuXf/mXq+Pc490IPLwRsB7WQwyIATEgBsTA8TGwBeGGjaVk2ho5iTeJN4k3ibcb2Sh973vfuyLefuu3fmv3m7/5m7sXXnhh9+u//uu7X/u1X9t97nOf2332s5+9ev3Kr/zKbvT65V/+5Z0vayAGxIAYuBkMjO7D6cu9+ld/9Vev7tu5f3/+85/f/cZv/MbVff0LX/jCjbyfuIE5/gbGGltjMSAGxIAYOCcMQJpt0a4h1JbKSrxJvEm8Sby5URIDYkAMiAExIAbEgBgQA2JADIgBMXCWGNiCcMPGUjJtjZzEm8SbxJs317O8uZ7TJzDG6ieGYkAMiAExIAbEgBgQA2JADIiB42AA0myLdg2htlRW4k3iTeJN4k3iTQyIATEgBsSAGBADYkAMiAExIAbEwFliYAvCDRtLybQ1chJvEm8Sb95cz/Lm6qdFx/m0yLpaVzEgBsSAGBADYkAMiAExIAbOCQOQZlu0awi1pbISbxJvEm8SbxJvYkAMiAExIAbEgBgQA2JADIgBMSAGzhIDWxBu2FhKpq2Rk3iTeNtLvH3y9z+5e+LXnth99r999qGL8J0fvbP74Jc+eDU2Gj8nhvyUY/3F33lz93O/9Ee77//g/kP1v4mY/+DNP9898fN3d2lvwt8WPt772td2X3vyyV3aLexpw0/7Tg0DP/r2t3evffjDu3deeumkMP4nn/nM7hsf+9jur99996TiqvN3DjHWeLc4/slf/uXuv//CL1y9cryFzWPZOKdYU4Nzi/dY86Zd3yfFgBgQA2LgtjEAabZFu4ZQWyor8SbxNku8VXLtI//lI7sf/tUPrxbttT+k220Qb4klMdW4bvuCv47/b739g93PfOrVR0iucyPeEu+dz7+++9H9n6ze4L344ou7559/fnf//v2rzXs28d9+7rmrDWM2zFP1DQERIiKExLkTb27k5hcuda6n8HDp/dch3lK/ENO89pF3a66nUyS1+vV0KjGm7sckKUN+xn7y7TU45evjurHWvLfOk+uufqhz3Xi3jrHaW3utR5d8uD8sxSi1QS9Eb2zVeOpxva/gMzq836fv3r17uzt37uzeeOONSTvVpsfz753Wx/qIATFw6RjYgnDDxlIybY2cxJvE2yzxlgt09MTby//j5QdPuuX4pi9kSLcQfpdCvE09XXabxNvaeQ3ZFtLtEOIti+tnn3129957713hicX4d7785VniDTmIubqgXxv/Kcizgambu1OI6xRi6HN9CjHdRgxgZB9p1mMLpqoO10rt6zq5rvZtotE5FVKLeNJSq1O7no5dq+TLhxFcN0vnsdbvpo+vG2vNe+vYuV4qlq4b79YxYi8x1uua2GsfsrQj0jLy4Ai53nKNYXtkp+v0+0rOeVWcZl0Q8i0kXLfhuSSCGBADYkAMVAxAmm3RriHUlspKvEm87SXeKqA5hnj7wG98YPf6d1+/8QWRxNtp3mgPJd7yhFuedLt79+4DLLGhyWKeBTn4qy2LfjZDbDA4r7LncJx8lz5lcA75bBljn+stbZ+TLerARvfQ2LnGcn2NbLCBXuondk4Nu6d6PR27VrEPgcE8cz6a61Ppu26sNe+tcxq9t1w33q1jnLJHnKnPlMzoWlmiN6p5ajVF2I3uK7GRV2LoOM2T8HlNxW3/aa4HnRfnRQyIgZvGwBaEGzaWkmlr5CTeJN5mibdKcOXJt3rOV0zTzhFw+W24yOT34L79F9++ekIN3f67cblAQ+TFHjJpq9xoPDL7nnzLk1RPP/307sknn3zw+upXv/rIYi59yDz11FO7t9566xGZxFlJptf+5/+6+ppofg8trzyl1m82X3z13tUYMjmvduin5XfVeOIt5/kqKuMjH90nT9GNdIgHP9HN78jl9+R4Yg39kUy3iSz9abET2/hLf/LIV2uJtz/tln4W/FmIsyBHvrZ90c/m6N1XX71awPPVlylCIPrIpO2L/kpyVFnk8BfdqY1GlYlc7NQcOJ7akCR2NjLEmnNqRN/ILvEjQ9z4nGtT+1FO8dPtRBYfI519NYjN5Pn9l1++sjOar31+4z9x1Jyw2+vX5aJTcxjZikyvea9DZOKTWqTtMsxJ/FXZUc7dXsVCz2FJ/LHHi1wSA321jb0eU5/HnKMzVeuR/X2xYmuEB+pHjXt9iWfuespY5Min5pH+njs+099jR5d6juKJTq6Ld1955aol9rS1xthgvF9LxMGTwJGLbXJOi8xcXMhU+4f6xlbiyLwRe82rxldlIkuckSGGXsNa8xpztUsc2OM8ulW/+wRrYAKbsRPZv/jDP3zovYT8Ml7jzXsOY2njE1u0xFTliBcZ4kl/ckV2ZA+dfS1xxvaUbMZ63SMbv6P+jI2usfST5yjm9HVsxHdeGesx9vVB1nJ5Op6fpZjKx/737/XWwlqIATHwOGAA0myLdg2htlRW4k3i7caIt5BpP/uln32IUAthVr+qCklXSTeOIdYOId5CnoVEq0QbfS+88MKDhWjGQ87xdccf//jHu1deeeXBeL1pQbx1ggkCCmItOunr59GrhBZ6tS+6Idi6D0isLlvj6/Yg1SDsiL/+cQMkH3/kMGWj5hLSERINm5VwS0yRr34i99LXvvOgrod+oj1a9LNZqpszNgF1Qc9GpG4o6KubAnSz+WGDhI/0Vf3Yr7rJHVl0ibnGwrxFpsad/shVP8TIZgy7xFk3OvEV/ejE1pxvYqhtbPV4iKnm3TdS8RfCBFtLatDzRJeW2Gt+sdvP6zwRa61f+qLT5ZbYosZ17tL3g29+8ypX5qbWhr6KC+zUGMhvny5y0e259/NqnzrWNvI1rjpG3DXX1KjjIfMc2eiO5vDQWo9sxQe1I1firHUjj1G8sVtzjsyoTr02+O11j71ak+jV88RCjJElth5Hlau5dHs1jsSOvdr22PGPXTBU69BlYm+p71FM+MAn8fW8e/2n4uix1vsLtnveNa6MIdfnrMdQ5Wr8IzniDS76/HYcjPTp6/HFXvWd8RFOiXVf22szku9zg8xUf8apcfJAPi3zX2uSfurV+6tuP4ZoCwGXMc4l3iQSOlY8FxNi4PHGwBaEGzaWkmlr5CTeJN5WEW/c0NZ81bSSaTy5VsmzPEkXu6O+9Fd9SLr65B2EHLH1NuTZc889d/XKcR0P0cZTbXNyVYdjSKZKKDHWiSb6adGFBEt/J7mQjUx/QqyTaMjSTo33uPhDh/RzXMm8HlM/xx8teVXibdSHfNrR10zr+NxxNhNTm5u6kYmNvnkY6UaOjQT6nNeNApuHKd9sQqY2H7FdN5Lxi8262SLuKT+jmLp+bNTXyHcdr8dTNYpf/EzFjZ2lNYjNnic20k7FUmWIpdZlZHcqpjlb2CbvKsvxVIxgKOOR5bzGmf6uz6YcPOGHfuzRX1vi7T5yng18Jwqqbo7xUX1Ht+O26mW8z+EhtY7NkS1y6nOQGLvfKdmewyjP+E9ta65Tc4af2I0ecnVu6NtXyz7/sUf9sIct/EWmvpCv48SYumU8bc0t+tfxPRVTtzmqNbERL+fMcT+vudbjUd5TcWETnyNd+qh7fM3F3+uJb/Sxh88ae/qqfs47nuf0q616HDtLrnV0iLnGSM41PuTTolOxnf5eY3Sw1+UZH7XXWSOM7Nn38D3DelgPMSAGLgUDkGZbtGsItaWyEm8SbzdGvOWrpvk31FzclTiDeINg619brf+gimzV30e88WRbfdqNGwxjr7/+09+py9Nv+ZrpSBYd2jlCKQRVJ8vQgxTrT7FNkVr9KbTYwXcl7rCfdsrWKC7IuJBl3V63Azk3IhtrXJV4S3/sJt/4qnHmmE+v+TS7j0+dr13YZwPE5gFdNnfVB2NsPthYsIFCNuNdH1k2FVObjPT3jVXXrX6Im7452R4TOmnZiHXfVaYeJ+eRbM8du71GsbW0BrHR8ySWPif015aNaTaatQYju/vsjWzRN8oxcWCz+iY+xhJL+pi/bqvjYhT7nD7+iLXXgnFa5qbHkfH47rlEbo6wG8Xbc8c37VSsI1tTdaM/+WB31EdeFWfUoOpGLrlWOewtqVWvXXR6LXt+1KnL0R/5xDUXR8aTR79msRHb+dfIufHIxk5e6O3zPRVTj6XnjJ/0kzc+OY9MxoO7Ue2x0X2lfyoubFYffb5jr85/dNKXONLidxRvxsA1MY90sZGxOiejOuEnY+itafFPPFO61Cx55pUa5WvNvRboI19rkrGpeOtcY2NJe+hT8UtsKyPpIAbEgBi4DAxsQbhhYymZtkZO4k3i7eSIt0rQ5UZYSbbrEG+Qa/XmCvEG0cZTb/zGW/0aatXLMeRXJ5ky1gmrEE4hnvIKaXXv+3/5yL9/dh38zRFvI9/VPz57G1/YhwgckWmjmOiLzU4uTtWEfuKoBN+hxBsbib7gn+rPhoPNzdSmIDVhjE0ZG4u+YRltIJAlJmJhE9Nb5OJ3tNma6u9+mMseE3L4jb9ah+jlnPG01Iixej7lh5phJ3Egu7QGU/nHDjZqvYgPn9kY3n/77auNInMXmZFd4q1ytQ4jW9Syx0Ce2Ky59zH8YatjqucZW+hgK+1If1/8Vb8eR69vqkf20UlM1LzHtlWt42tki7jw39taz5H+yG6vOXn2uuC7+kC2+4pNrhtw0fW6DnI9J86p9Vwc2ECW+OjHVo+ljyNHi70p31P9vbbJGZu9BYPEgs/kQB86sUNudbzqpH8qroz1+iObmBnvfno+c74h3rBRMRG9+up2e2wjP70mqU3Pv/rIccd0H586TzxTtnvdsNHzTz+yHX/ozLUSbw9jZq5WjlkrMSAGHlcMQJpt0a4h1JbKSrxJvJ0c8XabT7zVGxVPv+Vrqv0rqpGDTBqRXyGnIKV4Sqw+7TXShdBKW+M4lHjDf7U1Oq6kYCXEIjsVU8bIK2QaMY/y6j7jIzrU7VDibWoz0Dcx+M9iv2+GR5sJNjRsmKY2CyP/yCaG+J3bbBFXWjYpow1J/LApRaf7ob/GRB49x1oH9KbaKdnqp+tmrG4Cl9ZglCe2R/6oQa3ZKOeR3S63xNZIhvjSdpujscSS/ilbHbuj2Ef6I3tz8dTYRvOTmnbMVZ0cRybzXOVG8fY4lsY6soVuYu7x1PM111OvOXZ6DfBd8YZsYq3XWfUfvW989KNXc4582p4fdUp/levHc3Ew1uuD7cSYp5cybzUPxg/1jd9qM3H32vY69dxyTiy1nlUuNur9JWP473nT3+OKTo8Fv+ln/rq9ns9cvNiIvciNdNPPGO9NOY9Ova7SR3xTdcHWXJsYqp85WcbwO6phZMizj4/6I9Pzws++VuJNImEfRhwXI2JADGxBuGFjKZm2Rk7iTeLtZIi3Nb/xlptrnn7LHy/0J+T6jZen2EYEWp50q3+m0HXnxiGZRk+KhVyCWBqRVzxlhkz8juTSfwjxhv1K9vXccg55Ft8j/6O+aqf7oSY1ryrPceKibof8fsvchmpqg5NFf9109HNiw3bspI/zvrHoG7cqi+5o84Gf2k7FEpnRJoyY8IOtGhO+08c49mod6lg/jv0uy0ZsbgOYfNhgEUevX/c1yjMy5Nr1E1s24LUG+Kqxjez2HJbY6jo9/pxPzSM5ECvn+3Kaspf+Sp4siX8ULzEzVzmnhh03I/34rfjYqtbxNWdrX2xTdRvZZS6YG/Ls/pHrvqlXn8vIBYf8+2jwg+1RHOmLjToXVZ5j4uj+pmymv2M3sfVr5zq+p2LquOx4Iafa9ljrGMc91j5XyBHX0jnDbv64YTQPPZ/4mYoXXOC7nxNj2sisvWdV/aXH5JdYlursm7Op/LveXP77YjlkjbDPpuNu0MWAGBADl4cBSLMt2jWE2lJZiTeJt5Mh3nID5Hfe+CfT2vI1U26UXXbut97yNdP+222jr5m+9NJLDz3dlqfeIOzu3bu3u3Pnzi6fvCYGSKY8vVWfFOMJspBWkYOcQqbqVYIKEqyTZUuIN54aq//y1eNILImpx0EMxAUhhnx9oi365JVxYq59Pd7Y/dzv/8lVvaKTV2Twm/O1n2bPbSBGm6P4iE4lCdgI1A3PaBPB5i36xJ+2b5bSh2xiQDZ6fZObcTZk+OQcPdr0903gyE/ke0xdl1hqHfAzakc1wgZ1S/whF9Jio8eBTq1LrQGx9zzTH91RP7HFV+SoY2pNbFN2kUVuqa3EHPv4jP3MBf9qih3s1rhqH/OX3CLDC/vUCXs1f3QTB/rIERf51VqkL+OR7f6wk/74nsLHd77ylYf0+9zEfo019oiF/JfEGr2RLeKruacvNclvl8UX/qhFxuur20W+xs081L5ad+ZnpIuvyOdJt7yQZyxtatfrTG2oVeTiI7nFXs6Jo85Z+tHt/diITewSd/WPPjLoLfE9FRN1JH/81rrGT+akyxBHdObuL8Q9ypu4gpduv8dADb/1iU9czdmcvTpGTsQbO9iKj4rD6NVYItdrlL6O0fRN+clYf0U2NlIbxvBTY+/xRD7XODrUr+pQ75pvt41M1YtMxRs+lrSsb/gdWM7remeJHWUexYo1sSZiQAxcEga2INywsZRMWyMn8SbxdlLEWy5+/jG1km78m2m9OdTffovsHPEWPYg2fr8tbf/dty4D6Rb9KeItBFKIpRBUvCoRFd2cM5b25a9/95HfeIscZFlksNGJrMhBkkFeTS1Eq73YhHSLjRz3r6NCpCFH3MSCXs2ljmUcojEyxIdd9OiPfF5ZUD/77LNXf7RA31TLBqRuaKosm4C0tT+bgL7wx1Y2Q7y63dHmI3YjVzcf6UN25Bv7aauPKR1ij2zfJE7p9JjYAOE746M64GvU4gsb0e9+ukyvS+xGDxu9Bhkf5cn8ZGwUG3ON3XdfffVqTqr/ObtVbomtxLAvV2ImplGu2EhNal7EUPHT5zAxh+gLlqs+uvgd1aLb6tcD81DrUuPr+h2XW9Z6ZItYeq41Xmpba4ge+fW4e17xndpWOezyBBt1rjLVDzjYNx47VabH0ueIOOrcx2/y7bLEQyy1TvTFP7YO9T0XU+zXuah+qeFovMaKfeTr2Fze6C2dM/AxVceMp1bEEd/kU2OKHLUMlpiHtNFBP+3I1wj7U36q7XqMf3yN/JBLrX+Pr47FPnZ7vl0PTBFTcuo6jO1r+/pgar2zz47jEgxiQAyIgcvGAKTZFu0aQm2prMSbxNss8eYNavoG1ckvazVdq321YSHNJ9pz8izw+4ZgTueUx0abrFOO9yZju7S5vsnaHeILoqJvmg+xdVs6+66nQwmAtbWBKIm/Y9cCX4cSG8eO71j29+W9ds4S56H4OFaOl2D3kHmoea99Ir7qenz4uszaWTsxIAbODQNbEG7YWEqmrZGTeJN4k3gbfFVjyY1G4m3bN6T+qfZoDvZttEY6p9x33Q3JKed23dguba6vW4+b0N9HWt1EDNfxse96AlOHkGH7bPe4Iz/6U4Uut8X540pQ78t77ZzxNNelfKizBba2sHGd+0q+afDMM89cfeNgi1i0se26zXpaTzEgBk4JA5BmW7RrCLWlshJvEm8SbxJvR38iY+lNOZ9s+7stvokvxYtyYmUNBvYRNXO21pA41yH45mJwbB3e18xZauvTbuvqe2w88vMed+/ePZk1yrFz1v5pYdD5cD7EwHlhYAvCDRtLybQ1chJvEm8SbxJvLmoPxIBvyOf1hux8PZ7zFUKF37o69GmmpSQOvh63r32e4rW1dM74rbP6W3unmI8xPZ73L+fdeRcDYkAMLMMApNkW7RpCbamsxJvEm8SbpIvEmxgQA2JADIgBMSAGxIAYEANiQAyIgbPEwBaEGzaWkmlr5CTeJN4k3ry5nuXN1U9/ln36Y52skxgQA2JADIgBMSAGxIAYEAOXjAFIsy3aNYTaUlmJN4k3iTeJN4k3MSAGxIAYEANiQAyIATEgBsSAGBADZ4mBLQg3bCwl09bISbxJvEm8eXM9y5vrJX9iY25+IikGxIAYEANiQAyIATEgBsSAGFiGAUizLdo1hNpSWYk3ibfHnnj7gzf/fPfEz9/dpV1zY/vR/Z/s7nz+9atXjqN7qK01fkey1/m3vpE9+5bd4K3TzdVp6Q+l3/Sc5Mf0T/1H2c8hxq3njX8WPYc/OTinWDNP5xbv1tjS3s3d9621tRYDYkAMiIGlGNiCcMPGUjJtjZzEm8SbxNstE28vvvji7vnnn9/dv39/99fvvnu1if/2c8/tsmHMhnnqZpN/Ynvtwx/ehZA4d+LNjdz8m2qd6yk8XHr/dYg3/rWQf7bM+Vy91lxPp0hq9evpVGJM3Y9JUnL/TL69BnPzfdtj14215r11Llx39d9grxvv1jFWe2uv9eiSD/eHpRilNujtI3nrfQWf0eH9Pn337t3b3blzZ/fGG2/M3qNqzh7Pv39aH+sjBsSAGHg8MABptkW7hlBbKivxJvEm8bYh8bb2xp7F9bPPPrt77733rhbZLMa/8+UvzxJvyEHM1QX92hhOQZ4NTN3cnUJcpxBDn+tTiOk2YgAj+0izHlswVXW4Vmpf18l1tW8Tjc6pkFrEk5Zandr1dOxaJV8+jOC6WTqPtX43fXzdWGveW8fO9VKxdN14t44Re4mxXtfEXvuQpR2RlpEHR8j1lmsM2yM7XaffV3LOq+I064KQbyHhug3PH4/No/PsPIsBMSAG1mNgC8ING0vJtDVyEm8SbxJvt0S85Qm3POl29+7dB4trNjRZzLMgH914WfSzGWKDwflI55T7ku/SpwxOOY9jxNbn+hg+zsEmdWCje2jMXGO5vkY22EAv9RM7p4bdU72ejl2r2IfAYJ45H831qfRdN9aa99Y5jd5brhvv1jFO2SPO1GdKZnStLNEb1Ty1miLsRveV2MgrMXSc5kn4vKbitn/9hsyaWTMxIAbEwGVjANJsi3YNobZUVuJN4u1WiLcXXnhh9+STTz54Pffcc7sf//jHDy0yX3/99Qfjkc351A3zF3/nzd3P/dIfXf3G2s986tWr32zjd9v4Lbac5xXZamf0u2yR6bLIYeflr39372+8fevtH+wSz+d+/0+uZKP7xVd/+il2f9otMbHgz0KcBXmNleO+6Gdz9O6rr14t4PnqyxQhEH1k0vZFfyU5qixy+Ivu1EajykQudoi/tlMbksTORoZYc06N6BvZJX5kiLv6nTpO7Uc5xU+3E1l8jHT21SA2k+f3X375ys5ovvb5jf/EUfPBbq9fl4tOzWFkKzK95r0OkYlPapG2yzAn8VdlRzl3exULPYcl8cceL3JJDPTVNvZ6TH0ec47OVK1H9vfFiq0RHqgfNe71JZ656yljkSOfmkf6e+74TH+PHV3qOYonOrku3n3llauW2NPWGmOD8X4tEQdPAkcutsk5LTJzcSFT7R/qG1uJI/NG7DWvGh81R67igxh6DWvNa8zVLnGM8v7BN7/5UN2rT7AGJrBJnH/xh3/40HsJcWe8xpv3HMbS9nmpc1PliBe/xJP+5IrsyB46+1rirHl3nYz1ukcmfkf9GRtdY+lnLkYxp69jI77zyliPcbQ+6LF7/v593VpYCzEgBsSAGNiCcMPGUjJtjZzEm8TbjRJvIddCslWijb6nn376wVcuQ7I99dRTu7feeuvB5uqVV155hJzjJgtRlj87CNHWyTb+OAEiDPIr+hBqyGSsEmSRoQ+Z9HWfI1v4i72qG9lDP9EeLfrZLNXNGZuAuqBnI1I3FPTVTQG62fywQcJH+qp+7Ffd5IYsusRcY4kcsjXu9EWu+iFGNmPYJc660Ymv6EcntuZ8E0NtY6vHQ0w1776Rir8QJthaUoOeJ7q0xF7zi91+XueJWGv90hedLrfEFjWuc5e+bOpjl7mptaGv4gI7NQby26eLXHR77v282qeOtY18jauOEXfNNTXqeMg8Rza6ozk8tNYjW/FB7ciVOGvdyGMUb+zWnCMzqlOvDQo1nl0AACAASURBVH573WOv1iR69TyxEGNkia3HUeVqLt1ejSOxY6+2PXb8YxcM1Tp0mdhb6nsUEz7wSXy93shRm6k4eqz1/oLtqbwzZzUOYoh8dDnv9UxMI70qR7zxQQ6xmeOOg5Ef+ogF3R5zxtNXfZP3krbXZqSTmGudkZnqzzhz3+Pq84ot6lVrxdhUm5+fyM9QhICbkrHfTaYYEANiQAyIgfcxAGm2RbuGUFsqK/Em8XajxNtXv/rVRwi13DBCsIVoy3jO80RcJeL23VRCguXJshBdyEKoZYw+CDkIuvQjl5bjSsx9/wf3r56mq3aiR/+UrchAvHXd0ddMiXFfm83E1OambmRip28eRrqRYyOBPud1o8DmYco3m5CpzUds9w0ONutGj7in/Ixi6vq9hiPfXYbzqRrFL36m4sbG0hrEZs8TG2mnYqkyxFLrMrI7FdOcLWyTd5XleCpGMJTxyHJe40x/12dTDp7wQz/26K8t8XYfOc8GvhMFVTfH+Ki+o9txW/Uy3ufwkFrH5sgWOfU5SIzd75Rsz2GUZ/yntjXXqTnDT+xGD7k6N/Ttq2Wf/9ijftjDFv4iU1/I13FiTN0ynrbmFv3r+J6KqdscxYZv4qmx5rif11zr8cg2utiu8omN/pEufdQ9uiOsTPmgJuhjr84L8aSPWNKX847nOX3s9DZ2llzr6BFzjZGca3zIp0WnYjv91KXaSj/2uny12Y+vs0botjx/+H5hPayHGBADYuAyMbAF4YaNpWTaGjmJN4m3GyPeeLKtPu3GjY+xEG7pCwGXr5dyjtxUG2IrXzUNGYYMpFfINPrSRnZEluXroCHvOkkGGdft7CPx4osYKpGX/kM/zV67sK8bLXT7Bj7xMMaGgY0FG6jI5JXxro8sm4qpTUb6+8aq61Y/fdMzJ9tjwg4xZyPWfVeZepycR7I995zHbq9RbC2tQWz0PImlzwn9tWVjmjhqDUZ299kb2aJvlGPiwGb1TXyMJZb0MX/dVsfFKPY5ffwRa68F47TMTY8j4/Hdc4lcbJIHdmhH8fbckaWdinVka6pu9Ccf7I76MtbtUoOqG7nkWvGIvSW1io9au+jU81Ec1KnL0R+b0ZuLI+PJo1+z2Ijt/Gvk3HhkYycv9Pb5noqpxzJV6yqHz1qH+J+6vxBrtUHfyBZjXb7Pd8br/EcvfYkjLXamfIBr8DLSxUbG6pwk3+4bP8wFuktb/BPPlB5zmTzzyjzka809HvSRrzXJ2FS8ib/OLXb2tYc+Fb/PruOXueF0Xp1XMSAGHncMQJpt0a4h1JbKSrxJvN048TYi0yDeKikXOX4HrvaPbipbEG/5Omgn7+IrhFt/mi79t0G8sZHoC/6p/mw42NxMbQqSC2NsDthY9A3LaAOBLDERC5uY3iIXv6PN1lR/9xM5ZIk758jhN/5qHSKTc8bTUiPG6nn68uq5UzPsZBzZpTWYyj92sFHrlf4aezaG999++2pTV2swsku8VW6fLWrZYyBPbNbc+xj+sBWfyKTtecYWOlVupL8v/qpfj6PXN9Uj++gkJua5x7ZVreNrZIu48N/bWs+R/shurzl59rrgu/pAtvuKTa4bcNH1ug5yPSfOqfVcHNhAlvjox1aPpY8jR4u9Kd9T/b22nGO3txknFnwmB/qQT+3IrY5Xnbn+jBFL2pyTA+fx0f10nTkfEG/YiC6YiF59dbvR6dckNSBHzqlJWsaq7XrcMV3H5o4Tz5TtXjfs9PzTj2zHHzpzrcTbw5iZq5Vj1koMiAExIAa2INywsZRMWyMn8SbxduPE24hEg3gbkXI8/Tb31dMtiLeXvvadK+Ktk2+n9MTb1Gagb2J488lin40Pm5bRZoIxNkxTm4WRf2QTQ/zObbaIKy2blNGGJH76Jqz7wVaNiTx6jrUO6E21U7LVT9fNWN0ELq3BKE9sj/xRg1qzUc4ju11uia2RDPGl7TZHY4kl/VO2OnZHsY/0R/bm4qmxjeYnNe2Yqzo5jkzmucqN4u1xLI11ZAvdxNzjqedrrqdec+z0GuC74g3ZxFqvs+o/et/46Eev5hz5tD0/6pT+KteP5+JgrNcH24kxTy9l3moejB/qG7/VZuLutc059+CeF+fEUuvJWNrEWO8v6cP/XN6xW+30WPAb+8xft5fz+K796PV4sUFNR7rEk7Fal+jU6ypyU36wsaTtfpbo4LfPLbrk2cdH/ZHpeWFnXyvx5iZyH0YcFyNiQAyIgfcxAGm2RbuGUFsqK/Em8XZjxFtuDPt+423qn0tHf7ZQbzRbEG8h2PhqaP0qKn3966L0V9lO0iHTdQ/5/RY2Wn2xnzpMbXAiWzc3/ZwaYjt20sd595XNUd9sIYvuaPOBn9pOxRKZ0Sas+8FWjQnf6WMce7UOdawfjzZqbMR67lU3+bDBIo5evyqf41Ge6SfXrj+aZ3zV2EZ2ew5LbHWdHn/Op+aRHMAF5/tymrKX/kqeLIl/FC8xM1c5p4YdNyP9+K1Y2qrW8TVna19sU3Ub2WUumBvy7P6R676pV5/LyAWH/Pto8IPtURzpi406F1WeY+Lo/qZspr9jN7F1Auk6vqdi6ricqhW5jWKtYxz3WPtcIUfeo5oyP3VesJs/bhjp9Hzm4iXX+IlcPyfGtD2WUT7kUu9t1caSY/JLLEvkI9Ov8a43FVfXm8u/2+znh6wRug3P39+MWQtrIQbEgBi4fAxsQbhhYymZtkZO4k3i7UaJt/y2WZ5cq0+98bRb7XvppZce/MNpbpQh7Hjijd9He/7553dZnGZ8K+IttiDPYpObdI7rP5PyNdP0HUK8xe7aT7PnNhCjzVF8RKeSBGwE6kZmtImY2lT2zVJ8IJsYqFf89k1uxtmQ4ZNz9GhHm7CRn8j3mLousdQ64GfUjmqEDeqW+EMupMVGjwOdWpdaA2IfbXajO+ontviKPnVMrYltyi6yyC21lZhjH5+xn7ngX02xg90aV+1j/pJbZHhhnzphr+aPbuJAHzniIr9ai/RlPLLdH3bSH99T+PjOV77ykH6fm9ivscYesZD/klijN7JFfDX39KUm+e2y+MIftch4fXW7yNe4mYfaV+vO/Ix08RX5POmWF/KMpU3tep2pDbWKXHwkt9jLOXHUOUs/ur0fG7GJXeKu/tFHBr0lvqdioo41/8SX+at9OWa+iI04cj53fyHuubzjD/vJaxQDNfzWJz5xNWcje6M8e7yxg63gZ5/fUY06RmNvyg/+ahvZ2Eht6MdPzYt8iDHyucbRYbzqUG/mJ7LdNjJVLzIVb/hY0rLO8V9NH76XLamdMtZMDIgBMfB4YgDSbIt2DaG2VFbiTeLtRom33Agh2vj9ttGfKEDQIQPpFn0WpMci3uID8q1+7RTyLWRbfvPttf/5v65It0OJtyyon3322YcIxqk3CjYgbBa6HJuAtHUsm4C+8MdWNma8ut3R5iN2I1c3H+lDduQb+30TOKVD7PFTCYA5Pz0mNkD4zvioDvgatcSHjeh3P12m1yV2o4eNXoOMj/JkfjI2io25xu67r756NSfV/5zdKrfEVmLYlysxE9MoV2ykJjUvYqj46XOYmEP0BctVH138jmrRbfXrgXmodanxdf2Oyy1rPbJFLD3XGi+1rTVEj/x63D2v+E5tqxx2eYKNOleZ6gcc7BuPnSrTY+lzRBx17uM3+XZZ4iGWWif64h9bh/qeiyn2+1zEH/VLm3rPxYp9dGoeS/POvKGftseE/8QyVcfI1NhjgzrWmCJHLWtu6Y9OjWPkKzoVE9Gb8pOx0Qv/+Br5oa41xh5frxN2e75dD0wRW3x0Hcb2tWvWB/tsOT7Gi3WxLmJADIiBy8LAFoQbNpaSaWvkJN4k3m6cePMm99ObHATikk+0WeD3DcG51nK0yTrXXLaO+9Lmeuv6bG2PjXjfNG/t55j29l1PhxIAa2sDURJ/x8w3tvF1KLFx7PiOZX9f3vvGR3Edio+RLft++v6+9trpdVv7RHzX9/yyNpPOp/MpBsSAGNiPAUizLdo1hNpSWYk3iTeJt4lPz2/iBrfkU+1DNlI3EfuhPq67ITnU7znoXdpcn0PN95FWp57DvusJTB1Chu2z3WsT+dGfKnS5Lc4fV4J6X97M91JCkqe5LuVDnS2wtYWN69xX7t27t3vmmWd2abeIRRv7N2vWyBqJATEgBs4fA1sQbthYSqatkZN4k3iTeLtF4i03+XyyXb82643//G/8zqFzeCoY2EfUzMW5hniD8DmE4JuLwbF11xLzsJR4y3wtlXUu1s3FIfUK2Xbnzp3d3bt3Jd1ueW12yPypc/xrxBpbYzEgBqYwAGm2RbuGUFsqK/Em8Sbx5uLOBb4YEAMXhoEQKvzW1aFPMy0l3vAlgXP7i+GlxBu/29Z/V21qMWv/7c+tc+AciAExIAbEgBiYxsAWhBs2lpJpa+Qk3iTeJN4ubMPtDXn6hmxtrI0YEANiQAyIATEgBsSAGBADYuCyMABptkW7hlBbKivxJvEm8Sbx5tNOYkAMiAExIAbEgBgQA2JADIgBMSAGzhIDWxBu2FhKpq2Rk3iTeJN48+Z6ljdXP6W6rE+pnE/nUwyIATEgBsSAGBADYkAMiIFDMABptkW7hlBbKivxJvEm8SbxJvEmBsSAGBADYkAMiAExIAbEgBgQA2LgLDGwBeGGjaVk2ho5iTeJN4k3b65neXM95JMQdfwETQyIATEgBsSAGBADYkAMiAExcFkYgDTbol1DqC2VlXiTeJN4k3iTeBMDYkAMiAExIAbEgBgQA2JADIgBMXCWGNiCcMPGUjJtjZzEm8SbxJs317O8ufop1WV9SuV8Op9iQAyIATEgBsSAGBADYkAMHIIBSLMt2jWE2lJZiTeJN4k3iTeJNzEgBsSAGBADYkAMiAExIAbEgBgQA2eJgS0IN2wsJdPWyEm8SbxJvHlzPcub6yGfhKjjJ2hiQAyIATEgBsSAGBADYkAMiIHLwgCk2RbtGkJtqazEm8SbxJvEm8SbGBADYkAMiAExIAbEgBgQA2JADIiBs8TAFoQbNpaSaWvkJN4k3iTevLme5c3VT6ku61Mq59P5FANiQAyIATEgBsSAGBADYuAQDECabdGuIdSWykq8SbxJvEm8SbyJATEgBsSAGBADYkAMiAExIAbEgBg4SwxsQbhhYymZtkZO4k3iTeLNm+tZ3lwP+SREHT9BEwNiQAyIATEgBsSAGBADYkAMXBYGIM22aNcQaktlJd4k3iTeJN4k3sSAGBADYkAMiAExIAbEgBgQA2JADJwlBrYg3LCxlExbIyfxJvEm8ebN9Sxvrn5KdVmfUjmfzqcYEANiQAyIATEgBsSAGBADh2AA0myLdg2htlRW4k3iTeJN4k3iTQyIATEgBsSAGBADYkAMiAExIAbEwFliYAvCDRtLybQ1chJvEm8Sb95cz/LmesgnIer4CZoYEANiQAyIATEgBsSAGBADYuCyMABptkW7hlBbKivxJvEm8SbxJvEmBsSAGBADYkAMiAExIAbEgBgQA2LgLDGwBeGGjaVk2ho5iTeJN4k3b65neXP1U6rL+pTK+XQ+xYAYEANiQAyIATEgBsSAGDgEA5BmW7RrCLWlshJvEm8SbxJvEm9iQAyIATEgBsSAGBADYkAMiAExIAbOEgNbEG7YWEqmrZGTeJN4k3jz5nqWN9dDPglRx0/QxIAYEANiQAyIATEgBsSAGBADl4UBSLMt2jWE2lJZiTeJN4k3iTeJNzEgBsSAGBADYkAMiAExIAbEgBgQA2eJgS0IN2wsJdPWyEm8SbxJvHlzPcubq59SXdanVM6n8ykGxIAYEANiQAyIATEgBsTAIRiANNuiXUOoLZWVeJN4k3iTeJN4EwNiQAyIATEgBsSAGBADYkAMiAExcJYY2IJww8ZSMm2NnMSbxJvEmzfXs7y5HvJJiDp+giYGxIAYEANiQAyIATEgBsSAGLgsDECabdGuIdSWykq8SbwdhXj74V/9cPeR//KR3RO/9sTu5f/x8l5i57P/7bNXsh/80gd37/zonb3yj9uN8r2vfW33tSef3KV93HI338t6U5yazx99+9u71z784d07L710Mhj/yV/+5e6//8IvXL1yPBX7bff/yWc+s/vGxz62++t33z3ZGLeu0bnMTfI+p1jPMd6tsbWFvVO8n03ltS/Wc8PvVJ6X0v/WW2/tnnrqqd2TTz65e+GFFx6be/6lzJ95PB5rWuf5duZ5C8ING0vJtDVyEm8Sb0ch3l7/7uu7D/zGB67ItE/+/icfLAwg5ELK5Zgb0+NAvL333nu7Z599dnf37t2rvLNZzqZ+akMfAiJERBbF5068uXCffgOyNj+tzb7NH/eKUZtrKcQ0r30E9dLr6VTnpsd1KsTbvnvaaO7W9IVYDMEYP70Ga+zctOx1Y615bx173mc6aXvdeLeOsdpLvFznaZcQ9eSDXs+32q/H3JPQm3u/jl69r6C7JL7q8zaO98VK/fblf6zYD7mvHKLT46823njjjd2dO3d29+7de7Bu7fI3cZ515NNPPy3h5jdVbhWHN4F1fUzvG6zNdG0gzbZo1xBqS2Ul3iTejkK8QbDVJ95q3+NIvL344ou7vLhh1kUdfbQsdCOTvrqgR+acWhb2+wiRc8ppq1itzfWIt2xsK67YmNe+Pldz116V5Tq8rQ1njaUenyJmbqJWmVM+jLgJf7Xm1zm+bqw17+vEMdLNtdCJqOvGO/KzRV/qUImsnO8j30akZWyAo6m4uMbwN7LTdet9pet32VM6P/VYa12X1u0QnW6728iHpvnwNORXl72pc552e/31128thpvKVT/T5IK1sTZiYIyBLQg3bCwl09bISbxJvB2FeBvdEB5n4i2fkj7zzDMPfVqaBf3Uhp6FcDYWqSUbDM5H9T3lvuTaN3enHO9NxmZtrke89blig8yGee14lT9VAuIUMXMTtaob4ZvwV7FwnePrxlrzvk4cI93Y7vfm68Y78nOMPuJMDlP2R9fKEr1RzfP+O0XY9fsO7+FT96GpeG+j/9RjTQ2n1kpT9TpEp9vqNu7fv797/vnnH3xrocvfxLnE23izfRO114e1FwOnjwFIsy3aNYTaUlmJN4m3SeKtEmX166L1a6T5iig3osjkCbe0+Z22/F5bziNTddLHiyff6ldNv/7drz/QRR8fc+3IR/99ucSWuLoP4qj2a/6JI1+djQ9k8JfYyT1yo9+p60+7xUYWdVMbhr7oh3h799VXrxagfPWlb5iILfrIpO2L1rrQrrLI4S+6UxuNKhO5qVz6hiQxRjaxs5Eh1pyzKaJvZDe1Yzxtzsl9rsU2eSI7ijFj1c+oDnM1qL6+8+UvX8V7iN9RflP1G9Wh5jCylTyJlZr2OCMTn4yn7TJTmFqC0YqFnsOS+JnHtFNziUzs9ZiqjzrP1CW55tqr+fc4RzUKPvBbbY3wMIclbKQd5QceMhaZxFbzQD9ydd7wmbbOb9WtcecYW9XPd3/3dx+qTccHNqhftR87YCd1SXyR6/VFhppis+aDTLWP3JRvavD9l1++wkXk0oetxFFr07FDPaoMNhgjhhorfcRVx9CrtSHvGldiQ7/7TDyjWMn3e7/7u1cYqfrIE1tiWoJ7Yqq2iJdciCf9mR9k+zwjv6Qlztieks/YqLbxO+qPndE1ln7yHMWcPuo3JRuZ5F39YpN61LHYoW7BZ2TwwTz2NUHXjw3qhI96fUzFmn5e6Ffb9GGzjqFHvsgQO+NpyW8OF7EzN8fVHsdVh1qlZZy6V7vkRF+1gV6eegv5FhKOvlHLmpa1btq+Hu1rzMiM1qLYz++55Xfd6itPvvEzJkviwpbt+/i2FtZCDFwOBrYg3LCxlExbIyfxJvE2SbzlRgShVBcDdUGR8chVoi2Li3oeeUiqugipiwxshtz62S/97ANiDvm+YOk3yYxHtsrRF9vIk08lx4iNXCLLgqjnXck39Kpf8q56LIryGyHEMdeOFv0sHOuCeW7hWBfBLCbrohfdLIhZjOIjfVWfhTGb+sSOLLrEzIK15heZGnfGIlf9ECMLdOwSZxbA2MxYP695IDdq8VPzixzxV7s5rjWLbjY/2E0c1S82qAG+IkMfurSj2izJr9cv9hJvjSd9S2xR4xpj+n7wzW9e5UoetWb01fpgp8ZATfbpIhfdOgdL4qeWtMmj+qM/LXHXXOfmGfk+h9HvmI6dxIu/nFeZKVuRj96objVO7Ea22k1/5OpcdN/oRq7WBr/VN3Hus4ccMXJe7cfvqL/HN8IOMdNGp8bU7YKhOZnY6r6pQa/pKCZ89Bx7/bGZdlQDYqd2kanXHDkTb82pxpVckI2tmkOPocrV+HvskSO+Jbgf+aGvxxd71XfGK/aIcWkb/Vqbkd4ov8hN9WeMGjN/2GX+o0tfWupV+7FBDajJnAx2ao0i3+sWn9irc47P6mNkMzGN9Ii15lbzIy5sVj/xzXtGdDLW5yZ91S9yPb/EcR1c9PiZt5of9SOn6CDX573aG317oY7nuK4NWcOmretH1ph1PMd17djt5nz0xBtrTIm3yyEPRnNvn/MrBvZjANJsi3YNobZUVuJN4m2WeIO8qgsGyKssEiCwWGhwDgEVGYivutDoiwuItyqPzdo3uungqxJnyKWPmNKX85oLcsmz9ieeeh45/JAP8XW/XXfJQo04rvy0RXH6WCTWhWP6++I2431hGzkW5OhzXhfOLKa7Pr5ZjLI4rbrE3Rfa2KyLW+Ke8lPtTunHBi9kqh5jvUW2x0NO1GdKDnvId5/RpwbY4BxdWsZ7LIzTIld95bjXbyom7KTttjifi+E6mIrPrt/xRHz0Mwf015Z4ay3oy0Ytrzl9fIBldKfyZ7zPIdfPnC/mA5kpW8jVnKhb94uNHm90q2x8dnzEZuSqLvUgRmpNTPSP8qVvXy1HsUzZ7zXo8dTxWovYS161BtSw16H7nqoB+VWfI5voU4fIEBu6nFN7bFNf8uwtsWIn4+jWvpHPkS591W/s9LoRb+/HN/rY67Eknm4351NzMdLvteA8slzrS/SIucoyZz0/fKBT5zRj1KXaSj/2qjw2UiuOqx62wAS+Y6PWKTr1vMqN7neRr3nFf9dn3phH4uMcH7Q91n3yo3rEFn5rHUb5jeSI5ZC2xx8bV3X66Ed33/joR6/mJ32Ju9Zu5AuSa+6D1KwNP/XKpx6sUVg71rUs68f01Q+MRz5r34h4q+Mev782tBbWQgw8fhjYgnDDxlIybY2cxJvE2yzxVhcMWRxwHuIshBbkFAQdhBpydaGxhHirJFmV7+RWvZnie7R4SR8xRqcTcdhhERR5/JILMvQTCzoQcch1n1mgLf1BXhaIdWEau1ML2SyUWSii2xfy0WcMu1ML54x3fWQTw1wsGe8L/K5Lja4WvR/72NVCnL452R4TOizQswGZkkE2LXXostipG4/EONrYxM7UfNQaTPkinql8GU9LXD2/Uf3wl7Fqg+ORLfpq3sinxWavVx3DH/l0W7Um0RvFnv4p/YzlRay9FozTxn9k4pc+2vjuuaRvap6n8ieWnit+yCV2qc+UrSVY6nZ7br2miatfi7HR85/yTazEPtKNj1pLdPb1xRay2KdeU/VMnD0fbMTft597bnY8stQQPXxP1WAqph5L7HAPxkevFz6pDfjpOVX9HHdf6ZuKq/vMeepZY4u9eo5O7+vxRi4v4maepmoX2R77qE74YS7ws7TFP/FM6VGzXI95ZR7yteaeN/rIxz59aafiTfzMLfLY+NPPf/7Kz9R4jx09fI/qFh/kjhx+65wTb/dNP3XHZ48Fm8hjBxxM4Xcq5tjrtRrJ4o/4iOM67agufL2cGkaGHKd8Hfo7b1k3Zj3c14/p48XYlO/0S7w9fkTCHB4cEw9i4GEMQJpt0a4h1JbKSrxJvM0Sb7mg64IhpBJkGv0hnvKiPzo3TbxVcq3ehIg3LblUcg/ZSqJBsLEY6i2EXNXBTtrucw3xNrWYnurPQpHF79xilTEWlVML7b4oTj7IsjglFjYxvUUuuqNF9VR/9xM5ZIk758kZn9k43X/77avFMjLkikzaPsY5PthIxDZ93U7dBCypAfrdF/anarMvv+iPdEf+9tmaqjkxYrPm3sfID1u1hpGlVuAittDBVtqR/r74q349HvkY2Y8OOYKXmitjPV7wUmVzjI3IB5fBJzJTtqgPur2lbok1tkZkQe9P3bgvzNUF39VHrUnNOzLYJJc61/RVHfp6TpwjOzU3U7HUfmzVWEbjyNHie6oGUzF1+Trv2KZlrqgDPhMf9pFdMgdVr+ebsY4DfGA743lFllfXSf8o3vR33McumMAe7ahO1AOZ7odzapK21gy92qYO3W4dnzpO3lO2e92w0fNPP7J9PuhPDqMa1fGaL8fYG81P/Pb6EmP08DeqJ/bTkj+x4BNbtNhBPv3oYA+MZWyutj2ffh79kT9iObQl3sSZ42994hNXeI7/vPA5VQP8LiHe5taQlVxj3VzXmKP1Kb7TSry9f++qdfHYuogBMRAMbEG4YWMpmbZGTuJN4u0BSKduWiwOQjj9pz/6Tw+eIKP/P/7X/3j1uxSV/Lpp4i0LF8i1mkf6alxZ9IwWNpBokWfRVBdI1SbH6KQO9KW9DvGWBWBd3GJ3zSJ7pM+iMvZjk0VoX2SO/CPLwjotC3viG7VsUrqPyMZP3yx1P9isMSFTbZLbKG9s0E7JzsVKvHWjsqQGU75ib8rf0vxG9ev+ltgayVCrtN3maCyxpH/KVsfuKPaR/sjeXDw1tuCj42vUV3VynNjqPE/5Y/7IvecYW11mytYSLFV7FfvE32samdE1Grl6nYzijk1iJb/uP3NTv6JVdar9kR1iru1orhlnLLHSlxbb8cefVdTaMF5zqPocT9UAv9VmdLp8ryl2a0sstTaMg5PgrvrCf8+b/iqLrR4LftOPn24vY/1aQa/Hi43oxGevBXEwVjG4xk+1s+84GEbxdwAAHXhJREFUMVQ/++QzTn6jGmacPPv4qD8yvX6xwTzxhyE9Rsb7fPT4R3WLzFTtEw++yJP56rY5J5aeL+PY6XjIODWp+J2KOfIZq3ZGsnP+iGlti83kmNpRkxwnnnxQEjIutZizvY94Y/2YNWldG/JB9WhdyRgE3GgtS0wSb5ILYMFWLIiBRzEAabZFu4ZQWyor8Sbxtpd4g2AKgZU/PuhPfKUvY/TnRjAi3tLPAqOTX5B4tb8uYEaLFW44+BrJpK/GlfNKxGEj/qvvfo5cbalLXVxlvBNvS3/jbW7xu2SRHd910V1jxXbspJ/zvtDui+Iqiy4L7a5b/eV4KpaMjRbbxIQf7NWYRnUgnrqYR3fUVnuM43sup4yxwcLnnDwL/VFcU7VZmt+oft3fEltdh3rUdipWasZ8cd5r0uOYspf+unnreomJuo9qWmPuc4xe+qvc6DhxMM9T9en2RjlRD3zusxUbo3joG/lgrOMhtWPzjczIPzXuvok94+inpa6QCbHJ+Mh+xmKbeiLbW/z1OCLXc0O3+4tc8FNjXuKbGlS9+JiKqcvnvNeaGGl7rPTTMp4c6JvKm7iqbHTAZK8hNeBrdZHDR9qRH+Lp1xk+8N3Pu92qv8ZPtbPvmPx6XnN6++ZsKv+uN5c/85T4kKvXAT6o5VS8o7pFtuMQ/fireFxSnxordmpLrHU+R+PkMhUbdUhM6I/y2+cP3bVtfPEihuSeDxHmvnpc/ez7jTfWo5V4Y62YvtE6NfarjMTbo5vpOgceWx8xIAamMLAF4YaNpWTaGjmJN4m3vcRbJcDqwmGqPxfDaPGRfgg2PtmDFKO/kl/V/tRihQsP/bpg6QRYZGMnvvGbPuQqgUb8VS7x5Om+LJCix0Kp6lV7xLJvoRadvOYWyFML2ejURTYL27pAHi1ipxbaWZRW3cSFbGKosfZNbsajHxl8co4ebfrrJiT9Iz/przGRH3bxk1h63PjqLbVk4V1t1L4sxDOGfo0jfZFdUoMeF/7IAftpl+YX3V4/7OJvqS3qUePJXPAPddjBbuLsvtLH/FFD8sJ+2ppjjR/d1BN9/BIXPutcRybjGcPf1LzU6wTZ6M3NMz5r7jUHYiP+HntiRWbKVuxNxdx1OSd+2vTXelK7Gjc+ah9zU2sz0sVP8swmNS/mk7G0PY70jeylFvldttiLTK8fNtGlrvSn7fXkfF8u3Tc16PlMxdTl8Vvrn/hSC2wiQ+1ju/5Dcs+zn9e8iavee7DfY4hebOVJnszZqI7pqzUb1Rb/xFVxCK7INbK9RukbYYO4qQt+Rm1kYyMxMI6fmlePJ/Lf+cpXHuhQv6pDXjWObhuZqheZXjti6344n/MR3cjl2ki+OR/VLf3ElxafaRNfjYm4q9/Ynrv+iJV57vOU8Tn8It/xOMpl1Id+jbnmePfu3cW/m1v1mK//++Mff3DvwVf6yLfq9ON9H6TWdSvrXD60rutn1o/I0NY1cPed89ETb6wx/VdTyYgRZuwTF48TBiDNtmjXEGpLZSXeJN72Em+5YCG2sjiAUEo/RFbvh7hKfyWm+qIEYgv7ddFRZfcRb4kFAo0FzOjJttiJjy98/QsPftC2x8gNquYQmW6PhVPNr8ZR6/Tiiy/u8sJ2b1n8TS38li6yYxdb2Zjx6nZZWNdNRHQj1xe7yI4W+NhPW31M6ZB3ZPuifEqnx0Qt8P3uq69exdzjxteoTd7oZ5MSm4mn1oN4kBvZr3Z6DZiHrofdXk/iXJLfqH4jf0tsxS8xTeWKbcZ7rtVGrWH6iaHmy2YQe6lRiL7MRdVHF7nRXPfYO64SQ8dQ+nh1/Tpf5F37okf8sYudioWKKWSmbI30e32JsdYQvbQjPKBD7RJfrwP15WkoZHu++CKHUY0jQ11ip9qo/RmrxED0iLXOffoTX5ftsVQ/xBcf2Nrnmxr02s7FFPtVvvrN2NR4jbXipca7L2/i4qlD/E3NSexl3vfVMXawQT413tihlmCauaCGxDLyNcLolB/s9hb/c36oa52fHl8dq3n1fLsemCKufj3Rn5Z5qjr01fp0Hz2GUd1iH72eS/xV+5HdVzfiIlbOmefRPEWWeUiLbq1B9KtMzy2yo/xG/qrdfeupKluPqUOPg1x6LasuxyH99hFcrA1Zi2YtyFqZtWyXiSzrYXyNWom399+7R/Wxz/qIgccbA1sQbthYSqatkZN4k3hbRLxdyo0M4i2k2k3mtO8PFqYW0TcZ45a+RovpLe2fsy1rc7OLAjaRo43hueBoH2Yy3jeTS3Jbe99hQxx/S+xfRwZfh+R1Hb+3rbsv70PwfCg+brsWp+z/kHk45XzmYgOTN3Hdz8WRMZ7uyppqn+zW4/t+321rf9q72bWC9bbeYuD8MQBptkW7hlBbKivxJvEm8VaefjnmTXfqU1oWtZeywXycNiRr8WJtbv5NPZtFnuRZO1+nIL8PM9w/DtkUryXeEku+spj22LVZG9ux47kp+/vy3oeHHidP+cRuH/P88PvRud9X1sw9GDqFDy/yVc9Pf/rTVwTcmhy2kN33AeoWPrRx+DVp7aydGBADWxBu2FhKpq2Rk3iTeJN4uyHijU9q81UF3xx8cxADYmALDOwjauZ8rNG9DsE3F4Nj666DtcRbCKJL+VBHrKzDylb1CuHWv766le1zsRPS7UMf+tDuNp60O5caGeftXJ/W3bqLgfcxAGm2RbuGUFsqK/Em8SbxdkPEmzfG92+M1sJaiIHrYSCECr+fdOjTTEuJN3xJ4FxvzrbA/FLijd+tOuenPbeolzYOwyxEe+4xjzvpJoYOw5B1s25iQAzcNAa2INywsZRMWyMn8Sbx9lgRbzd9A9CfbzpiQAyIATEgBsSAGBADYkAMiAExIAaOhwFIsy3aNYTaUlmJN4k3iTefePOrr2JADIgBMSAGxIAYEANiQAyIATEgBs4SA1sQbthYSqatkZN4k3iTePPmepY3Vz8xOt4nRtbW2ooBMSAGxIAYEANiQAyIATFwLhiANNuiXUOoLZWVeJN4k3iTeJN4EwNiQAyIATEgBsSAGBADYkAMiAExcJYY2IJww8ZSMm2NnMSbxNuNEm+vv/767sknn9ylPWX2/A/e/PPdEz9/d5f2lONcEtuPf/zj3XPPPXf1yvESnZuSyT+9Pv3001eYSIz74tsaP2+99dbuqaee2n31q189qbrcVP3146eYYkAMiAExIAbEgBgQA2JADJw7BiDNtmjXEGpLZSXeJN4k3gafapwL8Xbv3r3dnTt3Zv/i/jrE2wsvvHA0wu6QuM6ReDtWDT/5yid3H/jSB3avf++nJPYbb7xxhYVg4tzfOI3fxZ8YEANiQAyIATEgBsSAGBADSzGwBeGGjaVk2ho5iTeJtxsl3pZeOLctdw7E2/3793fPP//87u7du7NEyyEEV+p/qN7SueNpt9t82uzYT7wdq4Yv/8nLuyd+64mHiLfUPVh49tlnd6nt0nlQzgWNGBADYkAMiAExIAbEgBgQA+eMAUizLdo1hNpSWYk3iTeJtzN94i1POC0hWQ4lfw7VW3rDlng77M39h3/1w91H/utHdv/hpf/wCPG2lIxdOkfKHTZH1s26iQExIAbEgBgQA2JADIiBm8PAFoQbNpaSaWvkJN4k3m6UeBt9VZC+/Pbb6PffIGgYT9ufkqpPLuWrfcjm98P2Pf3zo/s/2d35/OtXv+mW33XL8ctf/+5Dv/H2/R/c3/3cL/3R7hd/582HniT61ts/2P3Mp1598Ftw2Ko2YjMykcVO+vL64qsPfy0w9uPnzbd/eNUiF3uxzc17jmDp9fzjP/7j4W+8UTNqVX9jrduITB2f0yXGuTbzh1/aPqcjfeJKm3HiiO6See8ysTP6jTfsElvNPX6Jg9qO5JBhLG23M8pxX99n/6/PXhFv//n/+c+PEG/RzVNveRIyGNlny/GbWwxYa2stBsSAGBADYkAMiAExIAaOgwFIsy3aNYTaUlmJN4m3WyXeID5CdHATeuWVVx78yD4ESCVl6AuJgg59ITdiM/0QdnNkB0RYJbYg00J68ecKyC0l3qKLLLrpg4BLfKOvs0YnciHfohc54sFe+vI7Xs8888xVm3NeEFrUIP2QTbUOqU3681RbZKhVrenUE29LdIlnrsVnnds5+YxBZpHf0nknl0rE4j+YqTFgkz50a/2II6Rd5BMbektqGPk3P/P/7+4++b8nX/de+v8ezCt1ye+55Xfd8lXTvOpvvCEzhQ3Gbd+/XqyFtRADYkAMiAExIAbEgBgQA+ePgS0IN2wsJdPWyEm8SbzdKvEWkqKSIfWmNyI8GA8pso/0iGyXQ582T5xVMqz2hwA7lHirxFlsxk/s1SfcIOQqoZbjUTyJo/aPvmYKkVSJn/imvxJH5Fnb1KrOxVz9q16Ou24fH50TV3RH46M+CK9OvPWc+7x3PWzTTwxTOUeu4q3rYa/jecpe5NcSb+/86J3dB3/ng7s88Rb9KeItdc1XkIMR4rI9/8WEc+gcigExIAbEgBgQA2JADIiBMQYgzbZo1xBqS2Ul3iTebpV4C+GRJ446cZIbCk8QQYrUmwxjIUDmZDthUm3Ur4XWr3FGpj+NNiLJIsfTaBB0UzY7cRZdZDvx1km7kZ/R1wkhg6hJ9PKaI3+QSf0zD5VcWqIX/ZEudufaLYm3jpE+750QIy5whH4/73LUdqrWsXMoeYmvqTb/YprfdstvvEVminib+xrylG37x2/g1sW6iAExIAbEgBgQA2JADIiB08fAFoQbNpaSaWvkJN4k3m6VeMtNDOImxE99KgsSBLKj3vAY20eYTBEksTUivvBxqsQbT8xNEW+VOCOXEYFG/VLzvFKn1LLqj/Ric4kuvufaYxNv5JUYgrGKLeIil44j6tJb5KZwtbSG+F/a5im3PO2Wp97QkXg7/QUAc2XrXIkBMSAGxIAYEANiQAyIgeNhANJsi3YNobZUVuJN4u3WiTduQCEtQnTwxFAnRZBLyxikHOcQI8hOESQZh3irv++G3qkSbzxZN0W8VbKJXDqB1s+RW0IaLdXF5lx708QbuKoxddxwDq6qbD2ewtWSGmJn6VdN+YrpE7/1xG7qVUk5n3g73hs6c2drjcWAGBADYkAMiAExIAbEwOlgYAvCDRtLybQ1chJvEm8nQ7zlxhVCg6eupkieyIXgqEQKhMka4i128jXP0Vc7019/4w2Srn4tNPqdoEOuk3mRq7/RFl1kq80cd7nI5km3GufoN96makA/T3xBeOUpsNjmlXNqn75R/ZfqYnOuxVafszmdTniRW7fR5TJec8NH+kNWok/OvTbI03b79Hc/2KP2yKVdSrxVnXo89cRb6upvvL2P61ozj62LGBADYkAMiAExIAbEgBi4PAxAmm3RriHUlspKvEm83Srx9tJLL139+D83vxAXlVCD4IAYidyIbBn1RRb9tDnPk2If+tCHHvzwPL/RVokyyLRKvEWXP0jgqTN+963KQaZVe9FdQ7zFXtUnHr5mGntT/1wZwqg+9Qbxk75K/kSu1jn1jUwnp7pcfPe+kW7qHPInJFB0Rq9OvIVMvHPnziP/1Fp1+3wunXd81ZzRrcRbfOGjY+4zn/nMg3+BRQZcEWN0ltQQ+eu0U8TbFDau40vdMYati3URA2JADIgBMSAGxIAYEAO3j4EtCDdsLCXT1shJvEm83SrxBiES8iOvSoxwA6sECXKd8ECmkiXR7wRJJ94iA/kWwiuvPHUG2QXJRiwZQy5PoEGoIbcF8Ra7L33tOw/8xF8l3RLL3NcJId9Sq5BAb7755hXpVom3XvfojEijKod+7YuPke6LL764y4u6jVrsMGejr892vT6fS+c9dvAHhpJPapMaEQP+8FNlQ2L28Y7DpTXEznXaKeJtSR2v41fd219YOAfOgRgQA2JADIgBMSAGxIAYeB8DkGZbtGsItaWyEm8SbzdOvPUngrxhvH/DCLFXv1I6V5tTJVhCcK39quMckThXA8fex05qYR0frof4sB5iQAyIATEgBsSAGBADYuDyMbAF4YaNpWTaGjmJN4m3GyXe8kTQ6Kk2b4Y/vRmuId5OlWTJVx0//elPz37NtM93yLroRLePeb78jXL023/Wb3n9rJW1EgNiQAyIATEgBsSAGBAD54cBSLMt2jWE2lJZiTeJtxsj3viqX76a6M1sfDNbQ7ylhiGq8rtoIVys6bimj0tdgoH6+4WPS97m+Xjj3vl3/sWAGBADYkAMiAExIAa2INywsZRMWyMn8SbxdnTirf5elqTb/E1xLfHmm8x8Pa2P9REDYkAMiAExIAbEgBgQA2JADFw2BiDNtmjXEGpLZSXeJN6OTrx5k7vsm5zz6/yKATEgBsSAGBADYkAMiAExIAbEwG1hYAvCDRtLybQ1chJvEm8Sb/+vN8jbukHqV+yJATEgBsSAGBADYkAMiAExIAbEwHUwAGm2RbuGUFsqK/Em8SbxJvHm78OJATEgBsSAGBADYkAMiAExIAbEgBg4SwxsQbhhYymZtkZO4k3iTeLNm+tZ3lyv84mIun6iJgbEgBgQA2JADIgBMSAGxIAYuAwMQJpt0a4h1JbKSrxJvEm8SbxJvIkBMSAGxIAYEANiQAyIATEgBsSAGDhLDGxBuGFjKZm2Rk7iTeJN4s2b61neXP106jI+nXIenUcxIAbEgBgQA2JADIgBMSAGroMBSLMt2jWE2lJZiTeJN4k3iTeJNzEgBsSAGBADYkAMiAExIAbEgBgQA2eJgS0IN2wsJdPWyEm8Sbw9IN7WAEfZn+ysgTUQA2JADIgBMSAGxIAYEANiQAyIATFwuxiANNuiPcZcSrxJvEm8/eR2bxLHuLC16ZyKATEgBsSAGBADYkAMiAExIAbEwOOAgS0IN2wco14SbxJvRyXevv71r+98WQMxIAbEgBjYAgPHWAhp0w2JGBADYkAMiAExIAbOGwOQZlu0x8CCxJvEm8Sb5KDkqBgQA2LgLDBwjIWQNs97oe38OX9iQAyIATEgBsTAFoQbNo6BJ4k3iTeJNzfcZ7Hh3uJpGW341JUYOG8MHGMhpE0X62JADIgBMSAGxIAYOG8MQJpt0R4DCxJvEm8SbxJvEm9iQAyIgbPAwDEWQto874W28+f8iQExIAbEgBgQA1sQbtg4Bp4k3iTeDibefu/3fm/vP3v6dMl5P13i/Dl/YkAMnBIGjrEQ0qaLdTEgBsSAGBADYkAMnA4GPv7xj+/lGfp8QZpt0XbbW5xLvEm8HUS8hXSTeHNDfkobcmMRj2Lg8jGwxcJHG6ezsHYunAsxIAbEgBgQA2KgYyDE21rybQvCDRs9ni3OJd4k3lYTb5BuEm+Xv8mVyHCOxYAYOCUMbLHw0YYLfDEgBsSAGBADYkAMnC4GIN7WkG+QZlu0x8CGxJvE2yrirZJuEm9uyE9pQ24s4lEMXD4GjrEQ0ubpLrydG+dGDIgBMSAGxMDjh4FKvC0l37Yg3LBxDMxJvEm8LSbeOukm8Xb5m1yJDOdYDIiBU8LAMRZC2nz8FvTOuXMuBsSAGBADYuB0MdCJtyXkG6TZFu0xsCHxJvG2mHgLADv5tg+Up7RhMxYJBDEgBsTAeWNg33uO46e7iHZunBsxIAbEgBgQA2JgCQY68bZEZwvCDRtL/K2VkXiTeFtFvAVglXzbBzg3uee9yXX+nD8xIAZOCQP73nMcd0EvBsSAGBADYkAMiIHzxkAl3pbOJaTZFu1Sn2vkJN4k3lYTbwEY5Ns+sJ3Shs1YJBDEgBgQA+eNgX3vOY6f90Lb+XP+xIAYEANiQAyIAYi3NVjYgnDDxhq/S2Ul3iTeDiLeAjB/4+28N7ASEM6fGBAD54aBpYsb5Vy0iwExIAbEgBgQA2LgPDGw5Dfd+txCmm3RdttbnEu8SbwdTLwtAeC5beqMVyJCDIgBMXC6GFjyvqPMeS6ynTfnTQyIATEgBsSAGDgUA1sQbtg4NIY5PYk3iTeJt6+f7iZTAsC5EQNiQAy8j4G5BY1jLtbFgBgQA2JADIgBMfB4YgDSbIv2GBiSeJN4k3iTeNu5sX9/Y28trIUYOF0MHGMhpM3Hc4HuvDvvYkAMiAExIAYuBwNbEG7YOAYuJN4k3iTeJN4k3sSAGBADZ4GBYyyEtHk5i27n0rkUA2JADIgBMfB4YgDSbIv2GBiSeJN4OyrxdgzQavPxvJk67867GBADYkAMiAExIAbEgBgQA2JADHQMbEG4YaPb3uJc4k3iTeLtJ964triZaEMciQExIAbEgBgQA2JADIgBMSAGxMBNYwDSbIv2GLFLvEm8PSDetgCpNv639fSaEgNiQAyIATEgBsSAGBADYkAMiAExcIYYkHh77bVdZQoleSR5xIAYEANiQAyIATEgBsSAGBADYkAMiAExIAa2wIDEm8SbjPkZMuZbXPza8E1EDIgBMSAGxIAYEANiQAyIATEgBsTAcTEg8SbxJvEm8SYGxIAYEANiQAyIATEgBsSAGBADYkAMiIEjYEDiTeLNC+sIF5afGBz3EwPra33FgBgQA2JADIgBMSAGxIAYEANi4BwwIPEm8SbxJvEmBsSAGBADYkAMiAExIAbEgBgQA2JADIiBI2BA4k3izQvrCBfWObDuxuinQ2JADIgBMSAGxIAYEANiQAyIATEgBo6LAYk3iTeJN4k3MSAGxIAYEANiQAyIATEgBsSAGBADYkAMHAEDU8Tbxz/+8d2+15Tua43LGp3fv39/d5uvJ0ZBpU+m97hMr/W1vmJADIgBMSAGxIAYEANiQAyIATEgBsTA44KBKfIs/XPE25zeFKdV+2+TdItvibcjsLiPy0Vjnr5BiAExIAbEgBgQA2JADIgBMSAGxIAYEANLMDBHoE2Rb/t0KsE2dSzxJvHl04ViQAyIATEgBsSAGBADYkAMiAExIAbEgBi4aAzsI9E6+bZEfopsq/0Sb15YF31hLWG9lfHTETEgBsSAGBADYkAMiAExIAbEgBgQA5eNgSVEGuTbUtlKsE0dS7xJvEm8iQExIAbEgBgQA2JADIgBMSAGxIAYEANi4KIxsJRMWyM3RbbVfok3L6yLvrD8xOKyP7Fwfp1fMSAGxIAYEANiQAyIATEgBsSAGFiCgTWE2lLZSrBNHUu8SbxJvIkBMSAGxIAYEANiQAyIATEgBsSAGBADYuCiMbCUTFsjN0W21X6JNy+si76wlrDeyvjpiBgQA2JADIgBMSAGxIAYEANiQAyIgcvGwBpCbalsJdimjiXeJN4k3sSAGBADYkAMiAExIAbEgBgQA2JADIgBMXDRGFhKpq2RmyLbar/EmxfWRV9YfmJx2Z9YOL/OrxgQA2JADIgBMSAGxIAYEANiQAwswcAaQm2pbCXYpo4l3iTeJN7EgBgQA2JADIgBMSAGxIAYEANiQAyIATFw0RhYSqatkZsi22q/xJsX1kVfWEtYb2X8dEQMiAExIAbEgBgQA2JADIgBMSAGxMBlY2ANobZUthJsU8cSbxJvEm9iQAyIATEgBsSAGBADYkAMiAExIAbEgBi4aAwsJdPWyE2RbbX/ZIm3GqTHr+2sgTUQA2JADIgBMSAGxIAYEANiQAyIATEgBsTAeWFA4u2185owLzDnSwyIATEgBsSAGBADYkAMiAExIAbEgBgQA+eBAYk3iTefphMDYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYOAIGJN6OUFRZ5/NgnZ0n50kMiAExIAbEgBgQA2JADIgBMSAGxIAYOCYGJN4k3mS0xYAYEANiQAyIATEgBsSAGBADYkAMiAExIAaOgAGJtyMU9ZhMqbZl4sWAGBADYkAMiAExIAbEgBgQA2JADIgBMXAeGJB4k3iT0RYDYkAMiAExIAbEgBgQA2JADIgBMSAGxIAYOAIGbp14u+0A9H9/Zw2sgRgQA2JADIgBMSAGxIAYEANiQAyIATEgBi4PA084qZc3qc6pcyoGxIAYEANiQAyIATEgBsSAGBADYkAMiIHbx4DE2/3bnwQvBOdADIgBMSAGxIAYEANiQAyIATEgBsSAGBADl4cBiTeJN7/qKgbEgBgQA2JADIgBMSAGxIAYEANiQAyIATFwBAz8H4Vf7EbWWZ9uAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![image.png](attachment:77208900-8340-4fc4-828c-71ce5689109a.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.9.0\n" + ] + } + ], + "source": [ + "!python --version" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1.3-安装MindSpore框架和MindNLP套件" + ] + }, + { + "attachments": { + "ece43565-7aac-420c-a7aa-1421b3f50b03.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiEAAANnCAYAAABXuPvAAAAgAElEQVR4Aey9e7RdVX33zT/t6HgfbattaWnro6211KqPw+Hr0GFfhzq0aqsDsHL1KVUIF0ERuRWiAuEaQi4gWAQFDHflogHCHeQSEiDcAwQEQoDcIAkhIQmQc07O7x3ftc9vZ+551m3vs/c+e6/z2WPss/Zea6655vys79prnt93zTm3M14QgAAEIAABCEAAAhAYZwLDZjY8nP/eOmxWf2812xq9h7aaTdR3zKLOqYCpmPOCAAQgAAEIQAACEIAABCDQSQLbdTJz8oYABCAAAQhAAAIQgEAZAkUmRBhUDwPuE9V0yKp3yKaBWZ4ZUeYEkQYCEIAABCAAAQhAAAIQgECLBDAhWgTHbhCAAAQgAAEIQAACYyOQGA9j6AGRFYgfGjKbEO+Mnh8tGREyKXQuxnZK2RsCEIAABCAAAQhAAAIQgMAoApgQo5CwAgIQgAAEIAABCECgGwSKej9oqKCGp/mD4ZcmvAHhRkuTRkTRkFcYEd1QPseAAAQgAAEIQAACEIDAxCKACTGxzje1hQAEIAABCEAAAj1DoDAgHpoQZQwIBeQ9OD9RlhkmhEyahh4R+p43JJNvozdEz1wfFAQCEIAABCAAAQhAAAJVIYAJUZUzST0gAAEIQAACEIBAHxEoY0DUe0JEAfXMXhCYEA0Tc7dkQowMy9RHUqKoEIAABCAAAQhAAAIQgECPE9hueHjYeMMADaABNIAG0AAaQANooBc1sHV42LZuHf0e2jpsqe+hYRuaSO8MDmnMxLIXzzFl4rygATSABtAAGkADaAANoIFqawATgn/G+GcUDaABNIAG0AAaQAM9q4GmTYiMoHyqYVHhtJgQ1f4njn/SOb9oAA2gATSABtAAGkAD/aQBTAiCDj0bdOinC4my8sOPBtAAGkADaKAzGkhMiGZ7Q1TYXChrpowyIcSQdi/tXjSABtAAGkADaAANoAE0gAbGQQOYEOMAnSBFZ4IUcIUrGkADaAANoIHqaaBuQmQYEQq2lw3MVz3dKOPBh7EaMSAwIap3ffCbxzlFA2gADaABNIAG0AAa6AcNYEJgQuD+oQE0gAbQABpAA2igZzVQxoTIDL57EH6iL+kF0bP67od/GCkjgQ00gAbQABpAA2gADaCBsWoAE4KgA/+UoQE0gAbQABpAA2igZzWACTF6Uu6mTRf03bP6Hus/c+xPQAANoAE0gAbQABpAA2igHzSACcE/ZfxThgbQABpAA2gADaCBvtAAhkQThgRDMPWFpvvhH0bKSGADDaABNIAG0AAaQANoYKwawIQg6MA/aGgADaABNIAG0AAa6CsNNJgRQbA9WT/Rhl6K6x98H+s/CuzPP5toAA2gATSABtAAGkADaAANtEMDmBAEHfoq6NAO0ZMHP55oAA2gATSABvpfAxgRI70iAtMhZILG+1/jnEPOIRpAA2gADaABNIAG0EBVNIAJgQmBCYEG0AAaQANoAA2gATSABtAAGkADaAANoAE0gAbQABpAA2igIxrAhEBYHRFWVVw66oHjjAbQABpAA2gADaABNIAG0AAaQANoAA2gATSABtAAGmhdA5gQmBCYEGgADaABNIAG0AAaQANoAA2gATSABtAAGkADaAANoAE0gAY6ogFMCITVEWHhDLbuDMIOdmgADaABNIAG0AAaQANoAA2gATSABtAAGkADaAANVEUDmBCYEJgQaAANoAE0gAbQABpAA2gADaABNIAG0AAaQANoAA2gATSABjqiAUyIPhfWmg3Ddu39ZpNnm03+pdkxF5hdeLPZmvU4hVVxCqkHWkYDaAANoAE0gAbQABpAA2gADaABNIAG0AAaQANooF81gAnRxyaEDIgDf2p24Nlm+//EbP8zzfabZbbfTLP//rnZ6te5MPv1wqTcaBcNoAE0gAbQABpAA2gADaABNIAG0AAaQANoAA2ggSpoABOij02I2XdYYkIccFbNhJh+1YgJMcNszr3Wka4zVRA9deDHGw2gATSABtAAGkADaAANoAE0gAbQABpAA2gADaABNNAdDVTChLjgTbMLNptdOLL07xdsMvvFG2a/2GD289d7Nyj/7KvDNuU6sxOuMzt+jtnxvzU77hqz468xO/Yqs2OvNPvxr8wuvruxDjPnmB1wtplMiBlX17atXj9s9z5RXjwvvPCCHX/88S29f/e735UyOnQMpW31zY9B+fMJK1ihATSABtAAGkADaAANoAE0gAZ6VwNvvfWWrVixwhYvXmwLFy60e+65p+X/lVv9H5v9Wo9PTER20qi0Ks1Ku9IwvzG9+xvDueHc9KoGKmFCnLHJbNR7o9msDWYzXzeb8ZrZjLWNAfxeOiH3Lxm2Q68w+/7lZodcava9i82+d5HZd2ebffdCs4MvMDv4fLOL7mqsw3X310wIH4rpmPPN5swvPwyTbp7bbbfdmN6f+9zncm8+73vf+8aUv8qnPHrpfFEWftDRABpAA2gADaABNIAG0AAaQANooBkNrF271hYtWpQYDgsWLLClS5fa66+/ngR0jRcEepSADAe9pdVVq1bZI488kmhYWpamm7kGSMtvJhqY2BqorAkx642aCTFjXc2EmL6mMYDfS8KXCSED4vuXmR1yidkhF48YEL8cMSAuMDvo56NNCM0JocmoD/jJyDBMs8wmzTA7+jyzeY8XC/vb3/52YhAoyN/Ku8gguPDCC8dsQLhJorx66ZxRlmJ9wQhGaAANoAE0gAbQABpAA2gADUx0DWzcuDExH9x46NFYM8WCQGkCMiVkoknTMiOk8Yl+nVN/7nVooFgD1TQhgl4QM9eZTV9rNn1175oQ942YEOoFIRNCvSC+F/aC+MWICXHn6DqsWT9s1y7YNiH1pOlm+55u9t8/G502viDUi0FBfg3HFG8r+h72otBwS2npQ5NDaeJ3mIc+x9v13cuovNKOwbriixxGMEIDaAANoAE0gAbQABpAA2gADXRfAxq6Rv/rKmDLCwJVI+BmhDQurfMb0/3fGJjDvJ80UCkT4szNtWGZXh4ctpcGRt5bhu2lkXfWibl0pdkly80uWWZ28UtmF79odsGSrbZpYKilH9HnXxu2nz1g9rP7zc5ZUHv/z71mp9/1Zmp+azcO2+9XBe+Vw/b7lcM29+HaMEwHy4Q4z+yiFBPi3idrF5zMCA3FJANi0jSzfaaaLX4x/2L0AH+rvSC8l4LMgjS2bkJkDdkUmhBZeXgZMSHyz2Uaf9bBDA2gATSABtAAGkADaAANoAE0MD4aWLJkSfKkuIax4QWBKhOQGaFeEdI8vzfj83sD9/7knhULrer5rJQJkcwLsbG4B0B4Ml98c9hOft7s5OfMTvq92YlPm53wlNmPHhu0C599o6Uf0HMXmh11k9mRN5gdcb3Z4deaHT7HbJ+rmxsvb8Hvh5O5IDQUU2JC/K6xbvc+NWz7n2k2/UpLJqO+8CazSaeb7Xua2b5Ti+eG8AC/mwmtLrMuGkyI/vwRDK8PPnMO0QAaQANoAA2gATSABtAAGkADzWnADYgqB56pGwRCAhgRzf1G8Js6sXkpjhrGYP3hcMVR9cB2VfVRORNCc0E0c7Ie2zBspzxfMyBOesbsxMVmJz5ldvTDb9sB819tKi8d97XNw3bUzWZH3mh25Fyzw68zO+Jas+9es8V2v2JlU/nJhDhoZCim75xrdlFkQiRzQZxhtv/IXBDJUEzTaibEaZcWc3ATQksNydTM2w0GXTRlTAjN6RC/wzx07Hi7vutC1DGUtpnzStqJ/YPO+ef8owE0gAbQABpAA2gADaABNDAeGtCwNHoqXEFZXhCYSATciGBoJn57x+O3t5+OGZoQHpuNTYkqmhHVMiE0F0QLJsTJz27rBSED4oQnzI586E375p0v272vvN1U8PvXTzT2gjjiuloviG9fud52u3ylDQ5tLZ1fYkL83Ow755l952dms+9oNBY0FNMxF5jtN7M2IXXSC2Ka2bTLGtNlXYgudHfaJPCyb5kGfoEUmRCebixLTAhuYlk6Zj3aQANoAA2gATTQugaGFl5sQ5d+0wan/pMNTP4TGzjmHTYw+Z02MPmPbeCHf5K8B3/0pzbwo3fZwI/1frcNHvtnNnDsn9ngcX9uA8f9hQ0ev70NHL+9DU75SxuY8pc2eMJf2cAJO9jgiX9tAyf+tQ2e9Dc2cNLf2ODJf2uDJ7/HBk/53zZw6t/Z4E8/bUO/+Y4NPX5l6fYx57r1cw072KGBzmtAE/Tqf2qGYJpIoXfqGhKQEaFrgMmqO/97w296fzP2mKyuF51LxVb1MLav10PZir1W6TxXzoSYub5cAN5P4mPrhy0xIZ4xO0lDMT1ZMyF+8MBG+793vmxTHnm9qRN+6l1mR91odsTcbUMx/eC3W223y1ba7pevtOfXlJ9nQiaEDIiDzjU78ByziyITwuug+SDmLRq2p19q7gIMeyKMxSDwcsTLduWvsmFCNHdu43PBd/ilaeDpp5+2j370ozZv3rymfufS8mIdGkMDaAAN9JcGZD4MnvqPNnj0/7KBo/+XDcp8OOYdNijzYfIf22CDAfGnNvjjd0cGxF/YwHF/3oQB8R4bcAPilP9tg6e+zwZOea8NTv07G5j6dzZ0zv9nQ49fxf1ouL90xHXP+UIDjRpYtGgRk1CHEeke+Pzcc8/ZPffcY4ODgz1QmolRhFWrVpmuBX4fGn8fJiKPzZs324EHHmgnnngieojaeDIfFO9MMxrCB7/TtverliplQqgXRLMmxF1rR4Ziero2DJNMiCmLzA65f0PSE+Jbd68ofaEsXD68bS4ImRAjvSD2u3JjYkLIiLjr+S2l81vwzHAyF4R6QXznnNE9IcYqOrls7rC1YkLIlZNL12o5/ILTsbN6U3j5MCHae/N6Zd2w7TvNTMtmz9/tDw3bV48Zve/GN2t5/vz65vNstgzNpleQ/ZJLLmmoq26CacF33SS1bc2aNQ3pmz1mP6RXHY866ij78pe/XLq+4qhGhDil1VHGxpe+9CXTMm37eK3TOY01oLJIA2Xr36t1a4apGKRx8Dy8kZiXxtNWdTkWBrqm9txzz57Tf7+dKz8HzfyzorRp6eP1zVzzRdy8nN26Xoqu36LyhtuH5hxmA//9/yTmgwyIpPdDYEC01gPirxp6QKgXxLYeEO/Z1gMiMSDem5gQMiJkQgye9vcj7/fb0G1Teur+EXLjc++18TgnnJNe0sDatWuTJ8D7Ocysp9hvuOEGu/rqq0v15vD0CjpnvdQrRHnm9Q55+OGHTe+sV5k8svbFhMgi07n1PiyTronxukbV5tMDd732f+l48WjluPrfRv8rp7Wxy+an9vJvf/vbJNieFn8pm08V0ykOqnio4p5p9dN2H6K+KkZEZUwIGRCzNpjNfL25nhDXvTIyFNPIXBAyIKY8bnbQ/HWJCbHX7162a19MD7bFItFQTMlcEJqQWnNBXGd22G/N9rpite166crEiJj71Jup4orz0neZEJoLQibEgf9jNvv25uqWlmfaOgk77a2nBXbdddfkqYG07Wl5NbMOE2L8/mmQkfDxAywxImQe5J23RUuG7ZCzzDxdP5oQt9xyy6gn/rMCUbrB6kYQ3iD95tuKWdet4FTeOczb5nUrW06lcxNCDQqZGGHDLi1QL5Zjabjklb/MNpVT5VIDysvu+8UBSl+fthSrc889N9GHOHgAshldhLpKO0an16nceaaL1ylLD769mTqHace7/n59h2Xyz142r2MWg7xzlKb/vPTjtU1183qXXcY8VFf9Y1d2f0/nnPPq7uegmd+NrGs5Xq/jx9eAH8/LmLXUvuH+vp+zaZWJHy+PjZ+zmTNnZprAeUzDbW5AtL8HxA4ZQzDFPSDeawOnbusBIQNiYOrf2+C099vAtPfb4OkfsKHbTshtm4T14XN+Ow4+8EED3dOAnvzOC8a3I+SroO7vf/97mz9/frJsR55hHjICzjvvvOSdZwrE++T1NChjIMQmRFgOGSJLly5NjIzFixfXy6dyehnF3cvd7FIGiYLmvNpLYLx7Q8RtQP0Wqj3l7cBW2u1FbT3Puyq/ux4raKZNnlV35RH/L56VdiKtl8mgd1adFYvV/wpK48M2ZaXth/WVMiHUC6JZE+KSZbVhmDQhtfeCmPKY2QHz1to373g5eR86v5x7e9RNNRMiGYpppBfEd65+q2ZAXLoyWf5yYXkTYv6ICaGhmNptQki8ctLS3up14D0QXOyt9HhQ3rpQslw9TIjuNYjTfozciNAybbuvW7Ji2HafYvbZQ81kSLgJoaXWyczIe6f1mvC8u7kMGxx+3LhhogBQu56W8Bu2B6f8mN1eqo4e4Gp1GTY6VJ+w8RB/jxtzHqQL9+k2Az+el8XrU9SIdF5xY9J18sgjjyQs4nPs5z4voOhl6vayqGzOKK6Tl9O3O0NfX6Wl1zGLQV5dXRvSVl668d4WX7d55cniEV/rnkfW+iLt+f5a+jGb0ZnSenqdB79+i5bh9e3H9XMff1fZlLfvk7Y9rEf42evveYfbij5rH9Uj/k3R8WMjuCivoYUXpfaA6MYcEJoHYlDmQ9L7YXQPiMFp/2CD0z6QmBCDp/+jDS26uqevoyLWbM9vX8IHPlXTgILY+v+2Uy+ZDzNmzLDJkycnb30+4IADks/a1o6XAvreA0LGgT6rF0HRS8Fm3y8tbasmhBsMyjMtD20P06QdW+voCZFFprPr/ZrQstvXu/+fF7ed1KbydpzaZnpYUW0sb0OqnN7uituQRXEC7dcL//O2k7W3X0M+afk30/aOufp3Py9p+Vd5nepfNPKL4rFKlxVb7Sc+1TAhNCH1BrNZ681mvNZcb4GzljTOBaFeEDIh9r37VfvmHctsr9tftm/evswefnUg94dz4bLaUEzhXBCHzzH7z8tfS8yHXS9ZabtdutKm3bExN59QPDIhZEBoKKYDftrenhAuYr/g85Zhtx89gfCDH/wgeT/wwAO5ddGFpHxlRGSZHX5cpU1Lo32VpuiiDLnxufZPjQ+PlGcQ5G3TcE3e+0FMJ//cTEMtuQkRD+Xkx+vF4ZhUfg8WhQ0RNU40dIpurkqjm2u4fSxa8hu2GiNjyaed+6puRTf3rAablyNuXMX1jAOQZY7peXdz6XoIG1ReF9eAfw/ThGX0POJzrPRZ+4T7j9dnlTcus5clq07xdq9fXl7aRwzVGNfS8+jVperi96S0pf/jUZQubd9wnbMbTw6t1EH7hGWOr3XflrXerye/vjx92tJ12AwrpU1LH6/P+03y43pd4+8qa7h/2vYszXv9PW+vd1Z6367yu/Z8nS91fPWMkL7KcNV+Y5sDotlJqOMeEI1zQIQ9IBID4vQP2IBMiOn/mLyHzvt8g+a83iwJXqMBNNCLGlixYoXpKf1OvWQ4XHfddaOy1zoZE+odMZZXaEB4Pt67QMu8l+ZaUE+ILMMizUBQfr5f3HPBzYXQYEjLw9PllU3bMCGKCHVuux7a0rXR7WtW7a00Q0Dr4/+Hs9poKnPcjtS6sC0Y1istbbi9Hz87G9WtbPl9n7y2qbehm8m37PH7KZ3HZcOYa1b5/UHxfu8NUQkTIhyKqRUT4sSnGntBHP+I2bfuXJUYEDIh9rrtZZv12Bu5F50mpNZQTPVeENeaHXLNgMl8CN8n3LIhN59QcPOfHk4MCPWCOPCnZr+8rTmDJcwr/izhKsAfvj1IEpoG8X4yITxdkQkR9nTwfVpd9vuFFnPsxvexmAIyEmITQmWWESHjIq13w1iO1ykefgNsVXfNNFDiOvix44BTnK6b371MeQ2CtEaVGxMxRw+MhfuEAUg/Xi8xEG9vIMaNHpVTdfTyauka8LqE7LzxpHRZjJyZs+rm+Q6P5XXz8mjpdQvThXUK1/tn3+7sPF//7um09LQ6VsgtTNOLn73cqpuXT+UvOoeukT322CM1GO559cJSdUv7xyytbGk8lK5I86HWws9ltODHTNNVWEZnHuavz2HdlEeYj46fpn3l68f1cx9/V5pw/7TtKlPaXDteVs87PJ7m0dE/6WHdPO8i3XmZVO8itpqIOpn/oWAOiKGrvmO2ea1tvXO6DR77Zzag93F/blvvmmG2+TUb+s13bXDKX9rAlL+yoYt3teE3GoNTWx+9PJn/YejSPcyibR7mGF7zXH0OCDcgNAyTekAkJsSMHW1wxj/Z0BPXNHAJGfGZQDQaQAO9pAEZEEXBev8NbHapXg9pBoTno6GZZES08nIjIKsng4L/aT0ifH1sIOh7nFdW2jBdbCjou+etdD4ck5b67tuUzuvg61pZdurctXJOqrSPuOra6Oa1mtbm8uOH7Thfl7X0fOL2VVo72tttYTsvK99eXK+2ctyeLvs95qP6xe3vuM5ZbON0Vf/uJoSWRXX1+GoZw6Ior/HcXhkTQsMwzVxnNn1tc4F6DcMkE2LKE7UJqY9/1EwmxP+9fbntdfuyxIDY67Zlts8dqzJF8fza4W1zQVw/MhfEHLN9frXBvnFxzYTw5WFzXs/MJxaCTIjEgPgfswPOMpvdRhMiPpa+e6+DPFHrpj9p0qTkXWRCaOwy5SXHLjQ7mv2cV560erCu9g9JlimQtT7kFpsQ+i7zQct+6gkxlptbWgNF+emtAFdRwMeP3WsNETUI8spU1GDQ9jDAJ914o0vMQhNCnxWM0/ZQX+P12YOmqv9LL73UUCat0znVU8UKUKqeYTl1PhUkVEDQt3m9tW9Y73A/fc7bFqft1ve086hjh3VKK4tvdwZK41xjXShNmQBq2nHGc13atSttF9UlZCpNxDzGs07xsZspn59z7RPmk6XrrPXO1f9RUX5l/7nJSudl8rxDXZbJ382IMmlVBqXXxHq+XxYbXx9qwMvoZRZLldfzitlKb+H+vt3zLmLi6cPl0KXfTEyIwWPekUxEPTj5j21g8h/b4A//xDQR9eCP/tQGfvSnNnT1NhNCBsTgceoBIRNi5ogJ8T0bmPKXtvXuWWZDW2z4hXk2MDIJ9dCc75tt2WjDS+81Db80MDIE09Z7f2L25jobuv7wxHyI54Co94CQCTHjn2xg+o42OPODNnTdoQ26C+vDZwLQaAAN9JIGFi5cmDvx8lgCy+oFUfSSUdFsbwg3B/Lmc9BxNZyO5k0oSpdVRh2n2YmpY1MiLQ9P4yZEWk8Mpcmb88HrhgmRdfbGtl7nTddGN69Vb9eFbS4/vtqhWW0orY/bkmntNOUbplPeaudphAW1g/1Y4VIBZMXHwnXhZ20rE4gO92nnZ9UnrpPy9/Zr3jZv24fl0bq0dqyn0fY0tr7dl0VMirZ7Pr269Bhsnja87EojjWofX9ePy0qYEDNHJqRWL4jpa5o3ITQXxAmakPoxM5kQxz40bDIe9rr1ZdvrVi1r71tfSh/L7teLgl4Q15sdfq0mpB623S5eZbtevLJmRIwsD7jytdKCcRPigLNrJsQvb22ublmC1IWa9vYL4N///d/t7LPPTn2/+OKL9fUPPfRQ/bOnzzom63vnnwQZCZrLYc69xWVyw0I9IPwchiaEmxN5wzopje/b7aXfNNNujEVlKboxhoGgtPz92GmNn6Jjd3J7Xr08mJxWH5XJ65TXoMgKQHayTmXy1nlICyKrrrqZh9vyzq1vU0PMPyvvvHrnbStT9nanUZ29vn7O8xrjIR+vc9wQ9Xy8MZnFu911aSY/P9dZdXUmrvPw2g2ZpR1TPOLrwo+nZdo+47lOdcvikLU+5KGyZ+k6a71zLcPD08ZMs5g561CXKm/e/trH9er5+nG9jK73sO7hfmnbPS+/Jnxfz9u/q6yuOd9HS98v6zyk7eP7+75+DF/vy8Gp/5SYDwMyISa/MzEgZD5sMyDeZQM/fleDCVEzIP7CBo/fvsGEGDzhr2x49e8bDIiBk/7GBk/+W9s678zEiNg67yf1OSC23nvWiAlxRGMPiGAOiNowTLUeEIMzPlgzIX7xhZ67fpwny/Fr38Ee9r2oAQXoFdBu90u9HGbPnl2YrXpK5PWWiDNQcF49BtIC93Fa/+77eMA+HubIzQClC19pBkK4XZ+1T7hf/D0tD0/jxw3r4uvCPHUc5XP//fcnvSf0HRMiPhPt/S6+uja6dc16e0vtKLWH9E5rU+W1EVVWzyetTaU2XNjmVPqwfZhWV8XfFG9LCzZrnR7cHc+Hb9PqFHKI6xtu83ZzWG/nl7bN289peYZ56HMeFw3Zru3xPv3yXWWXNps570qPCTE8/o0gTUg9Y11tPojTV28LlhaJb92WYTvBh2IamQviuIfNjnvI7L9uX5GYD3veUjMi9rxlmU2evy5V4MmE1DeYHTm3ZkDIhDhm7kDNgLhoZcPyW5evTs0jrawyITQXhEyI/X9i1i4Tws2GtB/jvHXvete7km6QnkY9IXbcccf6j/o3vvGN0nXz+urJ4n/7t39LulT6Oi31Q1zkFofp+VzuOtTE0jIgxmIMhCaEPocGRS+fB90AXbt5yzgoVVQnD/rEN9i8G29Rnp3c7uVKa1BpXV6DLGTo6bIadjHjMo2MTtU7rV4qj8ro9Ug7tjeQlC6Nl2/XNtdBXG//nhc4TDt2p9Z5OdPqo2OGdUorg29PO5+uLa9zfE2k5Tde69I04WXxeoTl1+e0c+g81eNHWkpL41rLYu7H7eYyr/5xOfycx+VX3TWMkJbhPlnr07iG+4WfnWvZ32NnLO35OVB5XYtZyzh/7ROuy6q7l7Vou3TjvzFefx1Dn/OelvP8W1kqf/XoUtni/RPD4Zh3WFYPiMEfv9sGfvxuG7r6oNpwTHfNsIHjagbEgEyIu0d6Qvz2ezb020OSXhFb7znDBk/6G6sZELU5IIYu2zMZomnrY7+ygVPea4NT/84aTIhp7zcfgqneA0LzQAQ9IBITYtY/28Csj4yqR1wvvpdrA8IJTmigsxrQ/66deKl3g3o5FL3KmhXKR0FhvTdt2pT0Eig7fFG4j4L7MiPCIZWyAvppBkJcHzcUlFajL2s0NGIAACAASURBVOh7mXLFJoPyVR4ql5slfiyZFL5eJgWvzhOQJnRtdOv3R+0gtbH01uf4uGF7LN4Wfg/blt6O9P9/tIzz1ndv84X5hJ8VbI6NCDcgxnsOVNXJ6xeW2XnlbQv/Zwr31T5pTLL+Vwj39c/iI2ZxoL7fDQjVR7pq1kRx40JcnFG/LavRE+L1mgGhXhDTmzAhlm4aNvWCmKJeEI/XekHIhLjwGbPpj24wGQ/J++ZltufNy+ybNy+3t4e2NpxsTUituSBkQBxxnfeCMLvvxUH7xkUrR733uPiVhv3zBDN/8XAyF4SGYjpAJsQt5Q2WvHyLTIg/+IM/sD/6oz8a9c4yITxtbELoh8EvLF0k/uMd3oR83Yc//OEGLkrj28L0efViW2PD2udvyOulULStyGBQbwqZGjIj+pm/31ylubhB0Wy9/AbueWbdlJvNt53pVaYw0Ka8PeiXV14FthRs9WszrTGSVk5nkratm+u8jl7+omXMKC6rByDFLK8xlbctzrOT312THqRNO5bXKes68O1Z5177iWsRu7Rjd2ud1yGrjmnnS+c45OZaiusZpwvr5GzSGuNhuvH4rPPp10NYp7xr1xn4fmWXeb8xXnel8fyK0qsc+kdTXFVe/67fqzzWyjesqx8zPF6RVvyaytKS10fLZtKG+7Xzc9LjYWQIprQeEDIgNAdEYkK8vTE9MrFlY2JADM3ZZkK4ATF48nvqQzANr3m2NiTTqe+rmRDzz97WE2LaP1ht/ofRc0B4D4jBmf9sg7M+ZINn/J++bl+08/yRV3+3NTl/1T9/+p+1E6+1a9eWmu9BvSVkRIz15T0Iwl4FWXnGpoOC/7fffvuoHiFlTQiZDjI60gyCMnmonF6mNANDdVLe6gmh/Hh1h0C34jlqA/o8W2oDprXPvG2X9b+Mfqu9TRi2/b1N7Pt7OzVtGbYv49/+0IjoFQNCZfT6xeX19msaL98Wtp3D/dO2O7+0/MJ9w8+xEeEMwzT98tnPuXQTG1Jl6uAxVuVTJn0vpqmMCaG5IGRCnP5K+UD9o+uG7YQnakMx+VwQ6gXxm6VmS9YP2l4yIW5eZnvJhLip9vnCJzY2nOyfPTAyFNPIXBCHzzG74mGz5a9vTQyI/5hdMyJ8+Y3ZKxv2zxOFTAgfimn/M9tnQqQdU93D/Ac0T9B6KsHTFc0J4ReI3Drl6fuFN6G5c+fW10+dOrXORmk8vZZ5ZUqrD+tGN/TV+yFtQmlnJcMh3v7Kuto+RWZF3naZFOqB4cfptWU7AoOeh7TqN2EP0Pn3Xqq33/w9QOcNhLSGmpdbadRYOPfcc5PA3i233JJco3n7+L5ZjRrf3q2lN0y1LDqmzltaA1LrY25al5d33raicrRru8qghrQa5nrrPKbVz7WRdV59e1rD0a8DGVU6Vlr+7arPWPIJz60+h/9gKN9wux/H1+lpRNXLNeDb+2npWgjvsfqcds7zrt0sXWsf8YqZ+O9M2rYwbaixvOP7Piq3p9MyXB/XMf7uGvWypTHw/Hzp5fO84jx8fSvLUIvi1GweRWwHp/1z6hwQ3gPCJ6EeuubgWi+Hu2aaekDUJqEemQNCE1PPOSR5a5LqpCfEybUeED4HxNBle430hPi1DUz9u2T4pa33jpgQc49IDIh6D4hoDgjvAZGYEGd82AbP/9f6OfVzwLJ321ScG87NRNZAp02IPINBRoXmjdByrK9mTIg4rYL8biLoc5oR4Ou8B0VoGqT1avD6lDUhPL2Wcfl83caNG5Nyxj0lwn353D4CYfynk78RagepLedttax2ndqLWW1531f/K4U9fr2tWVR+HdPbhllpPYiuOJliZlnpurk+q37eRg7b2F4u35bX/hSPsH2bx97zTVsqHqigvXhpmZaml9Ypvqqyaqnzrbf3YlD7vtXz7g+U91Jdmy1LJUyIZC6ItWYaiqkVEyLsBZGYEC/UjIwf3PNaYkIkBoRMiBuX2XdubxxO6SjvBTEyF4RMiGdX1xqgu85eZTId/J0YEbNX2ktrh0pdNIkJcVZtKKb9zzC78ObyBkuzQvALouiCbrcJoXJ+85vfTP7R/sM//MOGyWJ1s/KLTBdts3Ui/bZ/hIqGYSransZSvR9kPvS6yZBWdl+nG2Z4U/T1ZZa6gXqAKK2B44G+vJtymeN0Ko03GnwYmbSGRXhs1dHf3mhT3Yr2Ux5KUyZdeLxOfM4LmsblU93SGpBi4PUP8/Pz7ZqIl63qrF0cVD/VKSxzWh294Z2maZXFt8e89F119v2cRxrDdtWp1XxUVi+nXwf+XXnqs59jP4bWFdXF2Yir7+dLrYuZ+bbxXqpccX29TNrWTLnFQBM3j0Xvrh0x0zsvL50/H9YoLmt8HuPvyrvonLbKwfcLl2laC7fHn5spn+etfeJ8wu9Dl/1nMv9DPAeE94DwSahDE8INCM0BkUxEPWJCaAim4TW/t+Gl88x7QMiEGDz1vbWhl7ZsSpaDp/19zYTwnhBzjxzpBfGPljYHRL0HRNIL4sO2de5huXUK68fnbe0+WMACDXRfAwq+K6DeiZf3hkibeFrbNFxTM/NB5JUxLXCfl17GgRsP+uw9KEJDIt7fDQWVXfuIm5Z66+VlcMMia+nHjfOXuaB93OjIy8/LG+fB9/YQ0LnVeermb5K3ydX2SztumTZW+D+T8ojbmWn5al3c3sxKp+C03lnbu71e9Yv/fy37vaj9qbzV5lYv5bJt77T6y4joJWZpZfR1Hl8NGSq2qfVjMeWUX1HM1svQq8vqmBCrzaa/ajZtVflA/V2v1IZhSiakfsTs+IfNjl1odseyWh63vfSW7XFjrRdEsrxxue1xwzKbv2wg+bG45VmzI30uiOvMjkgmpN52/L0uWW3/8cuaCREun1he279IFDIhNBeEekHsN8vslx0yIXQR+MVRFOxvxoTwC095ZvWEEINnn322fvx99tmn4Yc4LBu9IVprTPvk0jIM4p4O4u/b07ZlaVS9Jtx8kIFxyFmW5OPpWzE1fN92LtUIcG23uvTGizdmPB9fn1XeMJCWlWa816vB4PXJazwowKUgpZZxwyrMw/NKW6rxMd71jRuTXh6VLT6fqldaI0lpvS5KkxUgDdP5cXphmcXAy+Y6j3nE252Bp9c5jzXk2kjj6Pl1e6n6K2gtLfuxVVcvo9cnrn+YRvuF597Ptfb19c7Hj6H5j3SMeL1vH8+llz+tDEXb3LyI0+m7M/V8xV6mpzj5unjp/D1f/6784rT6rjz1D40+x2WI02t7fF7DNB7IT/v9yluX9RsQ5q3Pnn9eGcJ9pKWYYbg9/Ox5a59wffx56KFLg0mo/9TiHhA+CfXQb75b6wlx90wbmPKXNnjCDjYgE+KeM5L1Q3O+n8wBkUxAPTSQDLs0kBgQ77Ohaw8z27LJhpfOT8yHgal/b4PT3m9b5/+0NhyTTAjN/5A1B0QyDNOHbXDWh23wzI/Y0JO/za1TXEe+t9ZWhBvc0MDYNbBw4cKODvEjA2Ly5MnJJNXqFeETUasHhD5re7NGRFFvhbTgfxy0V8D/hhtusPXr1ydL711QxoQIh0QKTQgPf2flof1kMMRlCXtVxGV3Q8Lz9qXyiPPxbSzHTkDnStdGN39jvP2Y1eZS+1Htt7x2k9Kk9YRQezKrXehtUW/HdrPOYz2Wlz3Ox9uY2p61LY+j9vE8xC0tnzjfKnyXWaL6qsfDWEyHkEWYZ7i+3z5XwoRIhmIa6QUxbeU2E6DoZMxZtm0uiOMfqU1ILRPi4Ve3NUIOuH11YjzsOWJAyIQ4dt765AI89c6aCXFEMBTTAy9u2/fbl69NTAgZEOH75iffHnUBp5X13qdGTIgzaiZEO3tC6ELQWwaB/4jKNEgrR7iurAkRmg5ubPhx0tzLKVOmJMGJgYHRBo33hmi1y1JY/on+2XsvyJDQZzcg3FAo4uP7x+m1XkbEvtMs6R3RjKFRdMxObi8b5FE66TerIZNWxrjhkpZmPNeFdVJjQPXLahSoLnq6WeUVg2YbVso3K+9uMkg7J1mN1DRteAPKdRCz0D5eT6+zjlkUeB1vBuHxs3h4Gt+u+qluasBLO6q7pwmXrrOywdRw33Z/9rL7+fOy+b1J69M0onJom9fB84nPtZdXOvGn88P8XD++n6fv5lLH9vq2unRO4T9vyjeslxhJ96q/1/vSSy+tz92g7Wn1Vh7O2be7zrI05unCMuhz2fqVMRHCvP14zS6dg+uvaH/VN2aRtY/nXcRI+w9O/7AN/OhdNvBjvWtzQKgHxMBxf16fhDo0IdQDQibE4Il/3WBCJL0fTn6PDV37A7MtjfNHbH3s14kBUesFUZuEeuuCERPihqNGDIgdk4moR80BoR4QMiDO+IgNXvClVJ1kcWD9tv9BYAELNNB9DSxevDiZUHnsYdvsHNRzwCeg1hwQMh20Ti8tZVI0a0TER/NeA2UD896rQXGCcD4I7Z/VU8H30dJfaSZEWll8XVbenl+4TDueb/cn9bXk1X4CMqV0bXTzN8nb6lltLt+u9l1YrrDtFbbhlaZsW1Dpmv1fOSxDr332NmbMqmw5fX8x8eGcy7Zvyx6jF9N5PLRMjLVs+f0h73aZGmWP2+50lTAhZmguiFdrQzGdtqI5E+L4x0YmpH7I7LgHzX78QKMJceGTm2zPG5bbHnOX1Zd737jKfELqxIDQUExzau+1m7Y1eA741Tr7jwtHDIhgefWjbzb82GWd1MSEONNMQzHtN9PswpvK1y0rT633CyL8B12B/jJiLmtChOaG92BwM8GP5UZI3lLllfmgsmJCbNNW3vkts83Nh7LDKbn5oPR6y2xQHuGxlKZfzAcvd9jQ8HXtWnYy77GUUeXS9RTf/D3Qp21ZDTYdV9uabViVbbSNpV5l9o0bk9onrHdYr7TzF+4fN149H5k12uZ1VsNLwdhWG25l6tVMmrAOaft5vbI04NtVHzUk414FaXkqL42rKhZp27u1zrXv977wnPj50jLUgZct1L3yCQPXvq+nDZexjor4h/t247Ofz6zznVW3mFNWOtVB591NGf9HROnj+qkMIddwu587LcP14ee8Mvg50xNteXmE+YWf8/IO0+V99rpnsY73VTnj3+k4jX/3vMvUTb0h0ntA/LkNHr99wxwQ3gNCBsTAiX9tGoLJJ6EeCCah1hBMA6e+N5mA2ueA8B4QA9Pe39wcECM9IGRC0AuisZ3l55slXNBAb2pgxYoVpp6P4/lyIyJt2Kay5fIgf1kTwvNVeh9OSevaYUIoH+/doGC2l009L/JMA5kOmnxa6fWKTYg0wyM8lufvxwt7Uahe6mXRLJ+kIBPwj64JXRvd/N0qat+qLN42VNvcyxa29+M2e9m2YNl0fsxeX3obU/Vqpqy+n/7vCtunfm60Pu1/rmaO0etp22kaeC+Idpoa48WvEibE9KAXxLQmTIjZS8xkQhwX9IL48f2alHpbw2bt5mHb64YVtsfc5bbH9ctsj+u1XG5H3/5WMhSTTIjDr60ZEJqQOjyRh//m9ZoJIQMieE+/dVNDunCf8LObEBqKqVMmhAyBZoL7ZU0INxzCvENjwoNAeUvvMVGlCy48v+P1WRNUu5kg40BDK2UZCz6sUtjzQfu7CeETVysP1ce/h+nHq55ljquGRtkgT5n8PI3fdJu9Wfv+nViqLGVu9mpwKRCYlTZsnJUtZ682xryuqpOfM9U7LxDqegkbrr6v8nEmYZ29sdULeogb1F5eX3pZw7r4Ni19ey/UJSxXOz6H5zTML6yzn+uw/vqc1Yhu5XoJj93pzyp7lt51bG0P66p1ft2E/1DkMVA6v258/7B7u/PNK4f2E0tdn1naTCurH095qxx+rLDsSlP0zsq7aL9wu2snq/xhWn2OucXbw++ed9l6DV3/3+aTUPsQTKMNiL+ygZEeEG5ADJ70tzZ4st7vsWT+h5E5IAZPfZ8NTtW7Ngl12ANicNoHmpoDIukBoWGY7pxaeF5CBnwu1jGMYIQGOqsBBcUXLFgw7mFm7xnRakE88N5MkN338SGQ1EtBT79n9VaITQGVNcsY0DallxGg/N0gSKtfWA71yti0aVOSLDyezpNiGp5faJy44eHH8PwwIdJol1unB07FtZu/P97ey2tzeZqwDR+297y9q7anv7U9rx7eHss7bt7+vbjN61RUdy+72qJ5/097OudfJq3v029Lf/hbsVF/MLuVOng+YlXmwfFWjtHNfSpjQmguCA3FdNrIfA5lIJ75tJmGYUrmgniwNh/Ej+4ze+2txgbKKfetrxsQu1+3zPa6fmXDXBAyIQ777bYJqf3YJ970hn39gpoBES5PvPGN3B8v318mRGJAzDKbNKO9PSFaFW8zJkRoQHidZCi4QeE/5mlLpQn38TS+jmWjRot4uDkgsyHLIHBzwg2GrDw9nfLK6vkQ9rTISpOVfyfXhzc719RYGwlpDRTlXfZG3cn6Km+VQ+Vptp4hq7Auyscba1l1d7bhMsyj03XOy98bUipbVtDTG08xN9VBdVceWjoHrY/5al1YZ99Hy7zydXqbzpkHgMNzHJ6rrM+qT7P7xHmFTDpd12byd134eYzrGQbR43yLroOygeE4305997r6uckrX6zjrDK1ysCvNb+WsvL39X6ctGs3LqvXMytteEydd+fR6rJI214e15jXKWvpbJopT965jI8zNPdoyzYganNAFPeAeJ8NnJLeA2Jw2j809oAoOQeETIitGBDjep+ItcL35trc8JrYvBYtWmQ+J0K5EO34pAqD+m4cNLNUkP6VV16pB/K1b1xv7zGQlW8Y2BeFNBMizEPbvdxuEoT0tF3HivNVGpUtbR+t9/I1Y7qEx+VzNgHx1TXR7d9Fb8cXtbm8baZ2/jPPPJM8NOP7hP8zqfxxO9PrpPVhWy3vfwbfp5+Wzqionevt1rB9Xbae3g6vGjvV3x+obtWIkAHhPSp8mPuyXHs1XSVMiNNfMTtdJsSK5kyIZCimqBfEj1NMiMVrBmo9IK5bbntct9wmXf96vRfEEdfVekH8z7zGXhA64dNu25SYEDIgwvfhV9fmlCgSxb1PjpgQM2smxAU3jj5GUR7t3j40NGTPP/988n7jjXJmSloZdDEVvcP9PG24js/5jfzQCMgyHtIYymTIS69eD97zIW1/1uWfl37no0ZCs42LrEZbt1h44NIbiGUDdd6AVYNo2bJlSb1V/7hR6vXw9DpOWuDT043nMqvs41mmXji2NNqsrnuh3M2Wwf9BkEbLXAedvHaVd9lyxPX0f1aUh2/zsvr1XvSPjKfr1rXq/8Sp7F7mvKXOT1EdfH/Pu8w59X20HHr4chuc9bFoCKZtc0DEPSDiIZiSHhBJL4iUHhCnRz0gZpSbA4IhmKrdhgj1x2fOdRU1oF4IvdAbIjss3L0tCuqX6QkRGg0KWrvRIHMga3/vseAGwn333ZeYCdrfX6HBoHR5JoMMjKxjeX4smyega0HXRLevdf+frEyby9tQapNOhP8Fmj0Xzidsczebx0RP7yPCyIjw0V7KMPH9pM20B7zL5NGLaSpjQqgXxLTlZlNfLh+oP/5Rs+Merk1IrbkgNBTTj+an7//dW9cmBsTu1y6379+wxY6YaxYOxXT/0tENyase2WxfP3/EgAiW+1+2rtQPcWJCzKwNxTTpdLMLe8CE6EURU6bR2oMJTNAAGkADaAANoIEyGhh65Aob+vUkGzzz/7WBE/8mmYTaDYiOzgFx5v+xwfP/1bbOPYz5H0oMC1bmXJKGax4NjL8G9OS3jG5eEJjIBDSCxnj0guA3cPx/AzkHo89BaCjIjMgamUYPX8uo8N4PMiCq0gPCdVEJEyIZimmkF0RZE2Ld28PJUEzHPVQbhkkmhIZiyjIhbnjuLdt9znLb+7rV9V4Qh4/0gtBQTA40XN745Ns1E0IGRPD+9sXl3GA3ISZNN5MJccEN6ccJj8nn0Rc8TGCCBtAAGkADaAANoAE0gAbQABpAA53WwMaNG5PeEHqinxcEJiIBaV9BVl0Lnb7eyJ/f9H7RgAyG0IyQwSBDQr0cQtNB631bllnRL3VOK2c1TAjNBbG8NhTTqS+WC9S/8EbNhDh2ZC4I9YL48QKz6Q9m77/vDa/agddvrJkQ15lpKCYZEDcvTt/n8eUDtssvVtrXf7Gytjy/ttzjgldL/RjLhNBcEDIhNE5/u0yINCGH69QdMU0saet0Ifl6fVY+YV6+jSU3BzSABtAAGkADaAANoAE0gAbQABqougZWrFiRGBEaNogXBCYSAWle8SBdA1W/zqkf97JWNOC9HdLMB5kSMirCOGsrx+jlfSphQpymXhAjQzGVNSEeWTtsSS+IB82SoZhGekGcvyjdUNBJPPeRTXbYDVuTYZh8LgiZEGs3pV98L6wZTMyHXX6+zYiQKaHvZURx7xM1E2Lf00dMiLnZZSuTn6dxt82/6yYhp01Cf/LJJ+1f//VfS5VP+8ux8wtEeeiC0VvH8PV+HJbpOoELXNAAGkADaAANoAE0gAbQABpAA9XRwJIlSzAiJlL0nbqaDIhHHnnEpH1+y6rzW8a57Oy5nGhx00qYEJqQWsMwTX3J7NSl5QL1L2wYtt8uNfvNC2a/WWJ2zXO190OrsgX22uZhW6v3pm3vogvyyGs22FHXbLAjr95gR129wY68qvb5rYGthT/MiQkxMhTTPqeZXdBGE0LmgfdYcFNC4tfEM6eddlpSNo1FpnW+9LpqnYwGH6tM35VX1mQp2ub5eB5a+jotfb0fS0tPo2N5WT0dy2ydwgY2aAANoAE0gAbQABpAA2gADaCB8dWAGxHhhMnEqiFQRQI+BBMGxPj+5vCbD/9e10AlTIiwF0RZE6LXT4zKN089IUZ6Qew71ez868sZLEV1814KMiJkHLiBIDPg1VdfTXpFKA/vHqTtSuv56rNMApkD3oNC+3oPCM9T6bWvjheaFr7e0/lS6703hZsOfiwdT+m8DCz5cUUDaAANoAE0gAbQABpAA2gADaCBXtaAD82kiXp5QaCKBKRtxW8Ygonf4l7+LaZsvaHPapgQy2q9IKa+aHbKErPXB4bt9S2197otw5a83+4N4GnCX7Nh2Nasb3yvXl8zITQXxL6nme1zqtkFbTQhVA7dKDywr6WbELvssksS7Pd1Suu9EWQGeC8FrZdJEPZk0Gflq/VahsdQ+vh4WucGhuenpd6ej/bRW2aGb2PZu3rm3HBu0AAaQANoAA2gATSABtAAGkADNQ1ogt5FixYlwzNhRlQxDD/x6qShl9x8kLaZhJrfe37v0UAZDVTChEiGYnqxNhSTTIiTnzM7+fdmJz1tduJisxOeNDshZ66HMqA6mebep4btgLPM9j/TbP8zzPababafJqQe6QWxz9SaCdHOnhBxfdxwUE+ILBNC5oMMAzcSlIf3hNA2GRWer/d8kJEQmgf+2U0NpQ+NDZkXnkd8LH33bSz5gUMDaAANoAE0gAbQABpAA2gADaCBftHA2rVr62aExs7XME0axoYJrCdeEL+faix96i2tyniQdhXnkfkgTffL9Uc5uVeggfHXQGVMCA3DdOoLZic/XzMhTnqmZkIkBsQTZlMeb89QRp0Q7fynhm3/n9RMiP1m1UyISSNzQagXhIZi+vYpZudf1546uBEQ1iU0Id7xjnckNxJfp3RuKvhn5SHDwHtCuGEQrlda7wnh670XhdIrT+2vpZclNCH8WH4c39fTshz/HxDOAecADaABNIAG0AAaQANoAA2gATRQXgMK6GromsWLF9vChQvtnnvuSf5v1v/OvGHQixqQRqVVaVbalYa55stf87CCFRqoaaAaJkTUC+Ik9YJ4ZlsviCmLetuEUE8ImRD7qRfELLNJ6gUx3SwcimmfNpoQnRR/3FtBN9DQZOjkscmbH3Y0gAbQABpAA2gADaABNIAG0AAaQANoAA2gATSABtBAb2mgMibEKS/U5oM46VkzmRAnaiimp8ymqBfEIrPjH21PL4JOCDgxIUaGYkoMiBlm+/pQTKfWhmL69snt6wnRiTpk5YkJ0VsXfNZ5Yj3nCQ2gATSABtAAGkADaAANoAE0gAbQABpAA2gADaCBTmigEiZEJ8CQJxccGkADaAANoAE0gAbQABpAA2gADaABNIAG0AAaQANoAA2ggbFpABNieGwAESD80AAaQANoAA2gATSABtAAGkADaAANoAE0gAbQABpAA2gADaRrABMCE4IJhdAAGkADaAANoAE0gAbQABpAA2gADaABNIAG0AAaQANoAA10RAOYEAirI8LC9Ut3/eACFzSABtAAGkADaAANoAE0gAbQABpAA2gADaABNIAGJpIGMCEwITAh0AAaQANoAA2gATSABtAAGkADaAANoAE0gAbQABpAA2gADXREA5gQCKsjwppITh51xblGA2gADaABNIAG0AAaQANoAA2gATSABtAAGkADaAANpGsAEwITAhMCDaABNIAG0AAaQANoAA2gATSABtAAGkADaAANoAE0gAbQQEc0gAmBsDoiLFy/dNcPLnBBA2gADaABNIAG0AAaQANoAA2gATSABtAAGkADaGAiaQATAhMCEwINoAE0gAbQABpAA2gADaABNIAG0AAaQANoAA2gATSABtBARzSACYGwOiKsieTkUVecazSABtAAGkADaAANoAE0gAbQABpAA2gADaABNIAG0EC6BjAhMCEwIdAAGkADaAANoAE0gAbQABpAA2gADaABNIAG0AAaQANoAA10RAOYEAirI8LC9Ut3/eACFzSABtAAGkADaAANoAE0gAbQABpAA2gADaABNIAGJpIGMCEwITAh0AAaQANoAA2gATSABtAAGkADaAANoAE0gAbQABpAA2gADXREA5gQCKsjwppITh51xblGA2gADaABNIAG0AAaQANoAA2gATSABtAAGkADaAANpGsAEwITAhMCDaABNNCgAeMFAQhAAAIQgAAEIAABjQsHpwAAIABJREFUCEAAAhCAAAQg0DYCE92cwIQg+NgQfJzoFwT1T3cr4TJxuLTt7kpGEIAABCAAAQhAAAIQgAAEIAABCEAAAgmBiR5bw4TAhMCEQANoYIJrgPYABCAAAQhAAAIQgAAEIAABCEAAAhCAQHcITERDAhNiggcfJ6LoqfPEeaqfc118rrtze+UoEIAABCAAAQhAAAIQgAAEIAABCEAAAk5gosWsMCEwIXgKHg2ggQmoAb/psYQABCAAAQhAAAIQgAAEIAABCEAAAhAYHwITxYzAhJiAwceJIm7qWfwUPIwmHqPxuaVyVAhAAAIQgAAEIAABCEAAAhCAAAQgAIEsAlWP0WFCYELwFDwaQAMTSANZNzvWQwACEIAABCAAAQhAAAIQgAAEIAABCIwPAUyICRScq/rJpn4T76l3zjnnPNTA+NxGOSoEIAABCEAAAhCAAAQgAAEIQAACEIBAGQJhHKdKn+kJgcnCU/BoAA1UXANlbnKkgQAEIAABCEAAAhCAAAQgAAEIQAACEBh/AlUyH7wumBAVDz76iWbJE/FoYOJqYPxvn5QAAhCAAAQgAAEIQAACEIAABCAAAQhAoAyBKsbwMCEwIXgKHg2ggQproMzNjTQQgAAEIAABCEAAAhCAAAQgAAEIQAACvUWgSmYEJkSFg49VEip1mbhP8XPux3bue+v2SWkgAAEIQAACEIAABCAAAQhAAAIQgAAEyhCoUkwMEwITgqfg0QAaqKgGytzQSAMBCEAAAhCAAAQgAAEIQAACEIAABCDQewQwISoasKvSiaUuY3t6HH7w63cN9N6tkxJBAAIQgAAEIAABCEAAAhCAAAQgAAEINEOg3+NTXn56QmCo8BR8RTWw96lmHz9g/N8qh//gsOyeudPMDY20EIAABCAAAQhAAAIQgAAEIAABCEAAAr1HoCqxNEyIigagqyJQ6tF60BoTonV2VdBd7902KREEIAABCEAAAhCAAAQgAAEIQAACEIBAMwSqEKNSHbZbvWat8YYBGkADaKA6Gli37nXbuHEjbxigATSABtAAGkADaAANoAE0gAbQABpAA2igjzWgGE8VYnbbrVm7znjDAA2gATRQHQ288cZG27x5M28YoAE0gAbQABpAA2gADaABNIAG0AAaQANooI81oBhPFWJ2mBCYMJUQchUuRupQHRNgvM/lxk2baGD0cQMDAwkDDQ2gATSABtAAGkADaAANoAE0gAbQABqQBhTjGe84UzuOv91r69YbbxigATSABqqjgTfffMveeos3DNAAGkADaAANoAE0gAbQABpAA2gADaABNNDPGlCMpwoxu+3Wvb7BeMMADaABNFAdDbz99tvGGwZoAA2gATSABtAAGkADaAANoAE0gAbQABrofw1UIWa33evr3zDeMEADaAANVEcDW7ZsMd4wQANoAA2gATSABtAAGkADaAANoAE0gAbQQP9roAoxu+3Wb9hovGGABtAAGqiOBgYGBow3DNAAGkADaAANoAE0gAbQABpAA2gADaABNND/GqhCzG67DW9sMt4wQANoAA1URwODg4PGGwZoAA2gATSABtAAGkADaAANoAE0gAbQABrofw1UIWa33cZNbxpvGKABNIAGqqOBrVu3Gm8YoAE0gAbQABpAA2gADaABNIAG0AAaQANooP81UIWYHSYEJgwmFBpAAxXTAA2M/m9gcA45h2gADaABNIAG0AAaQANoAA2gATSABtCANIAJUbHAXRVOKHWoztPsnEvOZasaoJFCIwUNoAE0gAbQABpAA2gADaABNIAG0AAaQAPV0ECr8aFe2m+7TZvfMt4wQANoAA1URwPDw8PGGwZoAA2gATSABtAAGkADaAANoAE0gAbQABrofw1UIWaHCYEJgwmFBtBAxTRAA6P/GxicQ84hGkADaAANoAE0gAbQABpAA2gADaABNCANYEJULHBXhRNKHarzNDvnknPZqgZopNBIQQNoAA2gATSABtAAGkADaAANoAE0gAbQQDU00Gp8qJf2227zm28bbxigATSABqqjAeMFAQhAAAIQgAAEIAABCEAAAhCAAAQgUAkCVYjZYUJgwmBCoQE0UDENVOIOSyUgAAEIQAACEIAABCAAAQhAAAIQgAAEKhG3w4SoWPCxCs4YdajOE/mcy/E5l9yfIQABCEAAAhCAAAQgAAEIQAACEIAABKpBoArxNUwITIhKuGlVuBipw/gE7KvIvRq3WGoBAQhAAAIQgAAEIAABCEAAAhCAAAQgUIXYFSYEJgQmBBpAAxXTALdnCEAAAhCAAAQgAAEIQAACEIAABCAAgWoQwISoWOCuCieUOvA0PRpAA9W4xVILCEAAAhCAAAQgAAEIQAACEIAABCAAgSrE+ugJgZHCU/BoAA1UTAPcniEAAQhAAAIQgAAEIAABCEAAAhCAAASqQQATomKBuyqcUOrAU/BoAA1U4xZLLSAAAQhAAAIQgAAEIAABCEAAAhCAAASqEOujJwRGCk/BowE0UDENcHuGAAQgAAEIQAACEIAABCAAAQhAAAIQqAYBTIiKBe6qcEKpA0/BowE0UI1bLLWAAAQgAAEIQAACEIAABCAAAQhAAAIQqEKsj54QGCk8BY8G0EDFNMDtGQIQgAAEIAABCEAAAhCAAAQgAAEIQKAaBDAhKha4q8IJpQ48BY8G0EA1brHUAgIQgAAEIAABCEAAAhCAAAQgAAEIQKAKsT56QmCk8BQ8GkADFdMAt2cIQAACEIAABCAAAQhAAAIQgAAEIACBahDAhKhY4K4KJ5Q68BQ8GkAD1bjFUgsIQAACEIAABCAAAQhAAAIQgAAEIACBKsT66AmBkcJT8GgADVRMA9yeIQABCEAAAhCAAAQgAAEIQAACEIAABKpBABOiYoG7KpxQ6sBT8GgADVTjFkstIAABCEAAAhCAAAQgAAEIQAACEIAABKoQ66MnBEYKT8GjATRQMQ1we4YABCAAAQhAAAIQgAAEIAABCEAAAhCoBgFMiIoF7qpwQqkDT8GjATRQjVsstYAABCAAAQhAAAIQgAAEIAABCEAAAhCoQqyPnhAYKTwFjwbQQMU0wO0ZAhCAAAQgAAEIQAACEIAABCAAAQhAoBoEMCEqFrirwgmlDjwFjwbQQDVusdQCAhCAAAQgAAEIQAACEIAABCAAAQhAoAqxPnpCYKTwFDwaQAMV0wC3ZwhAAAIQgAAEIAABCEAAAhCAAAQgAIFqEMCEqFjgrgonlDrwFDwaQAPVuMVSCwhAAAIQgAAEIAABCEAAAhCAAAQgAIEqxProCYGRwlPwaAANVEwD3J4hAAEIQAACEIAABCAAAQhAAAIQgAAEqkEAE6JigbsqnFDqwFPwaAANVOMWSy0gAAEIQAACEIAABCAAAQhAAAIQgAAEqhDroycERgpPwaMBNFAxDXB7hgAEIAABCEAAAhCAAAQgAAEIQAACEKgGAUyIigXuqnBCqQNPwaMBNFCNWyy1gAAEIAABCEAAAhCAAAQgAAEIQAACEKhCrI+eEBgpPAWPBtBAxTTA7RkCEIAABCAAAQhAAAIQgAAEIAABCECgGgQwISoWuKvCCaUOPAWPBtBANW6x1AICEIAABCAAAQhAAAIQgAAEIAABCECgCrE+ekJgpPAUPBpAAxXTALdnCEAAAhCAAAQgAAEIQAACEIAABCAAgWoQwISoWOCuCieUOvAUPBpAA9W4xVILCEAAAhCAAAQgAAEIQAACEIAABCAAgSrE+ugJgZHCU/BoAA1UTAPcniFQNQJvvvmmrV27Nnnrc9nXxo0b6/tt2bKl7G4TKt3SpUtt0aJF41rnF1980e68887kvWbNmtJlefvtt+2+++5L9nv00UdtaGio9L4khAAEIAABCEAAAhCAAAQg0C8EMCEqFrirwgmlDjwFjwbQQL/cRCknBMoSuPTSS2277bZL3vpc9nXiiSfW97v33nvL7jYh0imAf9lll9mOO+5oH/3oR23BggXjVu/w/DZznmRMffnLX07O8YEHHmjNGFTtqOymTZvs4IMPrmtshx12sDvuuKMdWbclj+HhYbv44ovtS1/6UvL+yle+YjfeeGNb8iYTCEAAAhCAAAQgAAEIQKB7BKoQ66MnBEYKT8GjATRQMQ107zbIkSDQHQJhkLpbJkT4lL0/pd/qct68efbGG290B1bJo7zyyiu288471wPon/zkJ23x4sUl924u2WuvvWbPPPOMKSie9grPb7+YELEB4SbZqaeeatJOL7zuuusue+9731s/xzJsVqxY0QtFowwQgAAEIAABCEAAAhCAQBMEMCEqFrirwgmlDjwFjwbQQBP3MZJCoC8IhEHqbpkQ4VP2HmBudameBgrC99rrwQcfbAhS/9d//Zdt2LChrcVcvXq17b333slxrrzyStu6deuo/MPz2w8mhAyIH/7wh/Xg/jvf+U7bfvvt699PO+00GxwcHFXPbq6ITSbX7kknnTTuZesmB44FAQhAAAIQgAAEIACBKhCoQqyPnhAYKTwFjwbQQMU0UIUbLHWAQEggDFL3ownhAeCxLDthZKhngoZkUhDdy9bOALrmaJg6dWo9bx3nrLPOGtVTIDy/vW5CyIA49NBD63V697vfbVdccUUyr4Z6kzjHKVOmdH14KL9m4l4aH/vYx5Jht1Q2nQOd86xeKZ4HSwhAAAIQgAAEIAABCECgdwhgQlQscFeFE0odeAoeDaCB3rlNUhIIZBNQzwAF1j1o2ytLDVmjXhDhcEwKkn/gAx9IyrrLLrvYLbfcUp9IOR6i6fjjj6/X6ZxzzknShfu3Ws9OmBA6O3piX0/He7kmTZqU1D/7zDW3RfM0KCDv+WupXgQKlPurX0yIVatWJb06vC5uQHhA/6GHHrLQiDjkkEO6PgxXbED4MFuh2aQhmjRUEy8IQAACEIAABCAAAQhAoD8IVCHWV4meEC+9vNz0rsIJoQ4EkNEAGhirBvrjFkopJzqBXjchwvMTlrVoAuS0gLqC19OnT7d/+Zd/SYLxH/zgB01mhXod5L3Vi0CTCivonWVCaB6H2Ahp9vuvfvUr+9CHPmQyIG677baW81uzZk2Irf5Zho7mSvDgvZYHHXRQPUAfM5NxIc5h+nZ9dpOpXriSHx5++OH6+VNZFMi/5pprRvUoeOKJJxqMiK9//eu2ZMmSkkcZW7LY8AnNBplN0ppzlJ7GczLysdWUvSEAAQhAAAIQgAAEIDCxCIw1TtQL+1fChHh+yVLTuxeAUgYCyGgADYy3BibWrZja9isBBWZ33333JMiuQHveW8PJePBUn/PShtt23HHH+n6f+tSnSu2333772bp16xqwjtWE8MxOPPHEpDxZhoKn8+XmzZtN5VHds4LnnqfzGc9l3lBKcRBchoy46tXLJoTKrV4E4QTPOn+qq/eA8PPlyxdffNG++tWv1rUnHV511VWp82H4PmNdqgdEPE9FPOxS3EsCI2Ks1NkfAhCAAAQgAAEIQAAC3SEw3nGmdhwfE4IhpTBv0AAaqJgGunML5CgQ6B6BMEitz2VfYYA+L0BelF+7TIhZs2YlgemPfOQj9vTTTxcd1lasWGGf+9znkn2yemCEdRxPA0LHLmLsRoSMomeffbZe//D8Ko8tW7bY5ZdfnttLRE/1qzeJepXo2DI1NKxUXs8SbfvZz35mGzdurB8778PLL79smqw75KqeDTIZil6vvfaaHXzwwQ37Kq+lS5cW7dr0dh1r//33rx9L8z5ccsklqaZHnFbmyo033phpqDRdGHaAAAQgAAEIQAACEIAABNpOoB0mwHjngQlRseDjeAuK49MLAA2MvwbafrcjQwiMM4EwSN3PJkRYj6KAvZA//vjj9bkoZDakvUITQkH5ZodiGmv6MPhdpk4aMijsaaKg/F577VUPoJfJwzlo7g71EJFJkGXSeNpmlho+Sr0Iwp40CuyLdTiXRVGeyufCCy80zR3hRoY+y4zasGFD0e6ltssQkTHi+ecZEJ7h6tWrR81toXKqvLwgAAEIQAACEIAABCAAgd4jUIVYGyYEJgRPwaMBNFAxDfTe7ZISQSCfgJ6Qf+yxx5JJktNSKtDqwfIyT6F7HuF8CVnzFXjavGW7ekIowO7BYs3DUPS69tprC9OHJkRZg0bB5osuusg0f8HWrVuLipG7PTx+MwaCAuEaPigM0ItNM3m024QQi3nz5tnXvva1OneV6ROf+ITdcccdLfUW0JBNmk9CvT/83Gspg+OnP/1py2aE8r3pppsajJJ4ouy8Exf3iFCZ1HND54UXBCAAAQhAAAIQgAAEINBbBDAheiRwx5wQ4//kdRUuBuqAjqqigd66VVIaCOQTUEB82rRptv3229vZZ5+dakQo4KrheSZPnlw6SJplXOhJ9rlz5zb1RHtoQhQN+/Of//mf9WBzHFDXEEwaikkBXz0NX/Ty4Zt22GEHe+ihh1KThyZAWRPigQceMOWpcnz2s5+tz82QeoCCleHx4/qm7Sr+Cr6HvQxUDn+XycPzbZcJIfNBRkHYI0PlUa+Co48+urTmvFxpS9Vb5zM2XfT90EMPbcoQUl7irvI5N/GUUefzVGi5aNEi06ToWS/lE84jobw0T8Stt946ZnMq65ishwAEIAABCEAAAhCAAASaJ1CFeBU9IXrESKmCmKgDQXw00BsaaP52xh4QGD8Cmhvgk5/8ZBJMTRtKRsHUa665pj4xsILmZcbVD4c+8uC8z0mgYKueTFfg2YO2eQRCE8KDvmWWcUBdT5l/8YtfTOp62GGHJXMfZB1XwxZpiCEdR/NCaH6ItFdoAng909L5ujBf5a15CsYyNFB4/Li+fkwtZTZdffXVSa+CkJ2C8J/5zGfqwfS8PML89HmsJoT0cM899zQMZ+RlU28I6UNzK/i6sS5VN2k3nmfC89V18JOf/MTUSyHtJa2m9aqQlsM5RlSv2bNnJ4bHzjvvbK+88kpadsk6nZezzjqrwdBQeTo1f0VmQdgAAQhAAAIQgAAEIAABCGQSqEK8DRMCE4KheNAAGqiYBjLvWmyAQI8S0LBAoRGh8fjdHLjrrrvqBoRMinBbXnXSTAgFrSdNmlQPKis/BdH1RHjeKzQhNJGvjAQFftPeH/vYx+r5xwH1zZs323777Zds33XXXW39+vWZhw0npdY+2jftFZoAZUyIW265pR5wVm+Iu+++Oy3b0uvC48f1VSYKiOvJeg1p5MF2LcVevQxWrlxp4bkK85BhonOW9X7uuefsC1/4QpLvPvvsY8uXL89MqzzCCakXLFjQYH542dSjQBpTcF6vsGyeptWl1009L373u9/V57MI81PPBDGLXzKwxEvcwvQaQik2LUJjT2mLjAhda7fffnvSCyLMWwaRJvtmiKb4bPAdAhCAAAQgAAEIQAAC3SWACdEjgTuGY+qNp6+rcEFQB7RUBQ1091bI0SDQHgKh2aBA/8KFC5Nx+PVZgVEFX/VUetk5DMLgcRicV3A5nixYZsKjjz6aWZHQhCiaADk8rgedPWMFezV5tOrz8Y9/3BREz3pp+CUfMqnM0E1Z+YTr1eMhfAo/K+Ad7tPqZ9VV59Qnjg6D297LwI2mLGbh+nD/Vj/LMPGXAuvhhM7SmTjHhtScOXNSzaY0A6poXTyklswGBf+dkYb6inv5SK/xJNmqvwwC9XZIMyxUx9DYU/rddtstt0eE9nn55Zcb9OGcxWbGjBn26quvOj6WEIAABCAAAQhAAAIQgEAXCVQhVkVPiB4xUqogJupAAB8N9IYGungf5FAQaBsBBaQVbPUnvd/znvfUx8/XuvPPPz8z4JpWiDCArc/xS6aDgsYeaD3ttNMy82+XCaEyaEJqP2ZeL4Rzzz23VLq4XnnfFVB3vhr7X/Xq1Evn8+c//3m9Dqpz3MvAjx2eq9C4Cdc7s7EsQxNCx9Zk0x/60IeSALt6SozXS8aaemZoTgd/ZfUgUf1l4oTDL/k+8TI09rSfek3EJku8j0wPmX1u/oW8ff6KF154Id6N7xCAAAQgAAEIQAACEIBABwlUId6GCYEJwVA8aAANVEwDHbzvkTUEOkpAAdAjjjiiIXDdbA8IL2AYwE4zIZROw9goMFs0XE07TYiwh4OMhrTXli1bTHNGKAD86U9/2jTJ9lhfeop9p512qrM988wz60NejTXvrP39mApen3766clQSWlpw3MVmhD33XefyRw67rjj7JRTTkk+63urb01IHr4U/JfmevF11VVX1Q0jNwLEUZN6ly1zbOyVNSLEI2vuijJGRi/ypEwQgAAEIAABCEAAAhDoZwKYED0SuGM4pt54+roKFwR1QEtV0EA/31j7qeztHKalaBiXZrfHw770C1eZAkceeWQ9UK6g6TnnnNNSsDwMbGeZEOKiJ87DuQLSWLXThAjnesga2kmmg8wH1T8rjQfoywbkNWeCB7O33377xOwpu2+z6TQngb80rFY8xJBv82V4rkITQsF29Y7RfBJ6qn8ivaRLzcfg56zViaKVj86f56PfkiVLlpRCKZPmtttuq8/noXlbFi9eXGpfEkEAAhCAAAQgAAEIQAAC7SNQhVgVPSF6xEipgpioAwF8NNAbGmjfbY6c8giEgVMP8PXKMgzk5tWhV7bpie0HH3zQNCZ+zPDb3/52wxAyCkwrAK+ha/LePveC8tPnvLThtrReB+00Icr0ctBEzs5Bw1Clvaqkv9BQCQ2MsDdAUW+VNEbdXqeeFs0aNkqv+qe9Vq1aZd/61rcSI6DsXChp+WgIJvVg2HvvvVuaZNrNoCuvvLIlQzCtTKyDAAQgAAEIQAACEIAABMoTqEK8DROiT0yIux8ftJnXDNuLq7Y0DJ3z8LMDNvNqMy2rIEjq0BtBbM5Df5+H8rcxUo6FQJWCwGPhMNZ9FSCdPn16w9AzmqjX52vQcEyavNdfGrvfJ/L1QH07lzqv8Ss0IdSjYPny5cnQQipL/A7nQcgyg0LtXHvttQ2HGxoasmOPPTYxIT74wQ/ak08+2bDdv4R5tLP+7cgrq95e9rJLaWP//fevGzLqGaAn+zvx0nwRzdRdGoznkWg2Dz9emubaXcfNmzeXHsap3ccmPwhAAAIQgAAEIAABCEBgbASqEKfDhMCEGJN58ctbtpoMkmYvBpkpMlXS9r3m3iE75/phW72u0XApOob2O+UKa2lfz9vLlWb4eBqW/R2gnwjnb2y3NvYuSyB8eruVp587uU/4NHnZ+nQ7nZ6u1pPjGmrHg7EyHBRofvPNNxPjwSdRDockGm8TwstaZpkVjJexIINBeXz/+99vCA6HwzXFvUDCc6QeG2EPjqzPmkvBy6rJhmfPnl1qvzC/0AjQ0/QyhcLt8ec1a9aERR3TZw3/o0m0VYdJkyaNCvyPKfNg52YNhG6bEG+88YbNmzcvl3t8Hsb6vZ3nMUDNRwhAAAIQgAAEIAABCECgSQJViGVhQvSgCaFeDdOutCSgrqB6K28F8c+/abilff14MhjyRO4Be5W1qCeGDIWf3zBcT+f7tsuEUD4qt46h8siQyCt71jbV2evfah5ZebMe86JbGmjyXkZyCHSdwMDAQP1pfw+Qy4y444476sO9rFu3znbbbbck+Bz2CCgzHNMtt9xiu+yySz34vu+++5YO3hYNx+TlLbPMMiH0hL8MBuWhcfZfeOGF+jm45ppr6uXOGoqpnrjgw+rVq+3rX/96PT9NDq2eFs28fHJpr6/KV+YV9h7xfXthmWYeqD6hCfG9730vdVglGWQ+ZFhaPmEeN91006heMmGvGW13HmV6QowHzyz9ljn/pIEABCAAAQhAAAIQgAAE2kegW/GkTh4HE6IHTYi0E64ge9rT+UXDMaXtp0C7GwxZvQ60vUwQ3s0Ezy+t7FonE+KSO2oBfuXr+93yUK3Xgwf+85ZphoXydgPCy+vfs9JnlVF1cEOl1Tyy8mY9BkQ3NdC+2xw5QaBzBDTe/Ve/+tVkGKajjz7aNCl1+NqwYYNpMl4P1M6aNSvcnPtZT43riX3fV5+1rtVXGACWuSGTI+sp83AuirwgbjickpsNeeZEs2XXPBvh0FCf//znk2Gkms0nLOcXv/hFW7lyZaksQmZ+HnphmWYeqEKhgZB13tRDR71yVI+0fMrk4fB0DOeBCeFUWEIAAhCAAAQgAAEIQAACaQS6GVPq1LEwIfrEhCgSgIL6P5mzraeBp1cwPTYvFGx300Db46GPZBhonQfxFdzPMwfytnlQPyyP8n76xYG2DMcUGgd+DC29N4nXIdyW9ll1jMuati5tX9ZhMPSaBtJuWKyDQC8SePTRR+2xxx6r937wMuppfT2170FaLZsxEtSb4dOf/nR9fw3no6B4q68woB4ODZWWXxi0zwpmaz/1flAvCNXNg/t333237bDDDsk6zQvRbK+FsDyPP/54fcgnDWs1Z86ccHOpz5r7QuaFnwc3S8rsvGTJEtt9992TuT00v0ez70996lP14/rxta7ZfOL0++23n6mXTfwqYyCMpwkh0+6MM85I7aHRjqHdjjjiCNt+++3rzDV0l65PXhCAAAQgAAEIQAACEIDA+BPotbhTK+XBhOhRE0JBdA0t5PMiyGRQ8F7L8EQrUK71i5cO2K/v2tbTwNMoCJ9mErgJoePIvAjzjQ0NP4aXxfMuWmb10gjLlGYSlDmemwyqe1a5VA8ZMF7XrPJqe2zUeFova1o5PQ1LTIhe08D43x4pAQTGRuCuu+4yBUE9+Kzlxz/+cXvuuedKZazgv88n4XmUedo8K/NOmBDhBNQq43nnnVd/yl51f/DBB7OKU7g+ntBZczpoXTMvTQCt4Yec30477WQamqkbL5kfPhSXH1/LU089tSljRr1Btm7dWqrIvW5ClKpEi4nUCymc9+Pd7363XXHFFaPMwRazZzcIQAACEIAABCAAAQhAYIwEei3u1Ep5MCF61IRQAF0mRNhrQN9Ds0AnXAH7MMiuYHkYmNf3OMCu9L5PbDjJef0KAAAgAElEQVQoz3ifLFMga70LMTYhQuOg1Z4Q3ktDvRbuW1yra5rJ4utUT5VT32MjwU0K56W8xVjl9Dpo6eV2ZuE2PmNA9KIGxnhvY3cIjCuBJ554ot5DQHNBqJeAB6LVU6DopcDzzJkz6/v4vnmTPBfl2QkTQscMJ6j2cmqpp9I190UrL9X/sssuazBhFFQ+9NBDTb0TtL3oFechQ0dDUHXj9fDDD9fnXRCLvfbaqz6/h/SgHh5FL5VfE1prOK+y5tNENSE0TNlBBx1Uv150rqWfMjopOg9shwAEIAABCEAAAhCAAATaQ6AXY0/NlgkTokdNCJ1ID7grgJ4VANf6rG3KIzYUtC7cx48RBuiLzAXl4YF5zfOgPLQu7608QzPEDQAd1/Ny4yBtKaPg1ofTzYS84/o2r6eXQQx0HJUrTKP6eBpfr6XvHw/ZFKbhc74G4NM9Pu25xZELBLpPQIFjH6LIg6F6ItsD9BdddFFhoTTUjk/GrHH7Dz/88GR/DXP0wAMPFO6flqBdJoSeyg+Du+oNoaf7vX5alg20p5VT6zwAr8mV494gyv9rX/ua3X777aaeDlmvuCeKekTkpc/Kp5n1Ml0uvPBCk2HiPGScqAeHerZ4z5idd97ZXnnllcysly5damHdNZG01hW9JqIJIbYHH3xwnbdfc6FGi7ixHQIQgAAEIAABCEAAAhDoPIEqxNQwIUaC5wqGpwW/m1nX7gC1l8nz9cB9mTK5MaE84qB6aEJIxOF3D7aHwflY6J7GexDE28t897qofPqsvLQss+9Y0hSVvWi7GyZ5fMZSPvbtXqC+yqw7f/vjCBBoP4GHHnqowYA4++yzk8B3OIGvAsVFLz2x78F3Bc/vv//++jwLP/zhD1sKprdqQmgM/xkzZtiee+5pH/vYx5LhljSvQPjSEFMaasoD76rjWOaCCPPWJNKnnHJKPYDvx9DyIx/5iM2ePds0AXj4Um+THXfcsV6eoqB/uG+rn9VDw40jlU3n76yzzqr3BpEBonkPvPwKnMfDS7300kt25JFH1s+9p1VemqC76NWvJsSCBQvsK1/5is2fP7/B4Cqqb5oBcckll5Qevqoof7ZDAAIQgAAEIAABCEAAAu0jUIUYFiZEwRP843GSPRDuT+qHJkFcHm2LTYYwjRsZsXGh/Tyd0rihEJoD2p61f5xf3ve88ukYGppJ81KEZfKypS2VLj5eGaNGdUnLL14no0E8VK54G98xCfpBA+27zZETBDpPQE9d33TTTQ2BbwWc/cn70ACYPHlyboBeAXUNwaMAtPd8ULBVQzFpXatzLYRl8Impt2zZkjyRL5NEEzYfddRRySTO4ZP8Hgj35fHHH98QKFbdzzzzzHpwXenKPrnfzJkRFxkOMh68LL4UEwXg1VvgyiuvbDAsNKnzs88+28yhmkq7du3aZALykJkMEOkhfhpfvR9kiHi51YNEvSdkPhx99NENPSiURvWSASMjpsyrH02IuOeQOGh+h6KXrgn1MnGWMmqkYb/mivZnOwQgAAEIQAACEIAABCDQXQL9EIsqKiMmRA+aEAqWh4H7+LufVDcrPADv68Nl2r4K4ocBfxkPMgEUfE9LH+bnPQGULlzvn7VeBkG8Pc04iI2Eou/e+yAuv8o082pLyh+bKCpX2jovL0tMhSpqoLu3Qo4GgdYJKBg6ffr0+tPrCoaefvrpDcHQNAMg7YgKWutJbg+shnNAzJkzp36MspM0K7/169fbCy+8kMwr8IEPfCDJW+aG3n6cMkv1glBviGuvvbah6PGwR55X2pP+DTu2+EVB+7lz59pnPvOZwvLLDBH7Trx03jX0UtjjQnXXUFx5k4+HQXell6kizTg3LTXc1I033mhxj5OienTbhFCPEy932Xkr4jo8+uijJqPI89HyE5/4hN1xxx2jTBzfFwPCSbCEAAQgAAEIQAACEIBA/xCoQuwKE6IHTYhQWB70Twvsa5vMAz217wH6cF99TjMV4iC+0mmdT4SdlZebHt5rIj5W0fY4vb67QaD6ZR033i8ufysmhJe1yPgIt2fVOy4f3zE2xlsD/XMbpaTdIqDg7X777Wcvvvhitw6ZexwF+DUBsQLGHkDV0/B6Wj9+GrusCREGqGUShJNYa56I3XbbrX4smRXxk/ZxgTX/hJetzFLl//znP5+8Pf3NN988qj5+nNCAUCBdZkz4pP+UKVOaDqR73kVLzU0xb968hiGQvMy+VGA8PhdF+RZtf/XVV5NhlmLzwY+pOTzUOyLvFQ7b5fuJvZ7s16Tmqlsrr9CE0JwS6o0TvzW8l8wZHTetrGEe6iGT9ZL2wsnTWzUhlL9MhVmzZjX0BJGe0npFpBkQDMGUdZZYDwEIQAACEIAABCAAgd4hMN5xpnYcHxOih00I71Xw67u2phoNCtorIK90WQHysiaEmx15vSp0PA/KK99YgL49bVucVt+Vzs0HmQIyQVQOT+tGQVy3dpgQfowyS6+XlmXSkwYTYrw10Du3SUrSCwQUxPfA6Uc/+tFkkt+iAHw3yh0G4fPKVcaEiIfqSZv7IZwrQkP16Ph5r1tvvTXVhNC+O+20UzKE0W9+8xuT+bFx48Z6Vgooe3A8KxAdB9J9+KkHH3ywYTgkH3KonnmbPuj8ax4GH7rKyxsv9VT9ZZddNmr+hWaKISNj4cKFDZNF+3EULN93331N51/r0gL7aceK+cmEUCA+nt8ibd+sdaGB4OXLW6aVNcxD5169MWSsSSd33nln/T116tQG0yA0zLLKl7de51OmXl6viDfeeMMOOuigujbFHgMijyrbIAABCEAAAhCAAAQg0DsExjvO1I7jY0L0qAmhQLsH6HWi48C79yBQID/8HItC231oJ8/TjQQttU77eKA9DvjH+em7Hy9t/zKB+nD/ML3W6/iX3LFtzoc0QyNm0UpPiLR6pa1zLmE509KxDuOhlzTQO7dJStILBJ588sm6CaGgqoLoGvu/1SfG21UnBU4V4NawSS+//HJmtgo4+/BH8ZwK2ikOrqo3wvLly0flp2C4zAkPLGvoH+Wd9ZK5oCGUNK+AhjDSsExlhvgpMiHiAHo49JIzUYDYy9nOHhE65wpWy3wIj6FjqXfCrrvuOmq9a0YTbBf1UghZyuRQz4G0Xg869j777JPMQ6E8FdDXcdIC+2GemodD50XDSqlXTziZdVhO9bho9hUaCMqr6J1W1jAPmRAq72GHHZab1xe/+MXS81YU1Uk9HVSG8Nzqs3p2hD2BtA4Doogm2yEAAQhAAAIQgAAEINA7BHop5tRqWTAhOmBCKEg+lqC1Au9xj4Q48B5/1/HcbJAYvBdBaDh4QD/eV+uVLqvHRZ64PEiv/YvqHJoPSh/XUcfxNF7WtGPH5R+LCRFyisvvdYvXp5WJdZgQvaSB3rlNUpJeIaCgfByEPPvss9s+3E6z9VXQvcgMOffcc+tBXH0OX5qEV3M8eMC4qIdD3GMirwdGeJxmPmeZEKprPAG3zonKFL5klujchIHkvffe21atWhUmK/1Zx9W+ylPGi7PypY4jQ8CNoKyJnpVePQ40zI8msVa+eS9NaB0fzwPiMih8/yITQoF19SI45JBDEgMtDP6nDUWkcuo4e+21l6n3i+b1KPOKDYS0fWRCaWJyHSMsh6dNy0O9WZx1vJRBM9ZeEH5sX4qr5oRQL5b4ePquc3jFFVfU+ft+LCEAAQhAAAIQgAAEIACB3iXQSzGnVsuCCdFmE0JBbTcR2hm8VuDd89Pn0HDQyfdgepmeDGEQPw60uwngx8oSlg/fJDNB+bmRkWYseNlCoyI0DnSMuE76HqYPy+HbtN3fflwvv8oTpivi4uX3dP69iENYLj5jRPSKBnr3tknJxpNAHLBXQLKdT9l3om7hPA8KLIfDGymQHT4Jr+3qWeHB7azyhHl6UFaTJOvp+na80kwI5X3WWWc1GAtpBoQfX0aEhmgKg8gKKs+fP7+wfspDwXL1uJg2bdooIyDMU4H6xx57LDXPlStXJj0ZFLQO99FnsZZxUTQHg7NQsF31T+uhEJsQa9asSUwTnctddtmlgZmOHQf/db5VB9UlLqd//+xnP2vqRSMTaNmyZanmW5qB4OfDl62YEPfdd9+ouSV0bmUEpPHwY411uXr1alMvG2fgSw3JFA4fNtbjsD8EIAABCEAAAhCAAAQg0HkCvRJvGks5MCHabEL4yfAgfTuC2J6XB9Y94O7H8qUH4GODwrf7UsF5n4Q6LdDvx0srexjYT9vu+2aV0cvg6dxEUN18W7jUMeI0KoPenk55zbzakvkknEFWfr5P2jI0S9K4pO3DOoyHXtRA529/HKFfCcQT0yowqQl9tX68XgpCazx/TcysYY/01LvmY/jRj37UMD+CgvaaYFoB+ssvv7xhmJ9mn+7W0+fxMEGaJFtDFRWZGEWcPPAutjJN1GsgDpCrZ4OCxHkvBbxlEnnwWEsF/+MJhzXkjwLrCrAr0K6Ae7hP/LmsgeBlUzk1rFKaGaG8ZQRpkuu0Hi3S1aOPPpoMS+T5xUvlryGJlJeO8cEPfjCz/OrpoiG10oLoOv6CBQtGsY7rHw5/FZaljAkh1tKeTISf/exno8pRJo/wmJ3+rGtFZo64hRw0d0Q7tN7p8pM/BCAAAQhAAAIQgAAEIFAj0Iuxp2bLhAnRIRNCJyIMjjd7YjyY7gF4BeMVeC8yGDyQ7k/0px03NBKygvV+fB03NAL0OS3PeJ2bDFnpddyiusR5lvnu5c6qV5k8tK+45zEskw9pMCjGSwPcpCGQRyDNiJg8ebINDAzk7daxbZrTQUH5MEgaf1YQ9Z577knmA4gnU9a2G2+8sWnzQAFrnxDZj6cA/eGHH26bN29uub6hCbHHHnuMCt4fc8wxyTwWZQ6gHhTqzaByeRnDyao1EXPMw9PFSw2NpCGZWn36XmbR6aefPqo+Oo4mPpfZ0sornDA8LrO+q9xi8NRTT6X2YIiPKRNJQ0udeeaZo3qBfPWrX215WKv4OGnfe82E8DI+/fTToyatluHz05/+tG09gPxYLCEAAQhAAAIQgAAEIACB9hMYr/hSO4+LCdFBE6KdJ4q8uhvQdjMj7HHBOejuOYB367zbf7sjx6oRCI2InXfeedS8BN2sr4LGeoI/LQCtdeqhoKfp9brrrrsanurWE92+rZUyx5MbK+Ct4ZrG8gpNCE0ALr6qh4wEDUnU7LBPepp99uzZSfBf81/EvVbUq8Mn7o4ZfuELX7BzzjknmcQ5radCK/VM6xmhSY5b6UGifbRvWrnPO++8xDBoJV+vl/bVfBjXXnutff/730+MLN/WiWWvmhCqq8w+GWAh63bovRMcyRMCEIAABCAAAQhAAAIQaCRQhRgZJgQmRKmeDVUQO3VoPagNu/5i13ir4hsE0gkomK0n2+OJkdNTd3atAv8ahknDMWlYJh+aSSZBGDxXUFnDy2y//fbJsDwKrI71JVNAT4RreCaZHGN9hSaEhmNS3XbaaafS8zmkHV/11vA5mgcjfvk8BTI5vvKVryS9BnTc2KyI9xvrdzcjNDeEemS0+lI5NUSSnsw/4YQTSk163eqxOr1fL5sQqruuJRlj6j2EAdFpNZA/BCAAAQhAAAIQgAAE2kegCnE5TAhMCEwINIAGKqaB9t3myAkCvUdApoGG2xnLE/JptdJ4/+14yRTQ0EV6e55DQ0PtyDozj7feeqvUUEWZGYxhQzvqJjNJ8330+0smmuaL0PvZZ5/t2eqo99DChQt7tnwUDAIQgAAEIAABCEAAAhBoJIAJ0SOBu+eXLDW9q3BCqEN/PXHO+eJ89aIGGm9VfIMABCAAAQhAAAIQgAAEIAABCEAAAhDoVwK9GHtqtkz0hOgRI6XZE0d6gt9oAA1kaaBfb6qUGwIQgAAEIAABCEAAAhCAAAQgAAEIQKCRQFb8p5/WY0JgQtCDBA2ggYppoPFWxTcIQAACEIAABCAAAQhAAAIQgAAEIACBfiXQT2ZDVlkxISoWfMw60aznqXk0MHE00K83VcoNAQhAAAIQgAAEIAABCEAAAhCAAAQg0EigCjE9TAhMCJ6CRwNooGIaaLxV8Q0CEIAABCAAAQhAAAIQgAAEIAABCECgXwlgQvRI4I6JqSfOE95VuOioA3rttAb69aZKuSEAAQhAAAIQgAAEIAABCEAAAhCAAAQaCXQ6jtSN/OkJ0SNGSjdONscg+I0GJoYGGm9VfIMABCAAAQhAAAIQgAAEIAABCEAAAhDoVwJViOdhQmBCMBQPGkADFdNAv95UKTcEIAABCEAAAhCAAAQgAAEIQAACEIBAIwFMiB4J3DEc08R4ursKFxx1QKvd0EDjrYpvEIAABCAAAQhAAAIQgAAEIAABCEAAAv1KoBuxpE4fg54QPWKkdPpEkz/BbzQwcTTQrzdVyg0BCEAAAhCAAAQgAAEIQAACEIAABCDQSKAKMT1MCEwIhuJBA2igYhpovFXxDQIQgAAEIAABCEAAAhCAAAQgAAEIQKBfCWBC9EjgjuGYJs4T3lW46KgDeu20Bvr1pkq5IQABCEAAAhCAAAQgAAEIQAACEIAABBoJdDqO1I386QnRI0ZKN042xyD4jQYmhgYab1V8gwAEIAABCEAAAhCAAAQgAAEIQAACEOhXAlWI52FCYEIwFA8aQAMV00C/3lQpNwQgAAEIQAACEIAABCAAAQhAAAIQgEAjAUyIHgncMRzTxHi6uwoXHHVAq93QQOOtim8QgAAEIAABCEAAAhCAAAQgAAEIQAAC/UqgG7GkTh+DnhA9YqR0+kSTP8FvNDBxNNCvN1XKDQEIQAACEIAABCAAAQhAAAIQgAAEINBIoAoxPUwITAiG4kEDaKBiGmi8VfENAhCAAAQgAAEIQAACEIAABCAAAQhAoF8JYEL0SOCO4ZgmzhPeVbjoqAN67bQG+vWmSrkhAAEIQAACEIAABCAAAQhAAAIQgAAEGgl0Oo7UjfzpCdEjRko3TjbHIPiNBiaGBhpvVXyDAAQgAAEIQAACEIAABCAAAQhAAAIQ6FcCVYjnYUJgQjAUDxpAAxXTQL/eVCk3BCAAAQhAAAIQgAAEIAABCEAAAhCAQCMBTIgeCdwxHNPEeLq7ChccdUCr3dBA462KbxCAAAQgAAEIQAACEIAABCAAAQhAAAL9SqAbsaROH4OeED1ipHT6RJM/wW80MHE00K83VcoNAQhAAAIQgAAEIAABCEAAAhCAAAQg0EigCjE9TAhMCIbiQQNooGIaaLxV8Q0CEIAABCAAAQhAAAIQgAAEIAABCECgXwlgQvRI4I7hmCbOE97/P3vv9nPLVZ758hfFAsQtERcxF7ndseE26WYtLkKIJUNygZvDvgmnLUVtEEiw2oKdpHcQNsrOVrc76YCNkEGKIICMQzgYmQCOHGyIY1heXq6t5/vyLL9reFTNqjmrxhw1xq+k76s5q8bx9751GO8zR1ULBx19wF+39oG9XlRpNwQgAAEIQAACEIAABCAAAQhAAAIQgMDtBLaOI5Uon5kQlQgpJYxNHQS/8YE+fOD2SxXfIAABCEAAAhCAAAQgAAEIQAACEIAABPZKoIV4HiIEIgSP4sEH8IHGfGCvF1XaDQEIQAACEIAABCAAAQhAAAIQgAAEIHA7AUSISgJ3PI6pj193t3DA0Qd8tYQP3H6p4hsEIAABCEAAAhCAAAQgAAEIQAACEIDAXgmUiCVtXQczISoRUpYY+v6PfXx47KtfW/zr9Z/+7Onh6tW3Z/M++NAXhve+933Dz5/9RbbcXF61Q39L2p5LqzpVt9qQ2882Avf4wDIf2OtFlXZDAAIQgAAEIAABCEAAAhCAAAQgAAEI3E6ghbgYIsTORAiLAXfddffwnSe+Oxm0V3D/Qx/+yK10zpsTMLYQIVTma1/7uqzoEQ8eRIhlAebIjs+wy/nA7ZcqvkEAAhCAAAQgAAEIQAACEIAABCAAAQjslUAu9rO3bYgQQYRwMFyB86V/JX/FbzHh0CwE9efatQcu+qL2Od8Xv/ToxcyDOX20YOG8/i5HT2dCOI3L1awLbXNabz9mPUd02dvBR3sRELbygb1eVGk3BCAAAQhAAAIQgAAEIAABCEAAAhCAwO0EtooflSwXESKIECXBH6rLswjWCNhLONDjjp780VOrP44pti8nFKjuKEbk+m3xp6SQk2sH2xAFWvGB2y9VfIMABCAAAQhAAAIQgAAEIAABCEAAAhDYK4EW4lWIEBWLEFPvaBhzPj2i6cqVq7ceweR0EgMsGMTZDN4vASBXn8qTuOC8XnsWxKHZGGPlul6tESEI/kd/4PPp/rDXiyrthgAEIAABCEAAAhCAAAQgAAEIQAACELidQAuxMkSInYkQh4L6qQhhEWGLmRCH2pKKCxIsLGIsXeeEkxYOQPpwesAdhq9mePulim8QgAAEIAABCEAAAhCAAAQgAAEIQAACeyXQQuwLEaJSESLnXBYU9J4HBfhzaeI2iQTxUUh+Z4MC+i5rSgyIMyNiXtfhbXPL8OwJ51f79OfvWqtfc1+mHfPx+dWBaJj0y2SvF1XaDQEIQAACEIAABCAAAQhAAAIQgAAEIHA7gRZifIgQOxEhPKsgCgNLHdCigUQIfVZZWs8pJ+adkz6XJhUh9ILs9NFREiXufde7L95foTLWqDfXFrb1G6Dvwfa3X6r4BgEIQAACEIAABCAAAQhAAAIQgAAEILBXAi3EshAhKhQhJBJMzS6Ysy/OgMg5ql5SrWD/oXc6OK/FAAkHEi+OeTxSKkKobIkOboPKTNvteo+pz21njeDQmw/s9aJKuyEAAQhAAAIQgAAEIAABCEAAAhCAAARuJ9BCXAsRokIRInUsPzppLBCv7RIm0v0K7s8RLKbSSCTwLAyl00uq1R61Ufum8mpfnLlhEcLCwqG8Su+0ad9SRnxHaMAHXvGB2y9VfIMABCAAAQhAAAIQgAAEIAABCEAAAhDYK4EWYl6IEJWLEBYAYjA/Ot6h/TGtPzuwLxFAQoK359YK/kt40FqzFKIYoLxj7VJZ6X6LEGk97kOuLW5rrDfNz/dXgs+wgIV8gAUCEIAABCAAAQhAAAIQgAAEIAABCECgDQItxPsQISoXIRSY94yBXCDe+3P7cg6qdBYfFPyPL4FWegsCqbiQEwNSkSGtL92PCEGAPPURvm/jE21cYukFBCAAAQhAAAIQgAAEIAABCEAAAhCAQAvxM0SIykUIO5lFAAkICuZruwUIrZ1ubB3zx/TaLsHh2rUHJsUO549ih+u3SJJbRzEDEWKbgPOYzdneL28uzxCAAAQgAAEIQAACEIAABCAAAQhAAAJtEGghxocIsYEIoWB7DPSv7Sgx+H+oHosHFgjiOx3cLqeJAoP3eZ1Lo7qjyOC0Xqf7LUJo7fYcWv+P//m/XvUYKJfPut8gO7aftn0bl1h6AQEIQAACEIAABCAAAQhAAAIQgAAEINBCHAwR4j9ECL/8+VBQfGq/AvI/+9m/XLw3QcH+QwLBUgeKbVQg349WygkLfqyS2ut2KP+VK1dvvVhaZeg9DxIY1BaLA04f27emCBHL1We3dW69aX6+Twek4dMfHy7PEIAABCAAAQhAAAIQgAAEIAABCEAAAm0QaCG2hwixwUwIOYYFg1xgfanjWByIgkIsw3XlxIhcOgspYzMf1OY0zZgI4XRj6zhTQv3QX2yTPk+JEKlwkuble38Bdmx+2OZtXGLpBQQgAAEIQAACEIAABCAAAQhAAAIQgEALsTBEiI1ECDnHKQH0KATMFTIsRoyll+gQZz7McWCXKZEhzat6osiQlpfunytCRNFF9eaEi7Quvh8OTMOoH0ZcniEAAQhAAAIQgAAEIAABCEAAAhCAAATaINBCTA8RYkMRogUHoQ/9BK6xdTu2buMSSy8gAAEIQAACEIAABCAAAQhAAAIQgAAEWojZIUIgQrzq8UgtODZ9aCegji2X25LLMwQgAAEIQAACEIAABCAAAQhAAAIQgEAbBFqIjSFCIEIgQuAD+EBjPtDGJZZeQAACEIAABCAAAQhAAAIQgAAEIAABCCBCVBK4+973fzjorwWD0Iflv/qGGczwgdt9gMszBCAAAQhAAAIQgAAEIAABCEAAAhCAQBsEWoh7MROiEiGlBWeiD7cHguEBj3P5QBuXWHoBAQhAAAIQgAAEIAABCEAAAhCAAAQgcK740pr1IkIgQjCDBB/ABxrzAS7PEIAABCAAAQhAAAIQgAAEIAABCEAAAm0QWFMMOFdZiBCNBR/P5UjUy6/+8YF6fKCNSyy9gAAEIAABCEAAAhCAAAQgAAEIQAACEGgh5oYIgQjBr+DxAXygMR/g8gwBCEAAAhCAAAQgAAEIQAACEIAABCDQBgFEiEoCd7yYup5fYLdwUNAH/GnvPtDGJZZeQAACEIAABCAAAQhAAAIQgAAEIAABCOw9TqX2MxOiEiGlBWeiDwTv8YE6fIDLMwQgAAEIQAACEIAABCAAAQhAAAIQgEAbBFqItyFCIELwKB58AB9ozAfauMTSCwhAAAIQgAAEIAABCEAAAhCAAAQgAAFEiEoCdzyOqY5fX7dwQNAHfKkFH+DyDAEIQAACEIAABCAAAQhAAAIQgAAEINAGgRZiVcyEqERIacGZ6AMBfHygDh9o4xJLLyAAAQhAAAIQgAAEIAABCEAAAhCAAARaiLchQiBC8CgefAAfaMwHuDxDAAIQgAAEIAABCEAAAhCAAAQgAAEItEEAEaKSwB2PY6rj19ctHBD0AV9qwQfauMTSCwhAAAIQgAAEIAABCEAAAhCAAAQgAIEWYlXMhKhESGnBmegDAXx8oA4f4PIMAQhAAAIQgAAEIAABCEAAAhCAAAQg0AaBFuJtiBCIEDyKBx/ABxrzgTYusfQCAhCAAAQgAAEIQAACEIAABCAAAQhAABGiksAdj2Oq49fXLRwQ9AFfasEHuDxDAAIQgAAEIAABCEAAAhCAAGL0JbgAACAASURBVAQgAAEItEGghVgVMyEqEVJacCb6QAAfH6jDB9q4xNILCEAAAhCAAAQgAAEIQAACEIAABCAAgRbibYgQiBA8igcfwAca8wEuzxCAAAQgAAEIQAACEIAABCAAAQhAAAJtEECEqCRwx+OY6vj1dQsHBH3Al1rwgTYusfQCAhCAAAQgAAEIQAACEIAABCAAAQhAoIVYFTMhKhFSWnAm+kAAHx+owwe4PEMAAhCAAAQgAAEIQAACEIAABCAAAQi0QaCFeBsiBCIEj+LBB/CBxnygjUtsu724fv3G8Mvnfz3867P/Pjz9zC+Hnzz9i+Gff/YcfzDAB/ABfAAfwAfwAXwAH8AH8AF8AB/Y3Ac0BtVYVGNSjU01RmWpmwAiRCWBOx7HVMevr1s4IOgDvtSCD9R96eyzdTdeujn84t9+NfzsX345/Mu//tvF5xd+9eJw48ZLw82XX+4TCr2GAAQgAAEIQAACEIAABCAAgeIENAbVWFRjUo1TNUbVWFWfNXZlqY9AC7EqZkJUIqS04Ez0gQA+PlCHD9R3uey3RTdvvjw898sXLmY7XNzQ3XipXxj0HAIQgAAEIAABCEAAAhCAAASqJCBRQmNWzZLQGFZjWZZ6CLQQb0OEQITgUTz4AD7QmA/Uc5nsuyX//sL1W+IDsx369gV6DwEIQAACEIAABCAAAQhAYA8ENHa1GKExLUsdBBAhKgnc8TimOn593cIBQR/wpRZ8oI5LZN+t0C9HNKX1+ovMfOjbE+g9BCAAAQhAAAIQgAAEIACB/RHQWFZjWo1tWc5PoIVYFTMhKhFSWnAm+kAAHx+owwfOf3nsuwV6udfPn/v3viHQewhAAAIQgAAEIAABCEAAAhDYPQGNbTXGZTkvgRbibYgQiBA8igcfwAca84HzXhr7rl03Z8/9gl+K9O0F9B4CEIAABCAAAQhAAAIQgEA7BDTGRYg4rz0RISoJ3PE4pjp+fd3CAUEf8KUWfOC8l8Z+a9c0VWZA9Gt/eg4BCEAAAhCAAAQgAAEIQKBVAhrr8mim81m3hVgVMyE2FlIefOgLw1133T1854nvrvZr85/+7Onh6tW3D4999WuLy7z/Yx8/Kt9Unerje9/7vuHnz/5icXtaOIjoA8JFbT5wvstivzXrhV16XiYLBCAAAQhAAAIQgAAEIAABCECgRQIa8/Ky6vNYtra40zHtQYTYUIRw4F6B/znGURBfwfzXvvZ1r/qLQobLXSpCOF8sa6xdasuHPvyRW+KJ8+bqRIQgCD/mR2w/j2+c55LYb603b748/OTpX/AS6n5dgJ5DAAIQgAAEIAABCEAAAhBonoBeVq2xr8bALGUJtBBfQ4RYUYRQMD4nIExtmyMIpI42JQikadPvzntIGJEIce3aAxf9Ub+c74tfenRUKEn7mRMs0vbw/TxBari3zb3spZDaNCX1F//2K0BAAAIQgAAEIAABCEAAAhCAAASaJqCxL49lKm/iFuJ4iBArixBLHkukRzRduXL11myDQw4l4SAN9MfvekSTxIJjxBCXk4oiEhLUpyd/9NToI6CYCdF2QPuQX7K/PvuXvxz2W+ONl25e/hLkZX4J0q8X0HMIQAACEIAABCAAAQhAAAJ9ELj58uWTADQWZilHoIXYGyLEjkQIO5xnJcSZBhICogixRAxxuWOiiOqxSBHrdD5EiPqC0LYN6z5tU+4ySE36FQizIPADCEAAAhCAAAQgAAEIQAACEOiFAOPg8pZuIb6HCLFDEUJigWYsREFgjghxSCxIRQjXw0yIPgPZLZzgeu1D+cthvzX+7F9+Ody48VK/AOg5BCAAAQhAAAIQgAAEIAABCHRFQGNgjYVZyhFoIb6FCLGyCOEZA3PX8fFHEgmm8nmmg8WBMREi55jOo/c86H0PuTRxWxQ1tD3OvnBZU209ZiZGrJ/PCB/4wPE+UO4y2HdN16/fGP7lX/+tbwj0HgIQgAAEIAABCEAAAhCAAAS6I6CxsMbELGUItBAjQ4RYWYRYEnxXMH/snRB6/8PYy6Nz+VLRIDqnRAe1a0nbYn59jiKEPqssrdN0fD8+cAw72K3lA2UugdTyy+d/zaOYcAMIQAACEIAABCAAAQhAAAIQ6I6AHsmkMTFLGQJrxYvOWQ4iRIUiRAz455xDMyA8K8L7LUL8zd/+3eRsiqnZC96Xlu06vNZLqu9917tHRRKnY01QHR84jw+UuQRSy78+++/DC796ERAQgAAEIAABCEAAAhCAAAQgAIGuCGgsrDExSxkCLcTXECEqFCEkKHjWgsWFOOsg7rcT5rZpnx+dFB/d5Dxaa7vEh3S/ZmFYlDh2rTbFuvh8noA03PvjXuYSSC1PP8P7IPACCEAAAhCAAAQgAAEIQAACEOiPgN4LoTExSxkCLcT2ECEqEyH86CSLAjkRIfeoJm2zcGHHdFnp9rn7nS6uPUtDwgQiQ3/B7egLfK7X/mUugdTyk6d/Mdx8+WVAQAACEIAABCAAAQhAAAIQgAAEuiKgsbDGxCxlCLQQg0OEWFmEWDprIL6YWg4l8SEVDaLAYBHAIoWdMKbxNokEbk+aXmm8P7fPZcS10ll8kMDxoQ9/5GKmhdMcEj2cjnW9wWts04ZtylwCqeWff/YcECAAAQhAAAIQgAAEIAABCEAAAl0SYExczuwtxOsQIVYWIVIBYcpJ0hdMpwKDRYIoJEgIyL2zISdCuG6Xq3KUTttdttZON7aO+WN6bVd/r117YFLsGCuX7W0EvLFjfXYsdxnsuyZuuPq2P72HAAQgAAEIQAACEIAABCDQMwHGxOWs30LsDRGiIhHCwoBFBwf8PcPgz/78Ly6C/hYSogNqW257TKPPsQ6Xn6bx9yg+qE3prA2lc5q5sylcNuv6AtfYpB2blLsM9l0TN1x925/eQwACEIAABCAAAQhAAAIQ6JkAY+Jy1m8hZocIUZEIccihJBrkZkFYCJgSFfxuCc+G8KOVcsKCRQ+ldZnprA0JHrEt+h7TH+oL+9sJeGPL+mxZ7jLYd03ccPVtf3oPAQhAAAIQgAAEIAABCECgZwKMictZv4XYGyLEyiKEAvFL/nIiQM6xLCJ4xoGFB9c19hgoiwNjAoHLPdQOp3N9bkfaVokWh9KkefheXxAbm+zbJuUug33XxA1X3/an9xCAAAQgAAEIQAACEIAABHomwJi4nPVbiNMhQqwsQoyJATlnSWcX5NJom2cmzHncktJHIcAzGcbK9naLDGPpJTrEmQ/Ox3rfwWrs16b9yl0G+66JG66+7U/vIQABCEAAAhCAAAQgAAEI9EyAMXE567cQv0OEWFGEaMEh6EObQWns2pddy10G+66JG66+7U/vIQABCEAAAhCAAAQgAAEI9EyAMXE567cQ10OEQIQYWnBk+tBXkB17T9u73GWw75q44erb/vQeAhCAAAQgAAEIQAACEIBAzwQYE5ezfgtxMEQIRAhECHwAH2jMB8pdBvuuiRuuvu1P7yEAAQhAAAIQgAAEIAABCPRMgDFxOesjQlQSuPve93846K8Fg9CH6V94wwc++MBhHyh3Gey7Jm64+rY/vYcABCAAAQhAAAIQgAAEINAzAcbE5azfQiyMmRCVCCktOBN9OBwchhGMSvhAuctg3zVxw9W3/ek9BCAAAQhAAAIQgAAEIACBngkwJi5n/RKxpK3rQIRAhGAGCT6ADzTmA+Uug33XxA1X3/an9xCAAAQgAAEIQAACEIAABHomwJi4nPW3FghKlI8I0VjwsYTTUAe/5scH6vaBcpfBvmvihqtv+7fa+5dfHoaXbg7DizeG4fqLw/Dr68Pwqx3/qf3qh/qjfql/516efnYYPv/IMNz36WF46weG4U3vHIY3XBmG17+t7T/1UX1Vn9V3MRCLcy+t+fxWx2uNx9K5fYf6IQABCEAAAr0TYExczgNaiMMhQiBC8Ct4fAAfaMwHyl0G+66JG66+7d9a72/eHIbrN/YtOMwNvqqf6m/p5SvfHoZ77h+GN75jGN7zqWF48NFhePzJYXju+WG4WYE4sjUP9VF9VZ/VdzEQCzERm9JLTz4/99hYmu5cx1JpX6E+CEAAAhCAAATyBBgT57lssRURopLAHS+mrvtX2S0cKPQBH9uTD2xxwaPMVxPghuvVTNiyPwL6FXgv4kMaYFW/S8yM+P5PLgPtd7/vMvjeg+Aw90gQCwkSYiMxQqy2Xnr2+fQYWOt7qWNpa9+gfAhAAAIQgAAElhFgTLyM1ymp9xSTGmsrMyEqEVLGDMR2gt/4AD6w1AdOubCRdz4BbrjmsyJlnQT0eKK1gpB7Lkcctlr0yCE9hugzD29VQzvlipFYidlWCz6/7TG/5bG0lU9QLgQgAAEIQAACxxNgTHw8u6U5l8aFakyPCIEIwaN48AF8oDEfWHoxI/1xBLjhOo4bueogcOOlbYORexMlxGPt5WMPXf7CX48fYplHQKw0K0Ls1l7w+TLH/BbH0tq+QHkQgAAEIAABCKxDgDHxOhznlFKjqLC0TYgQjQUflzoA6fmVPT7Qng/MuYCR5nQC3HCdzpASzkOAYGw+GLtm8FRB9N/74OU7EM5j5f3WqvdGiN2aQgQ+n/f5rcTCNY+l/XoyLYcABCAAAQi0T4AxcTkbtxC7Q4RAhOBX8PgAPtCYD5S7DPZdEzdcfdt/r73ncTTTwdg1Hiejxwnp1/wKprMcR0DsxHCNRzPh89M+v5UQscaxdJz3kAsCEIAABCAAgVIEGBOXIj00EbdDhGgs+NiCMkYf2vtlPjYta9Nyl8G+a+KGq2/777H3eiHvVgHHlso95WXVerGy3mvAI5hOP0LEUCxPeVk1Pn/eY/6UY+l0D6IECEAAAhCAAAS2JsCYeGvCr5TfQlwNEQIRogk1rYWDkT6UDdS3zPuVyxSftiTADdeWdCl7CwLXb5w3ILkXoUKcjl3uuZ+XUB/LLpdPL6sW02MXfP68x/wpx9KxNicfBCAAAQhAAALlCDAmLse6hRgWIgQiBCIEPoAPNOYD5S6DfdfEDVff9t9b72/ePG8wci8ChNspXkuXr3z78hFCS/ORfpqAHssktksXfL6OY/6YY2mprUkPAQhAAAIQgMB5CDAmLscdEaKSwN33vv/DQX8tGIQ+8Gt4fAAfONUHyl0G+65pLzdcn/3sZ4crV64ML7zwwvDlL395ePOb3zw888wzk8Z7//vfP7zmNa8Z7rjjjuGJJ56YTKv9d95558F0k4Wwc3MCW/wi/Np/++yFn8hX/Pe//+7Lsx75dN9/ufQx59N3CwBz18rzn/7zleHnz72wOO+hOo75Bbd+sf/go+ua8ls/GIbf/INheP3bXvn740/Oq0PpYj6Vo/KWLH/795f1z8mntKrvd/9kGJ7/1ZJaptOK6TGzIdb2efv7b/zGHcM/fOuJrM/980+eGX7rt948RH92vrnHRuqbKmuqzjR97vupbciVOXfbMcfStEewFwIQgAAEIACBWgjsZUxcC69T2nFqnKiG/MyEqERIqcEZaAPBb3ygDR845cJG3vkE9nLDNSZCSJSQOOEgcFwrjxalOSRYIELM95lzpdziufgKqCrYqqCrg5EOdMYArPfFtfbHgKwCugqyzhUUlN/+OjdPrH/u5yXPs3/62WF44zuG4ebL61lZZf72Hw2DgvteLEpou/aPLZ/8q1eLARYltO/QYkFBosIc8cJt3UKEEFOxnepv2p8tfN7+Ld8b8/FzixA+luLxJX9329Ptc4+FU9MtOZZSW/IdAhCAAAQgAIF6CexlTFwvwfktayFehwiBCMEMEnwAH2jMB+Zfxkh5CoG93HAdEiEsOBzLAhHiWHLl8r20waOYFGzNzUBQcPaYX23PyRcDrA72bilCiNvc5fOPDMN7PjU39bx0mk2QC7xbIJgSE3Ivc1Z5mqUwJWA4jWdbaD1HhFBbPOti7ZkQoiW2Yjx32cLnHcj/P37n7gsRLBfQt1+OiRTHBPPnHBsu121M2za23fm2Xi85lubamHQQgAAEIAABCJyfwF7GxOcndXoLECEqCdzxOKY2fr3dwgFFH/DFGnzg9MsbJcwhsJcbrlNFiKkZE/41+qG1Hwc1hytp1ifwYsEXUivYeYwIsTSfg71bihDiNne579PrP4pprG7PhpgSIcbySlSYEiHSfHNECLfn//zMZdlbiBB6JJMYz1228HkH8v/f/+/hi1k76UwgBfLtl4gQt7+PYsmxNNfGpIMABCAAAQhA4PwE9jImPj+p01tQQ6zp1DYwE6ISIeVUQ5Kf4Dc+gA/YB06/vFHCHAJ7ueE6VYSYYqFHNekdExIhEBqmSJ133/UXbw8Ibvmr56VigtuioG0uqOv96drB3i1FCHGbu7z1A8Pw+JNzU5+WzkH/GkQIz5yQ8PCDn2wnQoitGM9dtvB5ixCaZeBZOdoWfdN+GUWImC+mVTlRwJX//+XnHrrYFsv1TIjHvvb1C/Ej5vGMB7cn7tNntyO2QTOYdNyMHW+uT2XG9p7yecmxNNfGpIMABCAAAQhA4PwE9jImPj+p01vgeM+e14gQiBA8igcfwAca84HTL2+UMIfAXm64JEKkgSl9f/jhh0ffCeH0h4QFvcD63nvvvXgxtdZ68TVLfQR+fb2MCHEouDkWxIwB0rE06XYHe7cUIcRt7vKmdw7Dc8/PTX1aOj/6KL4rYk6Jfm/DkpkKh2ZCqC1+XNMx5c9pt9KIrRjPXbbw+dRPc8F6+6WD//LbNF/cpn327ShKxO0qy+dkiw4+1tJZR7m6Yn3OP5Yu136375T1kmNpro1JBwEIQAACEIDA+QnsZUx8flKnt2DP4oPbjgjRWPDRhmXNr+LxgX594PTLGyXMIbCXG644EyL2y49Z+uhHP3oxmyEVECQw6G9s0bsg3vKWt1wID3feeefFWqLFoRdZj5XH9u0InBI8XJLXwdIYQM3ldwDVgdVjhAQHS4/Jm2vT2La5VnnDlXVfSj1Wr98HsURIUFmesaD3NiwRL6ZEiHRGxpYihF5OLcZzlzF7nrI9DdzbB6PgkNuW5vOshZjP7XLaeAyNHVcWLWJa57fYkJbr7W5nevy4TKdz/jXWc21HOghAAAIQgAAE9kNgL2Pi/RAdb2kLMT5ECEQIfgWPD+ADjfnA+GWLPWsS2MsN1yER4hOf+MTFjAil82KBIm7zPq39GCYJF/HF1Eo/JVzEMvhcjsAaAcSpMqKokAY1p/J5nwOfS/KOBVFd5lrruVZScH/rxTMgPPNgbn0WB9RGiQpLljERwmVGMSS3bUldh9IuYbyW/WM5uQC/fddBe/tlFBjSfOn3WIfLUxpvV1npjAfty4kZY2XntufK1bYlx6HbOGd9yL7shwAEIAABCEBgfwT2MibeH9lXtxgRopLAHS+m7vcX3y0chPQB/13bB159uWLLFgT2csN1SISwcBDFgygspOwsUDh9TOt96ayKtAy+lyUwJ0B4bBoHQjWrIQZel5aXC75OleFg71YBU9c911JbzoSIsxiWvFRabffMCQXwj32HRCp6uD1pW7YUIWqcCSEfsQDn9yvYL+OxkAoAueC//S13HIyl97E3VZfLTdug7WldbrvSOt+a67nHEukgAAEIQAACENgPgb2MifdDdLyla8eNzlEeMyEqEVLOYXzqJPiND7TpA+OXLfasSWAvN1wSGfzYG631ImnNZLBgoP0SDbxdjMaEC+2T+BDTRhFC+9PvazKnrOMIbPF8/BjElF8poHlKwNIB0BhQnSrP6bcUIZY8x36rd0I4sH/MLIZjZ05EL8vNhIjChto19hdnScQyj/lc4zsh7J8WAxS8t19GP04FgDFRIR5TUQgYS+96p+pyG9M2aLsFFB9DOoZzMy5cxinrJcfSMf5BHghAAAIQgAAEzkNgL2Pi89BZt9YW4neIEIgQPIoHH8AHGvOBdS91lDZGYC83XFFQiGJDfKRS/GxxIjebQWXdcccdF0KDueREB6WLQoXTsj4Pgesvrv9iagdA1wpa5oK3U0FPp3cAdSrtsfvEbe7y1g8Mw+NPzk09L51nHBwzi8FCQTpbYV7Nr6TKiRCv7L39kwWTNcUH1yC2Yjx32cLnc4F8+5b26VhQIF+zIqaEgaly0tkJKn8rEUJlu92Pfe3rF49hiu1239ZYLzmW5tqYdBCAAAQgAAEInJ/AXsbE5yd1egsQISoJ3PE4pjZ/zd3CAUYf8M1z+MDplzdKmENgLzdcmrngRyelIoReLC0RQYvS6MXSDz/88MVaYkRccgKE9udECJeHEBEJnu/zizfWFyHGAqPHBixzwdepskqIEOI2d7nv08Pw4KNzU89LZyFh6WOULF6cKkColbWIEGIrxnOXLXx+SjyI/nhIhLCAlwv4a5tmFqku+//YsZYrx8eR1s6v9VjbXcYf3nPvLREl5lvr85Jjaa6NSQcBCEAAAhCAwPkJ7GVMfH5Sp7fgHLGltetkJkQlQsrahqU8gt/4QL8+cPrljRLmENjLDdeYCCHxQCKEZkFo0XfNclAALJ0FoTJy253vzjvvvCVmRHbKl86ciPv5XIbASzfXFSHSx7hMBSod/HRQVcHRdPaCA6Fxu4O6ftZ+Wof3xzxpmlO/i9vc5fOPDMN7PjU39bx0Eh/S9zHkclqskGCgxTMS/D2XR9ssVkzVUYsIIbZiPHdZ2+flS/blNMBvP7MAoHNlFBhy+Sw2xLKc7hQRwsdSrP9Q292WWo6luTYmHQQgAAEIQAAC5yewlzHx+Umd3oIWYnyIEIgQPIoHH8AHGvOB0y9vlDCHwB5uuPxoJc1i0BJnQmibZj54xoPTKgDm9MoTH9Wk79qnNFN/UXiQEMGMiAv8Z/v38svrihAWAKZ8wEFQB1a1zgVrXUYMxiqd6zinCCFucxcF/t/4jmHQC5TXWiQAjL1vQds90yEVIb71g0vxYiqvBI69iBBiKrZiPHdZ2+cPBfLt2w7o2/+n8jmtjwF9t5ARjxdtzz327JDgoHLdDh+H6XGm9uXqdH/WWi85lubamHQQgAAEIAABCJyfwB7GxOentE4LECEqCdzt6XFMj331a8NrX/u62/60bYkz/fRnTw9Xr759WJpPddz/sY8flW+qzgcf+sLw3ve+b/j5s79Y1I8lfSZtv7/qx/bLbb/OJY5SDhHYww1X+qgkixBPPfXUhQBhscFCg74rjYJX3neIQ1rHofTsPw+B6xs8kmmtAGWN5YjX0uWe+9d/JNPSNrSYXo9iEtulyx593oJATizY6jiRQDEm9q1R5zHH0lJbkx4CEIAABCAAgfMQ2MOY+Dxk1q+1hdgYMyFWElJy4kIqNui7RIAxx1EQX8H8XL677rp7+M4T373IOyUIjJWt7c4XyxpLr7Z86MMfmVUnIsTyIPEYd7bDcg0fWP9yR4k5Anu44ZKQEGc7WIR46KGHbs1OsOigtRdv0yyGQwsixCFCdey/ufIjmdYITtZchngtXb7y7WG4+31Lc5H+EAExFdulyx59XjMXthQE0mPOM448YyLdv8b3Y46lpbYmPQQgAAEIQAAC5yGwhzHxecisX+sasaJzl4EIsZIIMWVICRRzAv9TZcR9FhOOmQnhvFNiiOqSCHHt2gMXgohEBuf74pceHRVKUvHkmPbFfvKZgDw+cJwPrH+5o8QcgT3ccOkl0xIcvFiEkDChz/7u90I4ndaeHXFIiECEiNTq/rzHX4avEQRdWsYpv9zWL/Y/83DdfrCn1onlMbMg3McafV6B/9+56y2DHqcUfVNCgGahMQvC1mMNAQhAAAIQgEDtBPYwJq6d4dz2tRAfQ4TYkQgh4SAN9MfvekSTxAKJBnH7ks+pWCIhQbMznvzRU6OPgGImxHGB4hZOIPShTtvPvYiR7jQC3HBd8kOEOM2PSube4jn5MYjayudTnl///Z8MwxuuDMPjT5a0bJt1iaFYiumxS60+75e7+30QWpecAWHBY+s6TzmWjrU5+SAAAQhAAAIQKEeAMXE51i3E3xAhdiRC2OE8KyHONJAQEEWIY97RoMc9Xbly9dYjmFyf6rGQEev0fkSIOgPRtg/r/uxT7jLYd03ccPVt/732/iUey3Tbr89T4UR8Tl0+/8jlY5mee/7UkvrNL3Z6DJNYnrrg8+u+mD49Zsa+r3EsnWp78kMAAhCAAAQgsC0BxsTb8o2ltxDbQ4RYSYSwMOBg/ZK1gvhLnEligWYsREFgjghxSCxIRQjXw0yI/oLYS/yRtPX5R7xQ8Xk7AtxwbceWkrclcOOl8wQlx4KVtWwXl7WWjz00DL/3wWFAiFhOVMzETgzXWvD5ssf8msfSWj5AORCAAAQgAAEIrE+AMfH6TMdKbCH2hgixkggx5QwSC9LHHOXSSySYEi8808HiwJgIkSvbefSeB73vIZcmbouihrZbZFGdLmuqrcfMxIj187m+wDY22Y9Nxi5abF+XADdc6/KktLIECMreHpTdImiqILp+zc+jmeb7tliJ2ZoChGvH52/3+a3Evy2OJduQNQQgAAEIQAACdRFgTFzOHi3E5BAhKhIhokPp/Q9jL4+WCJA+NikVDWJZEh0kCpwiDEQRQp9VltaxHj7vJ0iNrdq2VbnLYN81ccPVt/1b6D2PqbkMym752Bg9TkjvNeBl1YePGDESqzUewTRWGz6/rRCx5bE0ZlO2QwACEIAABCBwPgKMicuxbyGOhwhRoQgRA/45J9NsBM+K8H6LEH/zt383OZtiavaC96Vluw6v9ZLqe9/17lGRxOlYtx3oxr712rfcZbDvmrjh6tv+rfReL469fmPbwORWv7g+tVz1u8SLc/Vi5Xvuv/yF/4OPDsPNl1vxntP7IRZiotkPYnTKS6jntqZnnz/1mBnLX+pYmmtj0kEAAhCAAAQgUIYAY+IynFVLCzE4RIgKRQgJCp61YHEhzjqI++2EuW3a50cnxUc3OY/W2i7xId2vWRgWJY5dq02xLj7XG7TGNm3ZptxlsO+auOHqAceEXgAAIABJREFU2/6t9f7mzX7ECAVM1d/Sy1e+fRlof+M7huE9n7oMvuvxQ3oHQg/ChPqovqrPEh7EQCwkPohN6aUnnx8TD07dfq5jqbSvUB8EIAABCEAAAnkCjInzXLbY2kLcDhFiBRHCgfxjg/XK59kHfnSSRYGciJB7VJO2WbiwY7qsdPvc/U4X156loTYjMrQVuI525vO+bbvFBY8yX02AG65XM2HL/gnoV+J6pMqLN4bh+ovD8Ovr+54lofarH+qP+lVi5sMhL3j62ctHDt336WF46weG4U3vvHwM0evfNgwt/+lRS+qr+qy+67FLYnHupTWfP1VYGMtf47F0bt+hfghAAAIQgEDvBBgTl/OAFuJ0iBAriBCHHEGCwpwXU6scpU1FgygwWASwSOG6Yxpvk0hgYSRNrzTen9vnMuJa6Sw+SOD40Ic/cjHTwmkOiR5Ox3rfAW7sV7/9yl0G+66JG66+7U/vIQABCEAAAhCAAAQgAAEI9EyAMXE567cQi0OEqEiESAUGiwRRSJAQ4FkT0QFzIoT3u1yVo3Ta7rK1drqxdcwf02u7BJNr1x6YFDvGymV7/cFsbLRPG5W7DPZdEzdcfduf3kMAAhCAAAQgAAEIQAACEOiZAGPictZvIT6HCFGRCGFhwKKDA/6eYfBnf/4XF0F/CwnRAbUttz2m0edYh8tP0/h7FB/UptxsDqeZO5vCZbPeZ3Abu+3DbuUug33XxA1X3/an9xCAAAQgAAEIQAACEIAABHomwJi4nPVbiMchQhQQIRTszwXwlzqQysnNgrAQMCUq+N0Sng3hRyvl2mXRQ2ldpvJfuXL11uOXJHjEtuh7TL+0b6TfR3AbO+3DTuUug33XxA1X3/an9xCAAAQgAAEIQAACEIAABHomwJi4nPVbiMchQmwgQjjAr6C8/xzMP9ZpLCJ4xoGFB5efvkfC9VgcGBMIXG5OjHAZWjud63M7Yhp9Vj8PpUnz8H0fgW3stB87lbsM9l0TN1x925/eQwACEIAABCAAAQhAAAIQ6JkAY+Jy1m8hJocIsYEIsbZjeGbCnMctqe4oBMwVPywyjKWX6BBnPqzdR8rbT4AbW9Vvq3KXwb5r4oarb/vTewhAAAIQgAAEIAABCEAAAj0TYExczvotxOIQIXYgQrTgaPSh/sA1NmrHRuUug33XxA1X3/an9xCAAAQgAAEIQAACEIAABHomwJi4nPVbiNkhQiBCDC04Mn1oJ4COLU+3ZbnLYN81ccPVt/3pPQQgAAEIQAACEIAABCAAgZ4JMCYuZ/0WYmWIEIgQiBD4AD7QmA+Uuwz2XRM3XH3bn95DAAIQgAAEIAABCEAAAhDomQBj4nLWR4SoJHD3ve//cNBfCwahD6f/ChyGMOzdB8pdBvuuiRuuvu1P7yEAAQhAAAIQgAAEIAABCPRMgDFxOeu3EOdiJkQlQkoLzkQfCP7jA3X4QLnLYN81ccPVt/3pPQQgAAEIQAACEIAABCAAgZ4JMCYuZ/0W4m2IEIgQzCDBB/CBxnyg3GWw75q44erb/vQeAhCAAAQgAAEIQAACEIBAzwQYE5ezPiJEJYE7HsdUx6+vWzgg6AO+1IIPlLsM9l0TN1x925/eQwACEIAABCAAAQhAAAIQ6JkAY+Jy1m8hVsVMiEqElBaciT4QwMcH6vCBcpfBvmvihqtv+9N7CEAAAhCAAAQgAAEIQAACPRNgTFzO+i3E2xAhECF4FA8+gA805gPlLoN918QNV9/2p/cQgAAEIAABCEAAAhCAAAR6JsCYuJz1ESEqCdzxOKY6fn3dwgFBH/ClFnyg3GWw75q44erb/vQeAhCAAAQgAAEIQAACEIBAzwQYE5ezfguxKmZCVCKktOBM9IEAPj5Qhw+Uuwz2XRM3XH3bn95DAAIQgAAEIAABCEAAAhDomQBj4nLWbyHehgiBCMGjePABfKAxHyh3Gey7Jm64+rY/vYcABCAAAQhAAAIQgAAEINAzAcbE5ayPCFFJ4I7HMdXx6+sWDgj6gC+14APlLoN918QNV9/2p/cQgAAEIAABCEAAAhCAAAR6JsCYuJz1W4hVMROiEiGlBWeiDwTw8YE6fKDcZbDvmrjh6tv+9B4CEIAABCAAAQhAAAIQgEDPBBgTl7N+C/E2RAhECB7Fgw/gA435QLnLYN81ccPVt/3pPQQgAAEIQAACEIAABCAAgZ4JMCYuZ31EiEoCdzyOqY5fX7dwQNAHfKkFHyh3Gey7Jm64+rY/vYcABCAAAQhAAAIQgAAEINAzAcbE5azfQqyKmRCVCCktOBN9IICPD9ThA+Uug33XxA1X3/an9xCAAAQgAAEIQAACEIAABHomwJi4nPVbiLchQiBC8CgefAAfaMwHyl0G+65pDzdcaiN/MMAH8AF8AB/AB/ABfAAfwAfwAXxgfz5Q+4hbPsVShgAiRCWBOx7HVMevr1s4IOgDvtSCD5S5BFILN1z4AAQgAAEIQAACEIAABCAAAQj0SoAxcTnLtxCrYiZEJUJKC85EHwjg4wN1+EC5y2DfNXHD1bf96T0EIAABCEAAAhCAAAQgAIGeCTAmLmf9FuJtiBCIEDyKBx/ABxrzgXKXwb5r4oarb/vTewhAAAIQgAAEIAABCEAAAj0TYExczvqIEJUE7ngcUx2/vm7hgKAP+FILPlDuMth3Tdxw9W1/eg8BCEAAAhCAAAQgAAEIQKBnAoyJy1m/hVgVMyEqEVJacCb6QAAfH6jDB8pdBvuuiRuuvu1P7yEAAQhAAAIQgAAEIAABCPRMgDFxOeu3EG9DhECE4FE8+AA+0JgPlLsM9l0TN1x925/eQwACEIAABCAAAQhAAAIQ6JkAY+Jy1keEqCRwx+OY6vj1dQsHBH3Al1rwgXKXwb5r4oarb/vTewhAAAIQgAAEIAABCEAAAj0TYExczvotxKqYCVGJkNKCM9EHAvj4QB0+UO4y2HdN3HD1bX96DwEIQAACEIAABCAAAQhAoGcCjInLWb+FeBsiBCIEj+LBB/CBxnyg3GWw75q44erb/vQeAhCAAAQgAAEIQAACEIBAzwQYE5ezPiJEJYE7HsdUx6+vWzgg6AO+1IIPlLsM9l0TN1x925/eQwACEIAABCAAAQhAAAIQ6JkAY+Jy1m8hVsVMiEqElBaciT4QwMcH6vCBcpfBvmvihqtv+9N7CEAAAhCAAAQgAAEIQAACPRNgTFzO+i3E2xAhECF4FA8+gA805gPlLoN918QNV9/2p/cQgAAEIAABCEAAAhCAAAR6JsCYuJz1ESEqCdy1/Dim+z/28eGxr35tcZD4pz97erh69e3ZvA8+9IXhve993/DzZ3+xuNwWnJ4+1PFrfeywnR3KXQb7rokbrr7tT+8hAAEIQAACEIAABCAAAQj0TIAxcTnrtxBDYyZEJUJKzpksJNx1193Dd5747qRgIEHhQx/+yK10zpsTMJaIEEr72te+7rY/bXN7Vb725+pRGrVLgkcUPZwnLVffY9muI127zLnp0/x83y74Dds62Ja7DPZdEzdcfduf3kMAAhCAAAQgAAEIQAACEOiZAGPictZvId6GCFGxCCEHs5igGRFTDqfA/LVrD1wIAgrkO98Xv/TohQCQC/in26KQYKEgigeuX22xWOB0Ma/TaW3BIJbjPC7D6Z1W7RorT2klyEiYUbpYrsthXUcgHDuczw7lLoN918QNV9/2p/cQgAAEIAABCEAAAhCAAAR6JsCYuJz1W4ixIUJUIEIoGJ8KAnO/p7MkFLxXYP7JHz119OOYxkSCnMM77ZhoYGEhigXOk4oQLt/7x8pUPvVbMz/S/rsM1ucLgMP+/OzLXQb7rokbrr7tT+8hAAEIQAACEIAABCAAAQj0TIAxcTnrtxBrQ4SoRISIQfq5jqUZAVeuXL31CCbncxB/bEaBgvhj9XkGxdh+1+G16xoTDI4RIVS2ZlvonRZqj+vS2uVp3//4n//rQrw5NEsk5ufz+QPk2GB7G5S7DPZdEzdcfduf3kMAAhCAAAQgAAEIQAACEOiZAGPictZvIZaGCFGxCDElFsj5UhHCjymSgHDsTIhDokLq9IfSWzSIoobzjM2EcN80yyFN47wSHiyY5MSKtJ183z7wDeN6GJe7DPZdEzdcfduf3kMAAhCAAAQgAAEIQAACEOiZAGPictZvIeaGCFGBCJFzJAsKes+DAvm5NHGbgvUxGO8AvYL2LmvqEU8WCRTcX/KII4sCWsf2+POxIoTbn85ySNunfo/N+HAbWNcTHMcWZWxR7jLYd03ccPVtf3oPAQhAAAIQgAAEIAABCECgZwKMictZv4V4GiJEhSJELnC/1NkcxJc4oM8SGbSeKsf1RjFjKr32bS1CWBxRXe5T3GaBJRUrDrWb/WWC4XA+D+dyl8G+a+KGq2/703sIQAACEIAABCAAAQhAAAI9E2BMXM76LcTXECHOLEI4iD81S+HQvkOigR7NdO+73n3xnoUpp61dhDCr+Igmt3nJ7I0pBuw7T9Ac7utyL3cZ7Lsmbrj6tn+rvX/55WF46eYwvHhjGK6/OAy/vj4Mv+LvVQzERXzESbzE7dwLtqvXV2v0l6efHYbPPzIM9316GN76gWF40zuH4Q1XhuH1b+Pv3AxkB9lDdpF9ZCfZ69wL5xjOMUt8cO/+UuN5ewl/0kKgFAHGxKVID5M/Kt9LTA0R4swiROoo/mW/Au7pPn13ID7dr5kAh8SKQ/sV3Fc5h0SN2K6x9jiNRYI4e8F5opjg9F571oNnOLicnNjgRzJNledyWa8b7IZnnTzLXQb7rokbrr7t31rvb94chus36g2w7EEIET9xLL1gu3367bn85SvfHoZ77h+GN75jGN7zqWF48NFhePzJYXju+WG4WYGYVvr4qbE+2UH2kF1kH9lJ9pLdZL/SC+cYzjFLfK5lfznXeXsJf9JCoDQBxsTliLcQf0OEqEiEcKA9Buyjkx3aH9P6s4P5EiDmBOkd0E9FDpeXri0ojKXPtdl5ptrjNC7X4syUkDLGLW0z3+sMnGOX9exS7jLYd03ccPVt/1Z6r18qIj6sG2AST3HdesF269rtXEJXKX/5/k8ug9h3v+8ysI3gsPURum75spcECdlPYoTsufXCOYZzzBIf68lfSp23l/AnLQTORYAxcTnyLcTMECEqEiEsACjQ7uB7dDLvz+2L6fzZgXzlkxjwoQ9/5OIl1d6fEwgc7PcMBKcdWzv9mKBgESSWF9uVK9ftijMyDvVd5edmSeTKZ9t6wW5Y1smy3GWw75q44erb/i30Xo8ROlfgtYd6xXerBdu157tb+ose56NH/Hzm4a08knJLEpAdZU/ZdauFcwznmCW+1au/bHneXsKftBA4JwHGxOXotxB/Q4SoSISwQzlwLzHCwXsH4ceC/c6rdcwf02u7Zgtcu/bArUc35QQN15XbF+vR55xgENOojFQcOCRCpPUfqkP1HSoztonPdQbOsct6dil3Gey7Jm64+rb/3nt/46X2Aiw1ChvivPaC7dr13S385WMPXf56Xo/2YWmHgOypWRGy79oL5xjOMUt8qnd/2eK8vYQ/aSFwbgKMictZoIWYGSJEhSJEdCwH5Oc8TimKD0qfBv9VrtMcEhgkfkQRJLZJ+6K44dkQ6eOQLAxYSHEZ3h7LiG1L2+30aTkuL+aNsyfifj6vF+CGZf0sy10G+66JG66+7b/n3vceMCgtVqwZoMB27QYH7Zdr+osC1L/3wcv3C+z5nEXb8wT03gjZd00hgnMM55i8t+W34i+X/rLmeTtPmq0QqJcAY+JytmkhFocIUakI4cC+hQAH4tMAvZzQMwWiUKH8V65cvfX4JQXwY4Be32P6nDNbsFC6+Ke2pOljGw6ldV9iOn9OhQnV47bm6o3tmJsu5uFz/QF1bLTcRuUug33XxA1X3/bfa+97fWSCA7znWq/xyAZs135w0P65hr/oUT36pbwC1SztEpB9Zec1Hs3EOYZzzJIjBX+53V/WOG8v4U9aCNRCgDFxOUu0EBtDhKhMhHAgXUH5XEDe4kROjIgO6XQO7o8F8FXHoTSxXD4vDwjDDGalfaDcZbDvmrjh6tv+e+y9XhrpICfr8izE/9gF25W317mPkVP8RS8t1jsDeATTsUfcvvLJzrL3KS+r5hzDOWaJ1+MveX855by9hD9pIVATAcbE5axROq60RX2IEBWIEFEIyAkPOcNbZBhLL9EhznzIlcE2guP4QJs+UO4y2HdN3HD1bf899v76jfyg+dzB1l7qF/9jF2zXn++e4i/33M9LqI891vaaTy+rlt2PXTjHcI5Z4jv4S95fTjlvL+FPWgjURIAxcTlrtBC/Q4SoQIRowZHoQ5vBbOy6T7uWuwz2XRM3XH3bf2+9v3kzP2DuRQCopZ+yw9IF2/Xru8f4y1e+ffl4nqV+Rvr9E9BjmWT/pQvnGM4xS3wGf5n2l2PO20v4kxYCtRFgTFzOIi3E5xAhECFe9X6HFhybPuwzeI7d1rFbuctg3zX1esP12c9+dnjzm988PPPMM69ygBdeeGG4cuXKoDSlF7VHdefaVbotNda35a8Wf/7cC8N/+s9Xhte85jXDtf/22SYe+eQ+/dZvvXn45588s1qfjvmVZCnbyX76+43fuGP4h289cavPsmm6LYo64iNO9/2X99/K87//7ssXZbnMuJ7jI+avfHPSx/bEz+qH2q72xO3+HOtxG8fSOk+6VvopPmn6Jd+P8Rf9Gv7BR7c7C/3t3w/D6992+98ff/KV+rxf69zy/K+G4Xf/5PJPn7U8/eww/PYf3V6m61Bap8uV522f/KvL/HPTO19cu22xP3F//Kw0x9T1rR8Mw2/+wTCM8Yl1LP0sux8zG2LLc4zPDz6+tI7nVR+Duoboc+748PnEx6bzxDL9OZadK8vbXObc9M6XrnXem2q70x97nlD57tsW55ljzjFb+kvOtmm/dU0wk7hObemypuxjP7Bv2V6nrI9huvRYJz0EaiLQ65j4HDZoIV6GCIEIgQiBD+ADjfnAOS6IPda55xsuiwVx8Db2+f3vf/8t8zpf3CbBQcF/7fP+MRFC+cbqObTdddxqTPgg4UHCyJ133jl8/etfD3v4KAJbP7vZgV7ZcGqwf8qgvnReBy/SoMYa7VjyzOgtbefgVhrkV9Dwd+56yy0hQvvTIFDk4CBjToRIyzZX+cpU0OdUn4r5x+pyW6LPOrg11Tb33cErlT/Fx+mPXS/xFwXz3/iOYbh5wvtHxs6aDp5LLFA9cZEA4MD9KSJELqhvccHlx3r92eKBhAsF+NXWJUvMrzKm6tK+pQKJ2mJ+zruFCCG7y/6pfaZYbHWO8fGVO/50fOoco3OH08XjMD1WfKz5uHSe3PnZaafKU/k+/+Xal9af+x7zT9Xl9iw9T/i8GsvWNtWr/ufadOy2JeeYrfxFbTfT9LqhfqfXpNRu9om43dsiw5SR7WPfSvcf+30J06njk30Q2AOBPY+J98A3thERopLA3fe+/8NBfy0YhD6s80twOMKxZx+IFyo+b0dgDzdcX/5y/tfIuYB+FBPGqD3xxBPDHXfcMahcLRYdLEr4+5gIMVautivP2AyLqXwWIHJ9UjvdtqkyWt/30saPYnKQ+g/vuXfTYOyxwYBj8jl4kQtyHVNezCN7zF22sp2CPXMD57avAoexH/7sYJnK9DYHdtJgUrp/LPDjOo/xKbXDQSeVE4NSrl9r1xH7NcfuTuP+LmEZ65/7eYm/fP6RYXjPp+Z61/x0DqBPBedd2toihMr1TImx+t2+3//TSxFCwsXcRe21cOFycvV4n9K7PTnRJFevynNaiypbiBCqW/aXH8xdtjjH+BiZc/50Wh+zuePC5xOfL5xnrHzvHyvT5yztVxk+lnN1p9sscKotsRzVGdO6DS57yXkizRvL3eLzknPMFv6iPi3hM3ZeT+1hjmN+oHpT31qL7xKmc49V0kGgVgJ7GBPXym5pu1qIcTETohIhpQVnog8E/vGBOnxg6cWM9McR2NMN1xxxYI4IkaaxAJCKElMihPbl9mtbToQYSy+rWRQZExo0K0Jl5gSK46y+z1wvbvhCag/yFcj5y889dBHwddBlrcH8OcqJ/VJgY802yB5zly1s56CLAjlz+pUL1sd8DvxEu8+pQ+lzQcTI/lSfGgtWuY5ccGosT+xz/LwkeBbzzf28xF/u+/T6j2LyLIHcDIicH28hQqieqXId2P+zv7l8rNPctqbtt9CQEyFi2qUiRMzrtm4lQuiRTPKDucsW55glx9DUsehjxOcTrbXNeXLnD+exWKC2eJvXLu+/3v+JC8FyriDr/F773Jc7jziN10vOE2rfsW1yfUvWS84xW/iL7ZGzVa4fU/4Vryv2kyn7uG6tc3Udu20J07nHKukgUCuBPY2Ja2U4t10txNsQIRAhmEGCD+ADjfnA3IsY6U4jsKcbLgXr9agirb0ouK9fCE/9xeB9TsgYm2mRlhnLefjhhy9mU6RCRE6EcPkf/ehHL2ZduO1ae9+YAOG0bndsg/f1sr7+4vRLFI8dZCufB/Aa+DsgMxYY8n77Ry4wkKbJBWJcp8tJ64sBCrXL6bTOBRocqHA61fnY175+EZxKyz6FlfPKHnOXLWwXgzRu09RaPHN2cB7bTOV6m200FVQaCxI67xyfcn1j6+gLMc1Y3Urj+qfaHstSO6f4xLTHfF7iL2/9wDA8/uRc75qXzoH5ubMLpsQC1WhRwzMDtG1OUD+XL+a18CABQY88OibI777uWYSQ/eUHc5e1zzE+n+bO7zn/n5Pex6TWKsN5Dp2fc+c65/Ux63PE3OM99sHnvjl9XXKeUNo5Zca2nPJ5yTlmbX9Ru3N2muqPbWZ/cFrb1n7h71MsU99yWaeulzCde6ySDgK1EtjTmLhWhnPbhQhRSeCOxzHV8evrFg4I+oAvteADcy9ipDuNwJ5uuBTgT4Pw6bZD3x30VzotDu77+9i2HGWXpbUXlRNnQniWQyzfaSU8KGAc83ufy3ZAOa5j+U7fw/rX17cTIdLAylhwIBf01Tb90t2DfQcDVKa3KYigX6tqrW1p+Q4yOOgQ08j2MbCkcrUtBi4cRIr5XabSxu1u06lr2WPusrbt3N+poEzaPzF0wC7dp+8uM9rNtoz807y5fEoz16fS8nLfU39xmqn22Vdjf5wvt07bm0tzyrYl/vKmdw7Dc8/P9a556Zb+cn8rEUKtlThgscGtd30WSeYKCc4f13PzzhFNYrnx81KeMe+cz7K//GDusvY5Zunx4/Pt1DnJx6vP3c5z6PycO3el7fN5aKr+seN3Sd655wmXqfTut+9jjmnjWNvj9iXnmLX9xf1d0rex87rL8rnbfjJVthnbtyKXUz4vYTr3WCUdBGolsKcxca0M57arhVgVMyEqEVJacCb6QAAfH6jDB+ZexEh3GoG93HD5kUlpMF/fozAx9d2CgwbCLic3u8LpnGaKsISEKAooj79bgMjNcrAA4UF5us7lcTvSOr299fUpA+mpvB7wxwF+GuBx/kMBmFxZzuu1y04D297uwIMDFP6e5o/bx9rl9hwKcrnspeu5Pre03EPpU1aH0mt/LpAX85lV5OrATmqrXL7oPy4rbjumza7HvpAGmNy+dLvyLa1vzIfchjXWc/3lDVfWfym1Av9+Z8KcdlgUGJuJkJvRMDeon2tLus3lp2LFnLa3IELo5dTyg7nLGv4Zy/CxNXXsx/THBIqd59D5OXf857Ydewznzlexb/Hz3Dpcpu5tcufBuC2Wf+rnc/nL0vOt+pmzoblFn7CfTDGzv+auBaWYzmVPOgjUSmAvY+Ja+S1pVwvxNkQIRAgexYMP4AON+cCSCxlpjyewlxuuXNBeswUU9E8D+Ol3ixRxdoEFBpXr/aa4RIRwWs9miCKEPk+JCa5v6VqCjNqsd0X0tJw6kB7L78F7DDZ50J/+cl4BGPnX2EDfZY3tVxtURgwwuF0OPjjQkAtQKG2aLv3u8rR2P3L1xXTHfp7rf8eWP5bv2IBPas9YvjnKPt5ue0bf8D6vnc920/ZcPttiqg0uM12P+YLryfnbUkZzg4tp25Z8n+svegzR2ksa5D9UfkkRYky88GwDz4441Gbvb0GEUF+W+MESP5yT1sfW1LEfy/HxHc8Dcb8+u0wfr85z6PycHv9j+Vx+PIelbch9z53Dcum0be55wuef3Pku7c9YXcds9zFwaH1M2VN53N8l7M0hvWdNy7C9l/jWVFuX7jvEkv0QaIXAXsbELfBGhKgkcMfjmOr49XULBwR9wJda8IEWLrB76MMebriieKDPnhWhzwr0RxFh7PuPf/zjixkKn/jEJy7SK50EhIceeuhVj0OysKA0Sxfl8UyIpXlJP01g6cB5TnoP7qcCJTEI5SCPgga5wNGhAI3rS4MO8bsDDQ5QOGDl/qQBo0PBD7Up11aXd8p62mKv7D2ljlxeM0iDNbm03iaeOTt7f65M2zv6gNN7neazjXN12aZT5bncuHa+1Bem2me/mFvXId+N7Tn28yseMf1pi5kQCuTXNBMiznAYExssJsT3TkyTu9zrfBJeppYx8WMqj/e5zWMzRZzu2PW5Z0IsPX583Pv8nTtGfLz6OHaeQ+dnHcPxfOJy0vOfz0WHykvb5nxTbXeeuecJ88uV6X1p+13HKeu5/nZKHbm8ZrikT2Pn9bR8+0mOpdPaJ+xb3r7Gei5T0kFg7wT2MCbeO2O3v4VYFTMhKhFSWnAm+kAAHx+owwd8kWK9LYHab7gsCEgsUHD/WBHiG9/4xnDvvfdeCBgSLaYEBteZS6NtMWB8zGfPjnA9S8qIgsu2nlFf6Ws/w1mDcwdDpmyQDvwdOHCeGPA5FKBxMCHmGQsSuJ40qOBgh9vlPowFP7R9Tn1j7RjbvuRZ0WvbbglHtz8N5Hm71+YaOTqwo7xOl66dxnayPewfubVtl5Y19n3MF1xXrn1T+3L1HPLdXJ7ER2TkAAAgAElEQVQl25b4yxbvhPDMhrmzCpx+LMjuxyVFgWBOUN9pLBC4HP3qf+xviXiiM3cLIsS53wnh88HcY9XnpKn06bnCeabOz04Ty9WxmjuvxG0+H805Rpf0de55YqpMn5viuXZOOw+lWXKOqeWaJJsdslXOB1IWqW+l+4/9voRpfXeNtAgCywjUPiZe1pu6U7cQb0OEQITgUTz4AD7QmA/Ufelsp3V7ueGKsx/i5zmiQAzcO/CvfC4nDtwPfZYIMrWo3LkzIWJbpsr0PpUd++Ltvayvv7j+i6nHgrsesE8FXJxXPuMAkbdNBRWmynS9Wo+VlQZ30u+xDAcvpoJcMf2Sz7LH3OUctkv7cihI48CYuDuv88Rt3qd1ju+Y3Zxvrv2dXuuxMm37XDBPeeKvp2N5uc/HtCtXzti2Jf7y1g8Mw+NPzvWueekc/I+iwVROB/LHRAuXZzFBZXnbVB3pDALXE8uJ7bIYMtaOmNafD5XpdHPa67TpOu1Huv/U77K//GDussU5ZukxofRT59r0mMydP9LjJz0H+Zj3NSdN7/NY7pyQpvX3Q2U6ndZzmUz1zW0Uj1j2qZ+XnGO28Jex8/RYv5akX+pbY3Uu3b6E6dxjlXQQqJXAXsbEtfJb0i5EiEoCdzyOqY5fX7dwQNAHfKkFH1hyISPt8QT2csNlwSCdCeHtCtBrSQP16fc5gf85acaIqz5EiDE6p21/8ca6IsRUkMQD9TQA5O1ep8EbB1emAkCHynTZYwGKtE6lHwsMuT1TgTHXt3Qte8xd1rad2jrHfrFPOW5xv3innA7ZKrXRnDYdKjO2yZ/Terxd61xwyu0YC1TG/P485kPef+p6ib/c9+lhePDRud41P92SgL5nKMTHJsWaVFY6Q+FQUD8nDhwK5h8qM7bJn3P1eF9cH1O28x9qt9Mdu5b95Qdzly3OMYfOGekxMXVs+5iM1wZvS887LjdX/1QdyneoTJcd17l64v74ecl5Yuy8pe1LBNJY/9TnJeeYLfxlKfsxPrk+Ttnd9UbfypVxzLYlTOceq6SDQK0E9jImrpXfkna1EKtiJkQlQkoLzkQfCODjA3X4wJILGWmPJ7CXGy6LDakIoZ4/8cQTwx133DHE9z2MEZkjMMxJM1Y+IsQYmdO3v3RzXRHCg/qpgbuDMw4SffBDH714hJMH8w7yK5jgbQ4sxHIVJPiv93/iIkDkgEH6GAZt/8N77r1VvstRO1221m5TDDC7HXGb06ketz+Wc+pn2WPusrbt3PbYxxyn37nrLbd4Ks+Yzc062jGmT7e73jSQNla+26u18y6xiduX9jGWF22v9LFt9rm4LbZJn5cEF9O8c74v8ZfPPzIM7/nUXO9als7B89xsBe2LMxIczE/TWsyIadWKqaC+0upxS6rDi9OPCR1O57yqd87idqftS/O6/rR/SmdOsb0xv/fPbVPMO+ez7C8/mLtsdY7xuTV37GifzjE6pn0M6DjKndt1fKZl+LjMnQt8zKfXkVw5rttr59Xa26bWPifFc8hY+rHzRO7cl+ufec5t21g7ctuXnGO28hezTH1A7dW+eE2ynXLn9Vz/lvhWLv8x25YwnXuskg4CtRLYy5i4Vn5L2tVCvA0RAhGCR/HgA/hAYz6w5EJG2uMJ7OWGyyKEBnb+i49G8v5DsxDmCAxz0owRR4QYI3P69pdfXleEyA3oc4P0mC4GGOyHuQCCAy1OkwafVI8DEGNpvD8t321IA0ZpnQpsfe8HT108KioX5Mr1dck22WPusrbt0nY6AGaWWo/12fxi2px9VEeuXOfLBdGir6RtjN/npnOeMV/w/rRPad8dDBzrp8pRm6b2u65j10v8RcHxN75jGPRy4i0Wz3JI38GQC7iPpc0F3x3UT8vV91ygf0zMSPs8N53z7V2EkN1lf/Gcu2x9jvEx6ONf6/Qc7GMjd97IpfVxGcv05/QYVtk+x+fKct1L0jmPzx+HylX6sfOE+6z9Ltdrn+/cN6X1vjXXS84xW/uLebjPWqc2tU8t4ZErd47djuW8hOncY5V0EKiVwF7GxLXyW9IuRIhKAnc8jqmOX1+3cEDQB3ypBR9YciEj7fEE9nLDZZEhCg/qtbdrgCcBQu9M8GftS5c5AsOcNGm5/o4IYRLbrK+v/EimYwfmveeTHZYu2G5dEW1PPniMv9xz/zaPZFrqt6QvT0CPYpL9ly6cYzjHLPEZ/GXaX445by/hT1oI1EZgL2Pi2rgd054WYlXMhKhESGnBmegDAXx8oA4fOOaCRp7lBPZ6w/X+918+8kCPYdLjmNIlihMSJZReyxyBYU6atD5/P0aEUPvm/vX8YmoxvrnyI5n2FMitqa2yw9IF200HfGqy79ptOcZfvvLtYbj7fUu9jPQtEJDdZf+lC+cYzjFLfAZ/mfaXY87bS/iTFgK1EdjrmLg2jnPa00K8DRECEYJH8eAD+EBjPjDnAkaa0wn0dsM1R2CYk2aM/DEihPLMWZSudxFCnPj14nTgYO0AclreKb+OxHbntV1qyxLfT/EX/Rr+Mw/POTuSphUCsvcxsyDcf84xnGPsC3PW+EveX045b8/hThoI1EigtzHxOW2ACFFJ4I7HMdXx6+sWDgj6gC+14APnvDD2VDc3XD1Zu42+bv0s5xKB2T3XccozorFdPuCzZ3841PZT/OX7PxmGN1wZhsefbOPcRS+mCcjOsrfsfuzCOYZzzBLfwV/y/nLKeXsJf9JCoCYCjInLWaOFWBUzISoRUlpwJvpAAB8fqMMHyl0G+66JG66+7b/X3r/EY5k2ebHnoYCyuJ+6YLt80OcQ+z3uX8NfPv/I5WOZnnv+VM8jf80EZF89hkn2PnXhHMM5ZokP4S+3+8sa5+0l/EkLgVoIMCYuZ4kW4m2IEIgQPIoHH8AHGvOBcpfBvmvihqtv+++59zdeun3gvMcg7Z7aLN5rLdiufd9d018+9tAw/N4HhwEhYq0jsK5yZFfZV3Zea+EcwzlmiS/hL5f+suZ5ewl/0kKgBgKMictZARGiksAdj2Oq49fXLRwQ9AFfasEHyl0G+66JG66+7b/33hM4KBNo2iIwge3K2O4cQtcW/qIAtX4pz6OZ9n7Wvr39sqfsuqYA4Ro4x3COsS/MWffuL1uct+dwJw0EaiHAmLicJVqIVTETohIhpQVnog8E8PGBOnyg3GWw75q44erb/i30nkcpbBto2vLRDNhuW9udQ4DY0l/0qB69M4CXVbdw5r60o+y5xiOYxohwjuEcM+Ybue29+suW5+0cZ7ZBoEYCjInLWaWFeBsiBCIEj+LBB/CBxnyg3GWw75q44erb/q30Xi9RvH6jvWDLOYLIrlM8S7ycEtu14bel/EUvLb7n/stfzz/46DDcfLmVs1gf/ZC9ZDfNfpAdT3kJ9VxinGM4x8z1FaXryV9KnbeX8CctBM5FgDFxOfKIEJUE7ngcUx2/vm7hgKAP+FILPlDuMth3Tdxw9W3/1np/8yZihEWEY9cKSohj6QXb7TNQeC5/+cq3L4PYb3zHMLznU5eBbT3aR+8XQJgoffTm65MdZA/ZRcKD7CR7SXyQ/UovnGM4xyzxuZb95Vzn7SX8SQuB0gQYE5cj3kKsipkQlQgpLTgTfSCAjw/U4QPlLoN918QNV9/2b7X3+iWjHi/w4o1huP7iMPz6+j6DL8cKCXPziYv4iJN4idu5F2xXr6/W6C9PP3v5OJ/7Pj0Mb/3AMLzpnZePbHr924aBv/My0KOWZA/ZRfbRY5dkr3MvnGM4xyzxwb37S43n7SX8SQuBUgQYE5ciPTTxBBNECESIJhyZ4HcdwW/sUIcdyl0G+66JG66+7U/vIQABCEAAAhCAAAQgAAEI9EyAMXE567cQb0OEQIRAhMAH8IHGfKDcZbDvmrjh6tv+9B4CEIAABCAAAQhAAAIQgEDPBBgTl7M+IkQlgTveCVHHr69bOCDoA77Ugg+Uuwz2XRM3XH3bn95DAAIQgAAEIAABCEAAAhDomQBj4nLWbyFWxUyISoSUFpyJPhDAxwfq8IFyl8G+a+KGq2/703sIQAACEIAABCAAAQhAAAI9E2BMXM76LcTbECEqFyHu/9jHh8e++rXFj8v56c+eHq5efXs274MPfWF473vfN/z82V8sLrcFp6cPdQTKscN2dih3Gey7Jm64+rY/vYcABCAAAQhAAAIQgAAEINAzAcbE5azfQgwNEaJiEcJCwl133T1854nvTgoGEhQ+9OGP3ErnvDkBo6QIobpe+9rXZf9ybdNB5bYrn0SYsQNNZUc2x+YbK5/t2wXJYbst23KXwb5r4oarb/vTewhAAAIQgAAEIAABCEAAAj0TYExczvotxNEQISoWIeRgDqxPBeOVTiLEtWsPXAT7FZx3vi9+6dGLWQ9jQkDcPiYKnOLoFiHSst2+KCK4Hu9T23L7nW5KhFiSz+Wx3jYwDt9yfMtdBvuuiRuuvu1P7yEAAQhAAAIQgAAEIAABCPRMgDFxOeu3EFNDhKhAhHCgPgoCcz+nwXYF+/WopSd/9FQVj2Ny31IRwgdPKiRou0WIK1euXogQY4+OSvMem89tYV0uSA7rbVmXuwz2XRM3XH3bn95DAAIQgAAEIAABCEAAAhDomQBj4nLWbyGOhghRiQgxFmifcjI9okmB+vRRTQr4W8TIBf8VvD+mvqm2jO07JEJoBofaEttjMUHbNJNDfVE5aR1jIsTSfGm5fN82QA7f7fmWuwz2XRM3XH3bn95DAAIQgAAEIAABCEAAAhDomQBj4nLWbyGWhghRsQhxSCxIRQh918wIBeFPnQnhsixm6CXXEgfk9Ho0VDoDQ9udJz466pAIoXwWTSyYRBFCIoXKi/X7wJsSIZbkc3mstw+Ow7gM43KXwb5r4oarb/vTewhAAAIQgAAEIAABCEAAAj0TYExczvotxNMQISoQIXKO5IC+3vOggHouTdymgHwM1DuQr8C+y7KgkFvHmQgWDrR2HSrvz//iv28iQrh9rs9td5u8P4obapfSRzHk2HzuI+syAXI4b8+53GWw75q44erb/vQeAhCAAAQgAAEIQAACEIBAzwQYE5ezfguxNESICkWI3COKljqbA/ISIfRZAX2tD5UzFvCP+daeCZHW6bZbhFDdqeCQ23Zsvtg3Pm8fIIfx9ozLXQb7rokbrr7tT+8hAAEIQAACEIAABCAAAQj0TIAxcTnrtxBLQ4Q4swjhRxHlZifM3RZnQOScUo9muvdd7754rFFuf9yWC/bH/fp8DhEiJ8ykbc2JEHPypf3j+/ZBchhvy7jcZbDvmrjh6tv+9B4CEIAABCAAAQhAAAIQgEDPBBgTl7N+C3E0RIgzixCpE3lWgN+PkO63aJHulzAwV7QYS/f//OXnLmZMHBI1thIhJCqovzkxQdvdd6ebI0LMyZcy5vu2AXL4bs+33GWw75q44erb/vQeAhCAAAQgAAEIQAACEIBAzwQYE5ezfguxNESIikSI3K/2o5Md2h/T+rMD+hIeHLz3vnTt8kuLEHPFBLVXAojbt1a+lAPftw+Sw3hbxuUug33XxA1X3/an9xCAAAQgAAEIQAACEIAABHomwJi4nPVbiKMhQlQkQiio7lkK6UwHOZv35/blnDHOHJDA8KEPf+TiJdVOa9EhvnthbJaD82g9lsazOLTf6Q+12SJJbENum8vzPtWxRISYyueyWW8bGIdvOb7lLoN918QNV9/2p/cQgAAEIAABCEAAAhCAAAR6JsCYuJz1W4ipIUJUJELYoRwwlyDhgL6D+Vo73dg65o/ptV3B/mvXHhgVO6JwMVa+25KKId7uNiu/t6VpXbbS3nXX3beJI25/FCac3mUqj0SVmPfYfLFsPpcLlMN6O9blLoN918QNV9/2p/cQgAAEIAABCEAAAhCAAAR6JsCYuJz1W4ihIUJUKEJEx3IQf87jlByE92yKGKB3mU4zJgoonYSBtD7l+/O/+O+3vbPBj0VSHs+CiMKJtrv9aX1OH8tI2zgmQngGh+qKfXTfluZzvay3C4rDtizbcpfBvmvihqtv+9N7CEAAAhCAAAQgAAEIQAACPRNgTFzO+i3E1RAhKhUhHKR3UF9B/DTobgeMQXkF/bVd+a9cuXprhoGEhRjwzwkNLk9r16c69RfzunwJAHG/8mibynZZFiGcLq5TYcJ5DokJsf4lIsRYPtfLumygHN7b8S53Gey7Jm64+rY/vYcABCAAAQhAAAIQgAAEINAzAcbE5azfQgwNEaIyEcLigIL1FhSio1mciMH3uN+fnc5B/7GAfxQJxtK4TNbbBY1hC9s1faDcZbDvmrjh6tv+9B4CEIAABCAAAQhAAAIQgEDPBBgTl7P+mjGjc5WFCFGBCBGFgJzwkHMOiwxj6SUopLMXcuWwjeA3PtCeD5S7DPZdEzdcfduf3kMAAhCAAAQgAAEIQAACEOiZAGPictZvIXaHCFGBCNGCI9GH9gLZ2HS/Ni13Gey7Jm64+rY/vYcABCAAAQhAAAIQgAAEINAzAcbE5azfQowOEQIR4tb7G1pwaPqw38A5tlvPduUug33XtIcbLrWRPxjgA/gAPoAP4AP4AD6AD+AD+AA+sD8fqH3ELZ9iKUOghZgZIgQiBCIEPoAPNOYDZS6B1MINFz4AAQhAAAIQgAAEIAABCEAAAr0SYExczvKIEJUE7r73/R8O+mvBIPRhvV+DwxKWvfpAuctg3zVxw9W3/ek9BCAAAQhAAAIQgAAEIACBngkwJi5n/RbiW8yEqERIacGZ6ANBf3ygDh8odxnsuyZuuPq2P72HAAQgAAEIQAACEIAABCDQMwHGxOWs30K8DRECEYIZJPgAPtCYD5S7DPZdEzdcfduf3kMAAhCAAAQgAAEIQAACEOiZAGPictZHhKgkcMfjmOr49XULBwR9wJda8IFyl8G+a+KGq2/703sIQAACEIAABCAAAQhAAAI9E2BMXM76LcSqmAlRiZDSgjPRBwL4+EAdPlDuMth3Tdxw9W1/eg8BCEAAAhCAAAQgAAEIQKBnAoyJy1m/hXgbIgQiBI/iwQfwgcZ8oNxlsO+auOHq2/70HgIQgAAEIAABCEAAAhCAQM8EGBOXsz4iRCWBOx7HVMevr1s4IOgDvtSCD5S7DPZdEzdcfduf3kMAAhCAAAQgAAEIQAACEOiZAGPictZvIVbFTIhKhJQWnIk+EMDHB+rwgXKXwb5r4oarb/vTewhAAAIQgAAEIAABCEAAAj0TYExczvotxNsQIRAheBQPPoAPNOYD5S6DfdfEDVff9qf3EIAABCAAAQhAAAIQgAAEeibAmLic9REhKgnc8TimOn593cIBQR/wpRZ8oNxlsO+auOHq2/70HgIQgAAEIAABCEAAAhCAQM8EGBOXs34LsSpmQlQipLTgTPSBAD4+UIcPlLsM9l0TN1x925/eQwACEIAABCAAAQhAAAIQ6JkAY+Jy1m8h3oYIgQjBo3jwAXygMR8odxnsuyZuuPq2P72HAAQgAAEIQAACEIAABCDQMwHGxOWsjwhRSeCOxzHV8evrFg4I+oAvteAD5S6DfdfEDVff9qf3EIAABCAAAQhAAAIQgAAEeibAmLic9VuIVTETohIhpQVnog8E8PGBOnyg3GWw75q44erb/vQeAhCAAAQgAAEIQAACEIBAzwQYE5ezfgvxNkQIRAgexYMP4AON+UC5y2DfNXHD1bf96T0EIAABCEAAAhCAAAQgAIGeCTAmLmd9RIhKAnc8jqmOX1+3cEDQB3ypBR8odxnsuyZuuPq2P72HAAQgAAEIQAACEIAABCDQMwHGxOWs30KsipkQlQgpLTgTfSCAjw/U4QPlLoN918QNV9/2p/cQgAAEIAABCEAAAhCAAAR6JsCYuJz1W4i3IUIgQvAoHnwAH2jMB8pdBvuuiRuuvu1P7yEAAQhAAAIQgAAEIAABCPRMgDFxOesjQlQSuONxTHX8+rqFA4I+4Est+EC5y2DfNXHD1bf96T0EIAABCEAAAhCAAAQgAIGeCTAmLmf9FmJVzISoREhpwZnoAwF8fKAOHyh3Gey7Jm64+rY/vYcABMoTePrZYfj8I8Nw36eH4a0fGIY3vXMY3nBlGF7/Nv5aYSB7yq6yr+wse8vuLBCAAAQgAAEI1EeAMXE5m7QQb0OEQITgUTz4AD7QmA+Uuwz2XRM3XH3bn95DAALlCHzl28Nwz/3D8MZ3DMN7PjUMDz46DI8/OQzPPT8MN18u1w5q2p6A7Cm7yr6ys+wtu8v+8gMWCEAAAhCAAATqIcCYuJwtECEqCdzxOKY6fn3dwgFBH/ClFnyg3GWw75q44erb/vQeAhDYnsD3f3IZfL77fZcBaQSH7ZnXWIPsLkFCfiAxQn7BAgEIQAACEIDA+QkwJi5ngxZiVcyEqERIacGZ6AMBfHygDh8odxnsuyZuuPq2P72HAAS2JaDH8OjRPJ95eNt6KH1fBOQP8gv5BwsEIAABCEAAAuclwJi4HP8W4m2IEIgQPIoHH8AHGvOBcpfBvmvihqtv+9N7CEBgOwIfe+jyV+96JA8LBFIC8gvNipCfsEAAAhCAAAQgcD4CjInLsUeEqCRwx+OY6vj1dQsHBH3Al1rwgXKXwb5r4oarb/vTewhAYBsCCiz/3gcv3wuwTQ2U2gIBvTdCfoIQ0YI16QMEIAABCOyVAGPicpZrIVbFTIhKhJQWnIk+EMDHB+rwgXKXwb5r4oarb/vTewhAYH0CesSOfuGuADMLBA4RkJ/IX3g00yFS7IcABCAAAQhsQ4Ax8TZcc6W2EG9DhECE4FE8+AA+0JgP5C5YbFufADdc6zOlRAhAoF8CetmwnvXPI5j69YFjei5/kd/wsupj6JEHAhCAAAQgcBoBxsSn8VuSGxGiksBdy49juv9jHx8e++rXFgeJf/qzp4erV9+ezfvgQ18Y3vve9w0/f/YXi8ttwenpQx2/1scO29lhyYWMtMcT4IbreHbkhAAEIJASuOd+XkKdMuH7PAJ6WbX8hwUCEIAABCAAgbIEGBOX491CDI2ZEJUIKTlnspBw1113D9954ruTgoEEhQ99+CO30jlvTsCYEiGc77Wvfd2Q/ilfrp3HbpPAMqdvx5ZPvu2C3LCtm225y2DfNXHDdV77f/nLXx7uuOOO4YknnnhVQ5555pnhypUrg9YsEIBA/QS+8u3Lx+rU31JaWCsBPZZJfsQCAQhAAAIQgEA5AoyJy7FuIQ6HCFGxCCEHsyiggP2Uw0mEuHbtgQvhQGKB833xS49ezHpIBYXcdwkWzpfOlNA+5Um3T7XJ+5Q3JzYgQtQdyLb9WO/PTuUug33XtKcbrs9+9rMXQfkXXnjhZKOprDe/+c23AvwK9Ou7tq+xSFSQuPCa17zmtj+JDnF5//vfP9onl6E0LNsQ+OlPfzp84hOfGP7pn/5ptALtUxqlZZlH4Nlnnx0+97nPDX//938/L8N/pDJr8Z7D3OmX1rOoUQsS61fsDz66IMNE0ud/NQy/+yfD8Nt/NAxPP5tPqO3ar3RK38ryx58chte/7ZW/v51wo2/9YBh+8w9eSau8xyxm6XoPMXV61a02rLXIf849G0LH09TxN7X/xo0bwyOPPDL89V//9fCrX/3q4hygc4HOCWsuPvZbPi+bs2wxh6GZ1HI+XNPe9iuxkH/p+9Tia9CUH0/lX7LP9xGqy3/2/7Fycnn26Ms6xtXXOTaJLKJ9xOyQz5rX0npinXyGwCECexoTH+pL7ftbiM0hQlQgQkg0yIkCc7alwX0F/CUUPPmjp456HNOYCCFndztVxxLnHxMbxrYvKZu0+wuQY7PtbVb7xbOV9u3phisVISRGaKZAGuiP33OigvPF4P7UjITU1kob68h9jgJHmt/fLTKkwoT3a632j82UiOn4fBwBD2wVvBlbHNjZY4BgrE9bb3eA4VBgwe1wgCkGbrRN+RXkyC2uY04AI5d/7W0KSr/xHcNw8+V1Su5RhMj1WQKEhIFP/tWruWqb9kWRQtvi91fnevWWXB3alqvTuS2UrC1CyH/kR/Kncy1T50UHHceOOx+XPva1nhNAX9rXls/LZhwDrtomlmPBd3Mfs8tSvrWlj9cI+dOh67H9QzwOpT22r7ZTrg7Xr3W65I4J9e+xxx5bXaxL6177uxlEXz1Uh9lEu2hb/B7LcB3ivKSeWAafITCHwJ7GxHP6U3OaFmJpiBCViBDHzDDQI5quXLl66xFMdkjPWpCIkRMMJCaM1TclQqg+iR7K77rmrMfEhrHtc8okzfaBbBjvl3HNF86W2ranG64xEWJKaMjtywX/JUhEUWKpjS1sLBEMVJ9EFOV1/pygkdvmfEvbSfrbCWjQq4FtLlBwe0q+LSHggJgDkYfyKt3S4ILyyHb6m1vPoXacsv/zjwzDez51Sgm3580F5G9P0d43iwGpiKCAfzojRGnWEAA8kyKtc4qu80gAWaMNaV3yI/nTuRYH/XLHpI5tiYVjv34udU7NBTLPxWvNeh1sX3pOq+18uCYTlWUu9rucb7pO+6+ZjAW3nf6YdWyP6sstuWPB27ZoU64NW28z6yl7xDao30tFSR/riBCRJJ+3ILCnMfEW/S9ZZgsxOkSIikWIKbFAzpeKEBYJtpoJYXFD7ZoSELRfAshnPvt/Z2d4WMRwGd/4h2+96pFROfHEAkmcIaIy0gNxrNx01kiaj+/7Dbpju9ttV/JC2HNde7rhWkuESMuxKJEL9sdtYwKD84+JGJrpkIoGzjM2C8L7cyJKz/66dt8dEECEWJfsEhHCaZcEZWy3xx9//KjHPq3b28vS7vv0eo9iUok9ihC5mQ1ioe0x2G82xz56KdpfZRx69FJM77qV5/f/9PZ2xXSnfNYjmeRP51ocYM0FC3WuVCD4m9/8ZjaYqMBvLt/afXFgcsl5Y+02bFGe+rOUX43nw7XZ2Cflez/84Q8nGdlHlU6B6y18xMwPla3jQW22UAYMXesAACAASURBVKG2LbXv2izXLG+JCGEbisncxfcHOt9YgFI5LBDYgsCexsRb9L9kmS3EvRAhKhAhco5kQUHvedD7HnJp4jYF9q9effvFOx203QF7BfNdVgzep589M8L5/D2tw4H8KEjENGqr8sb8FgXUjphW290Oiw7O73qcPlef2xr7rfRLynX5rG8PYsNj3zxKXgh7rmsPN1wKxEcxQJ8V8J8zeyAN4jtP3K6yLCBoeyoYTPmHRISxRy/5PRNu71NPPXWrKNXnetI2OZ/bpEwSJd7ylrfceofFrYL4cBIBBxIUGBhbcsEuB9pkK/0C0L/IT4MLHkDnBt0uQ2mcLgYr1B4P2tNyx9qq7W7vWJuUxoEDp9E6baPLkd+6j/HXjmkZsY3uj8o0Y9cVy3B7035P9c/1quxYz1SeEvve+oFhePzJ9WpysDudARBr8HsJYhDdv9JXcN0zC/yegzRor+8xuO+yYxnapnS5RyK5/LRcl+O1y0v74j66DS4vfQySyo95Xd6S2QtuS1ybX1pfTJN+joLIGL80z9Lv8iP50zkXH/8xyOrzUTz2lM6L98djXGnjucHHr9Lo/Kl9Y+cGl+u2OJ2+e1tsn9K7fKfVWm3wMnbOGNvu85f7mZYf++o6cmu3N7ZF6Vyvy9F+f86Vk25ze5TPZaV1pHn2+N2+pWvF888/f8Eo10+nE2/bLvqI90f/GONtnk7r65TL8Pcpnmkb7Af2p6m8h/a5LLcvHmfO67Y6jdZpf91P8XSZaVnaF8tw++1/KjM9nlM+rifaw+3Mrd12lS2bq7y07bl8bIPAsQT2MCY+tm+15WshTocIUaEI4UB8DOQvdTYH6BW812eVpfWhcpwvrduzGzyLwW1MBQALHk6n+g6JEDGt0qeCg8tUOWn7c/ssQhwqNy2L7/sOvGO/V+xX28Wy1fbs6YZrqUCQs5lEA4kCFiH0Pc5wmFuHhYNUHEm/5wQKt0FrLarT6VyuBQr3wdujMOF9rI8n4ACBB9S5kjwojwPnOCD3dg+Y4+Ddg+5csETbYtpcW3J159robUof++I2xWCAggYayGvtZapuBR7cxzR97Jfq0swErd3vNODhepzP7ZsTwHDdyuv+uB6X5zTnWL/pncPw3PPr1ewAfQy+p6U7iJ4TISQaxO0O8EfBYCyI7iC/0+bakqs7bV/87vpjwF+f1c4oJqRtcr6YxkLAY49f9tEiS1pWrD/3OZatemM5sZ3Oay7el7bV6U5dy4/kT+dccseWA446x/hzPPZyebQ/nuecT+cGH8fqp/OmQUblT89BPi+m231+iedA1+e6fM7xdzN2mbntbr/bGMvXNv3ifs6Sskjb4rYqnfuiPuov5eL6lNZtdvu0rbUlZSUbuN+xr+Jme5mh1lpURvrehTFm9odoa9nnO9/5Ttb3Yxvi57R821g2PcVOaldsW8pnSX/dxlyb3N6UtXxe+bxfeWMalxn9Vu2VbdIfbyivbRTZOX2sJ5YX0/IZAmsQ2NOYeI3+nrOMFmJeiBBnFiEccPeMgGPWqRCQOqZeUn3vu959IQak+9LvFiHSdqQzE5RPQX6lUx9cjral7ZkSIXLlpsJCrh7XlxNDxupLy3UZrF8JXsOiDRbnvDD2VPeebriiQKBBjAL3MeivAH1uuwP6DuRbhHBaCxKye6xjzA9iOSrLYoLS+zFKriNXRkzj9rsM9cGCRJrX4kVsb5qG78sIOEgRB/NpCdqXDpIVPNC2NF9angfiuWCDtjlY4jq1zQN5D+5zeZ1+ztptyg3ynd8BjDjAd7/T+t2umNbleO1+uy/e7nq83d/TAIbrcDrnT/vietI2On3J9RuurPdSarU7F/hP+5MTAhwoT8WLXHljQXSXof1evM0BeAsB2j53UXlul9se63A52hYFgShAKI3q9v64z/niNpeZW1uEUFnuVyw/bjO/KOyoPs/iyJV/7Da9nFr+dM7Fx2A8znX8xXNWPF+prenxqW1KE/O43LjN/UzTurz0POty43l56lyQ7lN5sX6fh3S+0XbVq8XbzSBtn9s9d+2+qxwt7p/r8371y3Uqndsft+XyO53Lv6ikkX+2ha8J7mv0Dacxp5TvGArxcrlK47LHOB7aH+uxTWNZzi87Rx+O+Y75fGp/IwPXr3bHY8XbvXb/cmnSvL6nSPusdOk2M7J9XY9t6/pZQ2BNAnsaE6/Z73OU1UK8DhHizCJE6kQOlMfAfkxj0SLd71//p+LBku8K9luESGdCxDb4s9uqurXNgoC/O92YKDC2PS13LF0sPwofY+nTcp2fdRuBd+z4ih3PcUHssc493XBFgUACgsQFrbVon0UIPbZIgX4tCtxbhNBnzXq48847L9Irzb333nvxWKeLxP9RjoWBdH0o+K/9yuP6VKbaZIHBdXhtMUNptDh/Wm/6Pc7ccFmsjyPgQbsHurlSPHB2oEhp0sG183ngrP1a0u9Op3WujJhe+3NBgVjGoc/unwb4Y3104EZpYn25fqs+lxl5pO2I/Uj3xX47sJAGIGI9bneuzNy2tL5S3xXIXnNx0NtB+1zZDuTHwLjFgrHgfgyajwXRx8pw+j/7m8vgewzS59qXbovlqqy0b96f60/cprzirXVccjzi/vSzxYxYttLk2LvvaqOX3DbvO3W9tj8d0554rCp/ek7SsRmDj+l+54lpfMzngonpOSetP/YhTZt+j2l9jvP5zecN5dHiNvnRc6o3bnc6bc+dqy4Sz/znduqX5GqP61J2tyvycrHO5/Ou0+byx23Ov/d1akP1R/2MfmQmZjTnWqUyZNPIXKzj95Sd65nD2b6VS2ubptfetL45391XlaVyx5Zcf8f6M9V2l+800Q7e5/7ZHq47ZZGWkX5Xebltroc1BNYisKcx8Vp9Plc5LcS8ECEqEiEcxB8TAA7tzzmkRQWJERIZcmniNqcfa0NMq88K+FsAcJA/J5DkZjzMFQvG0rktsQ1uU64+t0/pnZf1K4FrWLTD4lwXxd7q3dMNl4L0EhAUhP/oRz+6SIT48Y9/fDHD4OGHH77INyYoaHsUEeb4g8WEdAaDtqudEhFy9UWBJNbj8pxH6WLZEi0sXMR8fF5OwAP3qUF7OpBWLRpE54IU6WA+/R5bOFaG68sFuzyI1z7/xba7Pu+L65guV47SOkindrodDiC47WPt9n6t3Q6lTZeY34GFWK/Te5+CG2PPg56qx+WUWtc2EyIN0ItDGjRPv5uVxYC0DAf5FSBPA/fOo33+S0UGle/Av9LEGQu5wL/b4xkLFj3UrjS/0471yfvj2m1xubl9qtvpYnuVdkldsexDn2uYCaE2xvOjg8DxmPbxp3OF96fByHi8q8x4XCtPXOI5x+Xlzg2xbT4/pfXEcvVZ+11W2gaV4X1K5z64/67D39Nzpesyj3jedblO437lynB+1+88Wnuf2pe23+liGm9rZW1ukaftYftEG6vf6X5ts49FG+mzr+e5elKG5q/6Di22ieodW1RObIPSue2xndEvXG7c78+xrkP9VV0uK+2P2xDLS/tgFrFtTuO6o33URn93Oq1Vt2ygHxaprGhn7Z+qJ5bDZwicQmBPY+JT+llD3hZidogQFYkQfuxQ+ogjO5r3p0F+70/XnjWhfBIwPvThj1y8pNrpcqLGUhHCdWit4H5OvBgTEca2p2LBVL9zfZhbrjmwbif4ji0vbVnDBbKHNuzlhksBeQXzHYz3o5TiLAEF5nPbJSp84xvfuBAE0gB/auOlIoRmU0gY8cyLtDx9V7vUzigcqJ1xxkbM5zZ6BkUqQsS0fD6NwJxBdjqQVo0eMGvwHpd0MJ9+j2nHynCbxgbrsYz42YN05YsDeLfBgQT3R+m8TeWoPTGf06UBg7F2x7a4TqVNl5h/KuDj/iggoedwq72H/nL1pfVv9b22d0KkAoL6nQbN0+9mY0EhLcNCgQSAVIRw3kNrCwqpiDBWp8qz+OE6x0QBpR3rU65dbsuUCPH5Ry5nbKi9U39xhkmuriXbangnhNrrY1DHlY/peM7w8Tu2X2XE4z2WeSho6bLjOSky9HnS56e0npjW7YhlKb2/67Pbo/IckFZfncbl+bzoc1G63+mm1qpP+dO85u22xDLMX3nTNrgt6VppW1ly/hB5WaiO/pn6iL+LU2SjPLZ5rp6U4Zw0zuM6tZ5abNPYrrH07nfqQ/YRM3DdU/1VHc6X1u38Li/XHrcl57Puk/uefo/lqW7Z4B//8R8PXufVn1x9sTw+Q+AYAnsZEx/Tt9rytBDvQoSoSISwQ1kIkBihgLq2OxCvtdONrWP+mF7bJRJcu/bAxbsccmKH8+bEhFx9Mb1mRMT6nF7bcjMT5ooFqSjhcrX2vljv3HJjOXxGiGjJB2q7WLbanj3ccCl4L3EgCgQK4ktc0FqL9lmEiMH9dLaBA/xKn1tiHbn93uZyoggy57NnWViYiHksOlhI8XdECFNffz1nkJ0bOHvArMF7XNLBfPo9ps2V4QG9Xp6pQXYapIr5089jfXEb1I+p4InaE+vL9Vt1jm2P7XGdKjNd0n6n353eLHJlOM1UPU5Tav3WDwzD40+uV5sD/rnZBK4lDc5r+1QwPw3Qp99d7lgZCtYr2P5//eVlQD4XvHcZubXb+/t/eilixL6N1alynM8ixJR4oD7FcnPt8LapOt1XpRlbxviNpZ+7XX4kfzr3Es8X3/zmN28FamO7dHzqvKHHCyk46ICj06THt4/rXBAxPbekeV2m1mna9HtM637EOn2+9GORlF+LzymPP/74xTl47Pzj+pYGRF2vylfQNZbvdsbzsPvhdrmd3h7XThPLjPv3/HmMjXiIo66ZFhLcT7O2T475k8sQPy1j6Vyu1ra/y4774meVlbNnTKPPPi7m2M79Sn3B9vf2sX6k/XW+tO6x7bHtbnc8trw/ZTTWbqU/xGmqHtfHGgKnEtjDmPjUPtaSv4WYFSJEhSJEdCwF1yUW6C8G2mMaf7Yg4PS5wL/TjM2m8P65IoTqdhv9WCa3x2vPlkjbv0QscB2xjLG2LinXbWSNCNGSD9RykWy9HXu64TokEKSCQ852Fg9OESGmZjFMzYxQ+ySQKJijGR1j73ZIy0CEyFlynW1Tg2LXkA6ktX1scJ8O2scGzt6eBk3iQHxO29xGrZ1e67i4/Vo7kJMGDNyeGCxxvrS8tI+xLn+eSpOyc7tVX1y8Pa0/ppmqJ6Yr8fm+Tw/Dg4+uV1MJEUKB9nRGgnrg7Qqye3HAXvvmtM354joKBKmQMFVmmjYVJVyHt8d2e19uPVant1v0yOXVtq1ECPmR/KmGRcelzlM6N6TnDbVPx6f3x/OH254e7z7X5MpKzzk+B6TnBp/HougxdS7wvliO26HgtdqtNFpcttqn7VPnH5eR64v7H9dOLyZaUjbaljJwfm1Prxfe57X76fK9vYW17ZL6mPucE4PsP7ahuKT5XW5k63zRX1KGzpeWF9O5HNcf96Wf3Y+pOp1nrFz7jsuY21/XnfrNnD7ap3PHgNvj/o+l9fa0fvdXa6fJ1RPT8RkCpxDY05j4lH7WkLeFmBUiRKUihH/hL0FBQXUH8nPCgh9JFIUK5b9y5eqtxy+pjCgS6HtMb2ceC+x7f27ttqrM3H5tc32xTm3L9WesPG9XGf6LooTrXlqu87FGiGjFB2q4QPbQhj3dcFmE8CyIOIvg0Gc/CmmOCDFWlmcxRL/wLA1viwKCZzSMCR7OI5FBdbqNWse6UhFCdUjMUPkspxHwYN6D9lxp6UBaaTRYjkEL58sN5p0/1qH8CprEMnJtGavH9cV1bpDuMlWX63d7HBhwoEFpYkAlTRfr8r4YNFA5+nWv1jkOzp/rU7rNfYnlO39cT9UT05X4rMf2vOdT69XkQPjUr/oddI/BcosFuUB8GjR3/liH80uccBm5tjid0xzqeSokKH3anlyZuTYq71h5sS+H2qT9uTrnzILItX9OfXPSyI/kTzUsPsZ0fsgdj4f2jx3buWCizyvpuSmeJ8VEZao9+nNabXd+rb34XJLWF8976T6Xk9arHxCov17c91if9+XWc1i4XfFcPLcep8vZKdeePW3LcVH7vT31Be3z9c8+4u/RXval1NbeHtPKl/RoQC/2rTSv9ufya7vKS+3jPkSbu47c2vVGv3XfxMFt9jZ/j+2KbZ7yG+9L26YZRNqXa4vbrHpTu4y1KS3fZXg9VY/TsIbAqQT2NCY+ta/nzt9CvAoRojIRIhesj47mQHwueJ9L52D92MwHzzBQurE0sdzcZ+U71J5cPrYR9McHtvGBc18ce6l/TzdcFiEkJKSLA/kK5vu9EWkafZ8jQkQBIFdGLEd1ff3rX7+VLBUhtE8zHtIyLVBE8UGFqB/pDIlUhEi/36qcD4sJeECsgXL650FxbiCtIEIcxLtiD9jTIIMDEq5DZcYy3I4YVFCZLs9tcT1ja6d3PSpPvqa25gIRTqf61Z5YT67fsd60rsjD+1IOyh/7HctzfW5TbG9MFz9P1RPTlfisYPkb3zEMeqnwGosD/2PvIVCg3AH6Y0UItdNBeNejIL4C/HrskkSC2A5tj4v2K5/aMrVYMIjtVHrXHYUD98nt0XpM6HB+p03Ln2pT3JfWGdsT06WfUxEl3X/Md/mP/EhtqmFx8E/Hpc4T6eIAqvbnjtn0eHd56blO5focEOuJ5fvcoP25tCrD5wSnHWtXrC89T6l85Uvb6LbHsmNbUzbxu+rItcX9SNvg9K5rTj3ue1pWbMdeP9sP4jXKfRGbse3iF9mZt7nqu/7i9SuW63Ra5+pQ2rRMpU19x2VqrfbEcvV5qc1sa5czdq1P25brr8saa4PZuy6tVY4WHxO5/rruyF95XJ/Ly+W9KDz8m6onJOMjBE4isKcx8UkdrSBzC/EzRIgKRIgoBOR+2Z9zNIsRY+klDMSZD7ky1tjmWRhLHt+0Rr2UsU3wGq5tcK3g+thFE/Z0w5UTISwqaPaAgvMK9ivwP/ayaKcfm52QqyN1BNWTigdOE0UIb9Na7VMe5R0TEVS308S8afo5bYz5+QwBCJQhcM/96z6SqUyrqaUmAnoUk/yIBQIQgAAEIACBcgT2NCYuR2WbmlqI1yFCVCBC7NmRmAXRRtB6zz5I21/tg9tc8ig1JbCnGy4F3/3IIvVDn+OsAQXrPePAYkM6K8LbVVZuORTgVx2xTpWhPBIP/BfbGOvI5dV+t8ltj3nifpev9Vj707x8hwAEyhH4yreH4e73lauPmtojIP+RH/3/7L1bzC5Zed/Zl7nMRaTkkij3RhghJTcYLgzS5CJXBiPlwgo2u60ZYYzUxpkRNIerGLDmIg0BCXYYo8xIsei2cu7YaZtmUBuNlZkY4Q6m6XaIwYTufd7ft7/TXqP/+/Lf+/nWt+r0vnV6q34l1a56V63jbz3frqrnX2stNghAAAIQgAAExiNwSO/E41EZpqQl+L4QIRAhKtdxqDNwj95gGqarDuA6blyD1xg2MMwtj1xzAofwwOVRBHK+y5Gv3eexPQrPHfme9sjhdvhXOfGbRIhYHucQgAAEcgL6iv13ns9D+Q2BZgKyG0ZBNHMiBgQgAAEIQKBvAofwTtx3m6fKbwxf0tBlIEIgQuwkQgxtmOSPsx4b2N0Gproprq1cHrjW1uO0FwIQGJLAKz9M6W3XUvrOa0OWQt5LIyB7kd3IftggAAEIQAACEBiXAO/E4/Fego8MEQIRAhECG8AGFmYD490G110SD1zr7n9aDwEI9E/ga1/fTst0617/eZNjOwJaLNsLVpeOTYtptyuln1iyE03DJLthgwAEIAABCEBgfAK8E4/HHBFiJo67773yatK+hA6hDbt//Q072GEDWxsY7za47pJ44Fp3/9N6CEBgGAKfey6l9/9WSggRw/BdSq6yD9mJ7IUNAhCAAAQgAIFpCPBOPB73Jfi7GAkxEyFlCcZEGxABsIF52MB4t8F1l8QD17r7n9ZDAALDEZBjWV+4MzXTcIwPOWfZhewDAeKQe5G6QwACEIDAEgjwTjxeLy7B34YIgQjBCBJsABtYmA2Mdxtcd0k8cK27/2k9BCAwLAFNsaO5/lmseljOh5a77EF2wRRMh9Zz1BcCEIAABJZIgHfi8XoVEWImjjumY5rH19dL+IOgDdjSEmxgvNvgukvigWvd/U/rIQCB4QloseEPP7P96v3ZF1O6eDh8mZQwPwLqd/W/Rj/IHliEen59RI0gAAEIQGCdBHgnHq/fl+CrYiTETISUJRgTbcCBjw3MwwbGuw2uuyQeuNbd/7QeAhAYj8A3v711Pr/9gyl99Etbh7Sm5NG6AAgT4/XDGCWpP9Wv6l8JD+pv9bvEB9kBGwQgAAEIQAAC8yHAO/F4fbEEfxsiBCIEU/FgA9jAwmxgvNvgukvigWvd/U/rIQCB8Qn8+OZ2Gp6PfTml930qpXd+aDs1z1s/kBL7MhhoqiX1q/pX/axpl9TvbBCAAAQgAAEIzI8A78Tj9QkixEwcd0zHNI+vr5fwB0EbsKUl2MB4t8F1l8QD17r7n9ZDAAIQgAAEIAABCEAAAhBYMwHeicfr/SX4qhgJMRMhZQnGRBtw4GMD87CB8W6D6y6JB6519z+thwAEIAABCEAAAhCAAAQgsGYCvBOP1/tL8LchQiBCMBUPNoANLMwGxrsNrrskHrjW3f+0HgIQgAAEIAABCEAAAhCAwJoJ8E48Xu8jQszEccd0TPP4+noJfxC0AVtagg2Mdxtcd0k8cK27/2k9BCAAAQhAAAIQgAAEIACBNRPgnXi83l+Cr4qREDMRUpZgTLQBBz42MA8bGO82uO6SeOBad//TeghAAAIQgAAEIAABCEAAAmsmwDvxeL2/BH8bIgQiBFPxYAPYwMJsYLzb4LpL4oFr3f1P6yEAAQhAAAIQgAAEIAABCKyZAO/E4/U+IsRMHHdMxzSPr6+X8AdBG7ClJdjAeLfBdZfEA9e6+5/WQwACEIAABCAAAQhAAAIQWDMB3onH6/0l+KoYCTETIWUJxkQbcOBjA/OwgfFug+suiQeudfc/rYcABCAAAQhAAAIQgAAEILBmArwTj9f7S/C3IUIgQjAVDzaADSzMBsa7Da67JB641t3/tB4CEIAABCAAAQhAAAIQgMCaCfBOPF7vI0LMxHHHdEzz+Pp6CX8QtAFbWoINjHcbXHdJPHCtu/9pPQQgAAEIQAACEIAABCAAgTUT4J14vN5fgq+KkRAzEVKWYEy0AQc+NjAPGxjvNrjuknjgWnf/0/p2BH70ox+lL3zhC5td503bn/zJn2zifv3rX09nZ2dN0Xe+rrxVhuvm45//+Z9X5llKM1Q9IzfVTVyqtuPj4/Rv/s2/edSWfepk/irzd3/3d9PNmzerit30jxm26dvKjLgAAQhAAAIQgAAEIHCQBHgnHq/bluBvQ4RAhGAqHmwAG1iYDYx3G1x3STxwrbv/aX07Anam//7v//7G6V8nLERn+j6O9KaaSWiQkz0vw+XLoa/zuMkZL6d8LgaofXlYTLfLuetnx77rlddXeZtvFE8UFn+3qUOpDIWpbVV95nqKpevapiziQAACEIAABCAAAQgsgwDvxOP1IyLETBx3TMc0j6+vl/AHQRuwpSXYwHi3wXWXxAPXuvuf1rcjYCf5Sy+9tHHi1zmr5dSWWNFGsGhX+tVYrk+Vk96jHaIQ4bCSCHC1hP1CLAbkwobrHflZGIlhu5Tu9uVl1uXlekqAQISoI8U1CEAAAhCAAAQgsFwCvBOP17dL8FUxEmImQsoSjIk24MDHBuZhA+PdBtddEg9c6+5/Wt+OgJ3n3/nOdzYjD6oc3XZqO94QDn8725vytnPfQoXrVlX3diTaxXLZeVkOd52Um+I0taVNqeqjpqmX8nxUtoSa//Jf/gsiRA6H3xCAAAQgAAEIQGAlBHgnHq+jl+BvQ4RAhGAqHmwAG1iYDYx3G1x3STxwrbv/aX07AhYh5Dyvc3brmpza9+7d2zjWc+e68/GX93Vf38tBHuPZce88/LuqBblYYREijo6oSlsV7jxKzn7XV/VzvKr2K442x2tqS1V9YnhXMcMcdVT5dX0Ry+EcAhCAAAQgAAEIQGBZBHgnHq8/ESFm4rhjOqZ5fH29hD8I2oAtLcEGxrsNrrskHrjW3f+0vh0BO6zlrK5ynNvpL2e4z6MTXnnoWtz0O3foO/9cLHj11Vc3CyyrDnmamGc8z/O3s71t+piXzz2aIbYl8nG8PMztKqUzm5Lo4vzqjjFvl+u8Yh84jxhfYeaitGwQgAAEIAABCEAAAusiwDvxeP29BF8VIyFmIqQswZhoAw58bGAeNjDebXDdJfHAte7+p/XtCNixLWe1NjnSc5HAcXQsiRClkuzQd77Ou04kyIWFUr4OU755Xkpf56B32rpjzLeurWbi8qIAofzj9chA50oTw+rqY1FBaaLoYL4xTPnk/efyVB82CEAAAhCAAAQgAIF1EeCdeLz+XoK/DRECEYKpeLABbGBhNjDebXDdJfHAte7+p/XtCNhZbqe4ndvRaS3Htp3ddY55l+g85Di3c97OdP923HjUtVxYiNfjuepbiutyLA64XTFt3bnTq71a/yIvw+2P4aUwO//NzWU6bi70+Hp+NMtYnuO4DPdV/lvxSmFOzxECEIAABCAAAQhAYNkEeCcer38RIWbiuGM6pnl8fb2EPwjagC0twQbGuw2uuyQeuNbd/7S+HYFchLCT3M5zO8HlzNaWX1eYHfd2/MejRYe8nFLtVEbJ2V6Kq3zrHPmudxRClI/Sxfrp3G1zOa5r6VqVU98MzM3x8rxVhq9ZPHC5paPb4XxjHF9Tm1znvLwuZcW8OYcABCAAAQhAAAIQOHwCvBOP14dL8FUxEmImQsoSjIk24MDHBuZhA+PdBtddEg9c6+5/Wt+OQMl5HR3XOo/O/lyE8G857KOAYKd8FxGiVJdSK1xmyTEf47sOsV7xetW5nfu5COFydC5yAQAAIABJREFUI4+Yh9rqsuraEvnG9KVzt6HUVtfzW9/61makiurbtKtebBCAAAQgAAEIQAAC6yDAO/F4/bwEfxsixMxFiGc+9/n00h9/q/N0OT/6qx+nJ5/81WLaZ5/7vfTxj38i3bh5u3O+SzB62jAPRzn9MFw/jHcbXHdJPHCtu/9pfTsCJWd5dHzL4W4hQTnaEW+nuB3hMY7iOQ+HV8WLtXQa5x2vxXPnJWd+06Y4Fgaa4up6bN9LL710Ka2vtREhXEe3P5bdpU51ZbqMOg66JmEC8SH2AOcQgAAEIAABCEBgHQR4Jx6vn5fgQ0OEmLEIYSHhPe95b/qzl79bKxhIUPj0Zz77KJ7TlgSMLiKE4r7lLT97aW8SMEppFFb6g1H98vwlvJTiEjac0xq2y2I73m1w3SXxwLXu/qf17QiURAillPPcX9VHB7ad4hYKqhzhztdOeKercuC7tk5X5Vh3Pi7f6aqOKr+pzJg2CgRum9ugeFVO/VxAcT3zsh3etv51Zca6xjbE86r6xjicQwACEIAABCAAAQgskwDvxOP16xL8dogQMxYhZGAWE5oc8xIhrl//ysahL4e/0/3hH724GfWQO/pLv6NgIdFD4kdJcNC1a9eefCR4+A/BgkIpjeofhQjnr9Eaqqvz0FHxmtob43O+LAc6/bl/f453G1x3STxwrbv/aX07AlVOf4fnzvLcie7f0dlu571EjOjAd3iMq1q++uqrSde82XEe0+paVXoJAL//+79/KQ/FdxuUX5vN+cdyXRflpa3UXoUrTT7ioCq/LiMzqsp03k1ty+u/aQT/QAACEIAABCAAAQisggDvxON18xJ8ZYgQMxAh5HQviQJtwvJREhICJAK89hc/2Hk6JgsEUTRoMnYLEG3SOH+Ehv2dzU39wvV1Mh7vNrjuknjgWnf/0/p2BKoc9Xa2505uh0dxwqMAPHJCIsOtW7c2IxCiQ181cnrH1TEvQ/HyPB3fYkDeulK+XZz9durnAonrkedl0cH1ytO5fk7fFM/x6455mVUsYh6IEJEG5xCAAAQgAAEIQGBdBHgnHq+/l+DfQ4SYiQhRGj3QZGBNIxIkYsTRDc5PQkFVeRpRoWtV151HPHrURZs0zr80AiLmyfk6nef0ez/9Pt5tcN0l8cC17v6n9RCAAAQgAAEIQAACEIAABNZMgHfi8Xp/Cf4yRIgZixB1YoGMLxchPMJAYsCuIyE8oqEkXlQZfJc0rmObERNV5RHej6MajsvlON5tcN0l8cC17v6n9RCAAAQgAAEIQAACEIAABNZMgHfi8Xp/CT48RIgZiBAlQ7KzXus8aPRAKU4Mk1M/ji7w6AQJBM6rbnonj2LQFEn5FE+xnNJ5lzSqZ9UIjVLehC3XUU7fDte3490G110SD1zr7n9aDwEIQAACEIAABCAAAQhAYM0EeCcer/eX4ENDhJihCOEpiywM7GJoUYTQufLSsS4vlxvFjLr4utY1TRfBoqlsrg/nxIbtYbMd7za47pJ44Fp3/9N6CEAAAhCAAAQgAAEIQAACaybAO3F/vf/w4cNUt9+7f5y67HP06yFCTCxCeCqjulEKTdeaRANNzfTUb3wkNS0EXScolOqpsLo0JYNHhDhs53apTwmbX5/2dxskpzoCPHDV0eEaBCAwNQEvhu1Fq/NjXPx76rpSPgQgAAEIQAACEIDA4RHgnXi/PqsTHfJrXQSIPO5c/HaIEBOLELkheOokOfjza/ptMSC/Lud+k1jRdF1TJSmfJlEjr0ObNG6Lyug63ZPTcpyfs5s+mWef7HcbJHVbAjxwtSVFPAhAAAIQgAAEIAABCEAAAhBYGgHeibv3aC4utP2dCwu7/p7Sj4cIMSMRwqMKqqZharpeMiRPyyQBQgJAKU4Ma7NmQy5CtEnjMpy2TV2chuM8Hd30y3z7pfttkBS7EOCBaxdqpIEABCAAAQhAAAIQgAAEIACBJRDgnbi5F9uKDE3xdhUdmtKN6dtDhJiRCGFnvgSDfKSDjMLXS9dKRhMd/hIwPv2Zz24WqXbckqjhkRga3eB4+dH5uh5t0jgPiyJVQovjcZyvg5u+mX/fNN8GidEHAR64+qBIHhCAAAQgAAEIQAACEIAABCBwiAR4J67utSZRoev1JjFh3+tj+PoQIWYkQrjD7aiXGGExwAJEmxEEMX2Mr3A5/69f/8qjqZssJLhsHV1W6Zqu5yJEmzQxf6ePdYvXOZ+/k5s+mncfVd8GudInAR64+qRJXhCAAAQgAAEIQAACEIAABCBwSAR4J77cW12FhS7x9xUZuqQfyueHCDFDESJ2tgWBNtMpRfFB8UtrLzhOlcDgsiV+RBHE4Tr6Wp6Hwy2c5Gmi6OB2lUZE6Fopj5gf5/N2gtM/0/bP5dsgv4YiwAPXUGTJFwIQgAAEIAABCEAAAhCAAATmToB34m0PdRETdo3bRUToK27fvj1EiJmKEJ7iyEKARw+UhAVPqxSFCqW/du3JR9MvyakfF5y2YBCFgdy4LFgo37jHfNqmyQULpYv1jvnX1Skvj9/TOrvhP0/+c39QWUr9eOBaSk/SDghAAAIQgAAEIAABCEAAAhDoSoB34pR2FRW6putLWOiaT59+P0SImYkQFgeioBA73OJESYwoxbNzvyQCKL5HJCheVZyYL+fzdDrTL/RLtIGuDw7E340AD1y7cSMVBCAAAQhAAAIQgAAEIAABCBw+gTW/E3cVEdrGv7i4SKX97r2j1GbvKjK0jR99TrueI0LMQISIQkDbUQAWI6riS1CoG7Gwq8GQDmc3NjB/Gzj8R5nDaMGaH7gOo4eoJQQgAAEIQAACEIAABCAAAQgMRWCN78RtxYS28UqCQymsjQBRitNWZGgbbx+fICLEDESIfTqQtPN3CNNH9NHYNjDUAwb5XiawxgeuywT4BQEIQAACEIAABCAAAQhAAAJrJbCmd+K2okJTvJLA0CasJDDsEtZWbGiKt4ufCxECESLtYjikwbGODczXBtb6ADR2u9f0wDU2W8qDAAQgAAEIQAACEIAABCAAgXkTWMM7cZOo0OZ6G5GhHOdhurjY7nfvHafqvd1UTVG0aBIZ2l7v4htEhECEQITABrCBhdnAvB9TllO7NTxwLae3aAkEIAABCEAAAhCAAAQgAAEI9Elg6e/EbQSGujhlYaG05sNjscGiQzyen1+kO3ePruzVooQFi3biRFvBoSpeWyECEWJhzse2HU+8+X7FTt/QN/vaQJ8PFeRVTWDpD1zVLecKBCAAAQhAAAIQgAAEIAABCKydwJLfievEhaZrzeLDZdFBIkNTmjiKoc25RIvLIkWzIFElMrQJb+PHQoRAhOAreGwAG1iYDaz9QWis9i/5gWsshpQDAQhAAAIQgAAEIAABCEAAAodJYKnvxE0iQ9X1eiGhu/AQ82sjPFTFuSpIaKREtSjRRnQoxWkSIhAhFuZ8bOpwrvOVPTawfBs4zMeXw6v1Uh+4Dq8nqDEEIAABCEAAAhCAAAQgAAEIjE1gie/EVQJDXXgUC66ePxYf2ox4uJp+O0qiTjTocu2yIFEtRCjPktDQFFbnc0SEQITgK3hsABtYmA2M/eCx1vKW+MC11r6k3RCAAAQgAAEIQAACEIAABCDQjcDS3onrhIaqa1WiQVzToTrO42mYzs/PU91+5+791GVvEibaihFNokPpepUQgQixMOdjVUcTvvyv3+lj+tg20O2xgdi7EljaA9euHEgHAQhAAAIQgAAEIAABCEAAAusjsKR34iqRoSq8Wlh4PPKhOs5FreBQEiO6CBB53DpB4rIYUT1NU0lsqAuzfyoeESEQIfgKHhvABhZmA+t79JmmxUt64JqGIKVCAAIQgAAEIAABCEAAAhCAwKESWMo7cZXQUBVeLS5sBYi6aZdKAkMp7OzsLMX99p17qW7PhYeq31WCxGUxojxNU53oULoWBQidI0IszPmYdzC/+ToeG1ifDRzqA8yh1XspD1yHxp36QgACEIAABCAAAQhAAAIQgMD0BJbwTlwlNFSFlwWI/cSHKDZUndcJEFXXqoQIhe8qRpTEhrqw6JNEhECE4Ct4bAAbWJgNTP8oso4aLOGBax09RSshAAEIQAACEIAABCAAAQhAoG8Ch/5OXCU0VIXXCRDla9XTLlWJDQ4/PT1Ncb91+26q26uECIdXCRJVYsTde5qaqTw9U53oULpmIQIRYmHOR3csx/V9/U6f0+e2gb4fLMivTODQH7jKrSIUAhCAAAQgAAEIQAACEIAABCDQTOCQ34mrhIZSeFlgqB/9UJpiSWEWGfJjFBxK53UCROmaxYf82EWMaJqiqSQ4VIXJX4UIgQjBV/DYADawMBtoflQgRh8EDvmBq4/2kwcEIAABCEAAAhCAAAQgAAEIrJfAob4Tl4SGqrCuAkQX8aEkNsSwk5PT5P3mrbupai+JEDEsFyL0u60Y0acQgQixMOejv4TmyFfx2MB6bWC9j0DjtvxQH7jGpURpEIAABCAAAQhAAAIQgAAEILBEAof4TlwlNpTC6wSI0rWSAJGPeNDvKDT43GJD1bFKgKgKjyKEz9uKEfkUTX0JEYgQiBB8BY8NYAMLs4ElPtzMsU2H+MA1R47UCQIQgAAEIAABCEAAAhCAAAQOj8ChvROXhIaqsJLIcHGxnYKpdC0XIHLxwWJDPJYEh9PTs3R2dp62+V0klak65pvqcHZ2kU5OztLx8UnSNEi379wvjpawCBGPuSCRj4zIhYjt7/3WiUCEWJjzka/f1/v1O31P39sG8psTv4chcGgPXMNQIFcIQAACEIAABCAAAQhAAAIQWCOBQ3snrhIc8vCSyCAx4PxcosDlPRcf9DsKEFF08HlJfJDwoLz33VT20dGDdPv2vSuCRBQhfB7FiFyI0O+rYkRZiKhaCyKGI0IgQvAVPDaADSzMBva9aZG+HYFDe+Bq1ypiQQACEIAABCAAAQhAAAIQgAAEmgkc0jtxLjTU/c6FhrYCRBQfdG7RwcdcfNCohz6Eh6qeUv4SEfIpmyxA+BiFCJ3nYkRfQgQixMKcj/4SmiNfxWMD67WBqhsQ4f0SOKQHrn5bTm4QgAAEIAABCEAAAhCAAAQgsHYCh/ROXCc6xGslAWI7DVP9CIgoQFh08HFs8SG3S9WtqxgxhBCBCIEIwVfw2AA2sDAbyG84/B6GwCE8cKmO7DDABrABbAAbwAawAWwAG8AGsAFs4PBsYJg32f5ylU0dyhaFhqrzMQSIIUc+NPWFRkbk0zR5NISPcVRE30IEIsTCnI98/b7er9/pe/reNtB04+F6PwQO6YGrnxaTCwQgAAEIQAACEIAABCAAAQhAYEvgUN6Jq0SHGN63ABFHPzx4cLJZJ2IudnP/6DjduHnn0jRNFiF0bCtE3Ll7lO7eu7pGRFwHIp4jQiBC8BU8NoANLMwG5nJjW3o9DuWBa+n9QPsgAAEIQAACEIAABCAAAQhAYHwCh/JOHMWGqvOSCJEvRJ0vQl01BVMuQEw5+qHKKlTHfoUICRKP9yg++BwRYmHOR38JzZGv4rGB9dpA1U2G8H4JHMoDV7+tJjcIQAACEIAABCAAAQhAAAIQgEDaTP07dw5VokMMH0qA0JoQKmeu29n5ebp1+16PIyIeixASJCw++IgIgQjBV/DYADawMBuY6w1uafVChFhaj9IeCEAAAhCAAAQgAAEIQAACEGhLYO7vxFFoqDovCRBNC1GXRkDkox/mLkC4jzXaQ9MvVY2KqJqaKY562J43T8uECLEw5yNfv6/363f6nr63DfhmwnFYAnN/4Bq29eQOAQhAAAIQgAAEIAABCEAAAmsmMPd34irhweFrFyBsu/0KEdWjIRAhECH4Ch4bwAYWZgO+kXAclsDcH7iGbT25QwACEIAABCAAAQhAAAIQgMCaCcz5ndhCQ92xJELUrQNRGgGhEQ8eBaEFqE9OTmY9BVOVvWpqppu37lwaEdFmseo4IuLxQtVlIQIRYmHOR38JzZGv4rGB9dpA1U2F8H4JzPmBq9+WkhsEIAABCEAAAhCAAAQgAAEIQOAygTm/E9eJD7o2lAChfA91k5jSRoi4c/d+insUIu7eq56WCRECEYKv4LEBbGBhNnCoN7xDq/ecH7gOjSX1hQAEIAABCEAAAhCAAAQgAIHDIjDnd+JdRIhcmDg/P0/ePQpCIx+85yMgFOfQt/tHx52FiMsihEZBSIi4OhoCEWJhzke+fl/v1+/0PX1vGzj0m96h1H/OD1yHwpB6QgACEIAABCAAAQhAAAIQgMBhEpjrO3GTAHF1JMTD1HUaplyAOJSFqJssTWzu3LlXKUS0Wai6NC3TvfvHCRECEYKv4LEBbGBhNtB0U+F6PwTm+sDVT+vIBQIQgAAEIAABCEAAAhCAAAQgUE1gru/ETSJEPuLh4uLy9Ewe/eBjPgrCAsT2uF0H4pCnYcp7+PT0bCNCaGqmm7fuPtq9RoSFiDglk84vj364OhoCEWJhzkd/Cc2Rr+KxgfXaQH4D4fcwBOb6wDVMa8kVAhCAAAQgAAEIQAACEIAABCDwmMAc34mbBIhdR0F4CiYdLUJ4IWqFLW27e+9+5WgIiRElISKKEKXREIgQMxchnvnc59NLf/ytzl+q/+ivfpyefPJXi2mffe730sc//ol04+btzvni2B7fsa3+lx3UsVcc9bf6vS4e18bvvymYL+3mN9f2zPGBa66sqBcEIAABCEAAAhCAAAQgAAEILIvAHN+Jm0SILqMgPAJCR4sQuQDx4MGDzSLXy+rZlNRm+Y2rFqq2CKFjHBERhYh8bQhEiBmLEBYS3vOe96Y/e/m7tc5lGcanP/PZR/GctiRgVIkQivuWt/xs417KcwpHa9cyq9qX85XDv4lDk8Nf/aV8m/Jpuq46/+EfvbjJS/0W26x6WpxQvKY6xbScL1uMWNrNb67tmeMD11xZUS8IQAACEIAABCAAAQhAAAIQWBaBub0TNwkQpVEQdVMxWYTIBYg4DdMYoyBeffXV9MILL6Tr169vdp0rbOjNoyG6TMt0VYR4PC0TIsSMRQg5ii0m2Nlc5TyWCHH9+lc2Tm85q51ODmyNemhydut6Li7YaZ+HV9Vh7uFuT8mZX2q/2yP2Yzj4LVyUeCssiiXuX8fVcYw6mgnHeYsYQ9+IyH9LYG4PXPQLBCAAAQhAAAIQgAAEIAABCEBgLAJzeyduEiFKoyDigtReA0LHXICQ2DDmKAiJDE8//XR605velJ544onirmuKM5QgobUh9hkNkU/JhAgxAxFCTvE2IkEpTnRMyzEsZ7REh9f+4gcbp7Sd1NFprPLaTMektHXO+ZjnIZy7PbkIoT8o8ahiMgcRQnxVD9e9rc1UtekQ+os67i50jPXAsfZy5vbAtfb+oP0QgAAEIAABCEAAAhCAAAQgMB6Bub0TdxMhtBh19YLUuQhREiBOTk4GgS1hwcKDhQaFeQSERkT80i/9UnrHO96xiec4Q1Tm9m0tTK0Fqu+kGzcfL1Rdt0j11dEQR5tFqxEhZiJC7OIs1pfz1649+WgKJjtt7WyvEhAQIS5Pa2QHf9VIgrmIEO5fj4KwIKFw9XlV/Z2O4+5O/UNjN8SNhzyvEpjbA9fVGhICAQhAAAIQgAAEIAABCEAAAhAYhsCc3ombBIjSVExxFIRGSXgkhAUIHa9OxXSSJD5oLQhd73PTiIYoLLQZ4bBLmi51Pjo67jwaIooQcTQEIsSMRYgmsSAXITydjwSNoUdCRKFDYkfuAHdd5MDP4yosd+rmcaKD3XGdZxwRksdzHI8aUFyPFnEZeRrlXyc01F1z3aqOrk+sczyPdXFc1bMqP4Xrei5aKSzvg7o8uLZsQaLLDYW4uxOY0wPX7q0gJQQgAAEIQAACEIAABCAAAQhAoDuBOb0TN4kQpamYYpgFiNJUTKVREH0vSB3FBI166LIprUdPaFREG/Gibf4SWjSDTJtpmZoWqEaEmIEIUXII2yGtdR7U0aU4MUzO7OiE9tfyck47r+j8zs9zp7byVlrF0zEvK4Z7OqNYfiwz5u08oxChulsocDn//j/8x0sjPBQnlql4LiPm7zDFjWXE9kTHv8LNKo/vuuwrQpRGq5hZrIvrHnm73WpPbKfr5qPSRP4O57hssaGqf9veTIi3H4E5PXDt1xJSQwACEIAABCAAAQhAAAIQgAAEuhGY0ztxNxHiYaoaBVEnQmgEhEdB9D0Vk0dAaMqlXTeJD5rGSUJEn5umXkKE+KmA8L1XXk3aqxxyhxZuB3Wd07mpTXasyzmtc+WlY1O6eN2CQXSK21EenedK43A78v07d4y7bQ53Peva6nrkZarc/FpVuaW4CnN9chFE17xPKUK4Dmq7GHmEi0SJtnuJm/Pl+Lifl8Siz5sNeVUTmNMDV3UtuQIBCEAAAhCAAAQgAAEIQAACEOifwJzeibuKEG1HQXhB6gcPHgsQGgXRpwjhUQxdR0CUelTrRUiI0JoRfW137t57JEJs14fQOhF3k9eF0PH2nXub3aMhSlMyMRIiOJuncELaid7WoVyKZ4d+Vf3luH7qNz5yZWRAVXyHu246OqzKIZ+LCRYDLEo4vY4Ks9Pf6eraEOPHfHTu9BYx6sp1e3KGTU76qjbndSn9Vn32GQnhPC1CSDRxmAUU198sYn85Lsdlig1V/drXjYZ86gnM6YGrvqZchQAEIAABCEAAAhCAAAQgAAEI9EtgTu/EdSJEFBy25/stSN33ehASDTQSoo/N0zr1OS3T0fH2I275IfdZoBoRYmIRInci2ole5Ui2Iz2/Lkd57lzv+tvObNcpL8tO77p824gBuagQ665zl6+jy6wSKXy9Tbluj9vptBZEYrnxXHWqKj/W3Vycv/JAhFiX8z/azZTnfdy4yKOZwJweuJprSwwItCPw8GFK5xcpnZ6ldHKa0oOTlI7ZJ2egflB/qF/UP+qnqTdsZZ5/G3O0lR/fTOlrX0/pY19O6X2fSumdH0rpbddSeusH2KdiIP7qB/WH+kX9o35igwAEIAABCHQhMJd34joBQtfaihBNC1JLfNB+fHy8ybMLq6q4HgWRT8OkEQ1tNokOeVxPy9THyArV4fT0LL1x41btaIh8JIRGRMTREHfvHSdEiBmJEHaK26GeOzGbrufx9dtfx8tBHp3jpbh5mJ32FjxcfpVDPqa3mJKLCoqjsOj4d7524uvodL5WVaavm1lduW5P5GA+Th/b4HPVpap8x6k6DilCuK3uH7fFv80mtreqnoQvSyxpc6Mizv4E5vLAtX9LyAECKV1cpHRyNk+nKiJIuV/UX+q3sTdspdwfc7bTqWzlm99O6cPPpPT2D6b00S+l9OyLKX3ntZRu3UvpYgZC2th/O3MqT/zVD+oP9Yv6R/2k/lK/sUEAAhCAAATaEJjLO3E3EaJ6PQiLEJqCydMwaVHqfComiRAqs49NIxbyURCaSqnt6AivJZELDgrva20IrZ9hEUK+xrajIRAhZiQ65I5fOYvtiLcjOcbx9dK1GM/nimfxQUby6c989tJiz3ZSVzngnT6WlwsILis/2kFuMSFer8rD9TEDO8+r4itPO95dTl25bo/zdZ2qwn1dee8jQkhwcZvyY6yL6x55uw6KF/vJrGK9zMLp89/Oi+OyBIdSf/ZxIySPZgJzeeBqrikxIFBNQM/OiA+H51SODm/1X0/vQNWGkrZlYCvYSq2R/PTiKz/cOrPf+4mtgxvBoQ216eOonyRIqN8kRqgf2SAAAQhAAAJ1BObwTtwkQFwdCXFZhNBC1N6nECFK6zd0WdfBgkU+GsIjLDQqYt9NI0n2FSHu3D1iJETJgTd1mJ3HcljbuS4ntH5Hp3VVPWP6GF/hcmRfv/6VR05xO6xLedk5H+M4LOZbSmuHuusf4ygsjoSI13Sel5H/jvF9TUeF15XruHnd7dCvqtO+IkRpTYjYBp+77m6Lw3VUnS1CuB15fd3vTq/82pYdy+L88EWKfW8wpG9HYA4PXO1qSiwIlAloWp/ozOb8sHmoP4fasJXDto38b3tIW9G0Pprq53eeH8oayXcMAuo/9aP6kw0CEIAABCBQRWAO78RNIkTbqZgkRFSJEFqEOk7F1NdICE3BJBEiFxCqeHcJd975NE9d8nBcMZYIYSFiuzj1nc3i1HGB6qYpmZiOacYjI+x89tfzufM8dxbbCe34uZNa8R3Hjuo8j/jbzu4Y1w57lZGHx5EWdqg3iRCqj+IoX5etduZ1V5y8zFIZpTDn6/aUOPpaVX3jiAPn1/fRdY9cXYbqJRFCvHS0IOHrPqpt7n8dS+1xXI6HLzZU9aFvFByHJTCHB65hW0juSyZwdr4sp2ruZF3rb/Vr3xu2ssy/lSFs5XPPbb+i1xQ/bIdPQP2oURHqVzYIQAACEIBAicAc3om7iRBaH+LyGhG7jIKQCNHH5hEPfYxWyOvjdSH6ECGUdxQh5MPdChF3N0LErdt3k3aLEDpqTYh8XQhEiJmKEHZI25FsJ3nunJcTMgoDdrArffwKXs7o6EjXb+Xt+CVnpsssOcVzZ3deL9e/5ARXWIzvcuw8j/WM9crjKX5et7pynb6qzVVMFF5Vp1i/fc9d97xNrlepvfuWSfplChH5zYffwxCYwwPXMC0j16UTwKm8TKeyhZc+ncvYCrbS9v9DOarf/1vbdQbapiHe/Alo3Qj1K0LE/PuKGkIAAhCYgsAc3om7ihBa3yCOjthFhDg6OuoFd5+jFfIKOe++Rlm8/sbNRyMhLELcuNk8GiKuC4EIMTMRIjqcS85yO6qjE7/kSHY8O/Zzx7bTRDGhKo7jchzWYa2+yPtV9uCwJhGF/hm2fw6Jb37z4fcwBObwwDVMy8h1yQSYVmfZTmULEX1Mt4OtYCtt/y/UlD36Yl4Oa7blEVC/qn+Zmml5fUuLIAABCOxLYA7vxPuIEBYgmqZi8nRMGgGh/eion5EQfQsFsT89yqKvkRCIED8VEL7tgniwAAAgAElEQVT3yqtJ+yE5CWNdoxBQEh5iXJ9bZKiKL4f1GF/vuz4cuzvALSpYKNJRokNkqTjaHRZHvcR0ded5ns6LY/c+OxRm8cbD+XAE5vDANVzryHmJBLR4sZ3UHJfPYp/FqrGV5dtH/D9gH1vR4sVaO4ApmJZ413jcJvWv+pnFqh8z4QwCEIAABFKawztxVxGiNAqiSYTI14PoS4TwlElaRDpuEg7e9KY3pTbTNCmOFqfOxQYvWN0mj1h21fnrb2zXhNhnXQhGQsxsJMShODmp53Id2PTt4fdt1U2D8H4JzOGBq98WkdvSCZycrcuxGp2sazxXf++6YSvr+lvZx1Y+/AyLUO/6d3Zo6bRYtfqbDQIQgAAEIGACc3gnrhMhouCwPS+vB2ER4vT0NGk/OdnuDx6cJI+CkBCxHQVx1NtICHF8xzvesdnNVEeLE01ChOIpvRa3zsUGpdW1vrZchPCUTFqYuu3i1IgQiBCPvrLH+Xz4zmf6kD6UDbCNQ2AOD1xtW/r666+nd7/73emrX/1qMYnCr127lvqa27JYCIGTEri4WJdTdY2iQ6nN6veuG7ayzr+VXWzlm9/eTtPT1caIf7gENC2T+p0NAhCAAAQgIAJzeCfuQ4Q4OztL2qcQITQKQoJBPpLB0ymVrom94luAyNNaxMhHWOxjtRIh2kzJ5MWpvTB1XJwaEQIRAhECG8AGFmYD+9xYSNuewBweuNrW9hvf+MZGhJAYUdqef/759OY3v7lSpIhplJe+tFD8l19+OV5qPP/kJz+ZlH6oTfkjppTp9v1l+396YWsHsoW4/8zPvDn9f3/6cm/TPv3lD19PP//z706//CvX0o1bR73lW3LY7xL2sac/ean9+l2XTxW3yLApj7r882u7fOHet624D2MbfX79n3+1llfenqbfYte3DTaV2fZ6V1uJ+eZpZUfxeh/nu9iKvop/9sXy/zm7hP74Zkp//zdTeusHru5f/Fe75Fid5h9/MaWf+7WU/vT71XGmuvIHf3K5/WIiNm02cYr81M4+N/U3oyH6JEpeEIAABA6bwBzeiduLEA/TPotSP14P4ijdv9/PwtTqfQsGEhvyTdcUrmdnHT1qws/SVQKFxYl8dESef5ffbUWIW7fvplyI8OLUiBALcz7yJTxfwmMD2ECXGwlxdycwhweuNrXX6AY55j0KwqMi/OBSd9Toif/+3//7Jr3jRSe/8/a10lF5qEzF/e3f/u3NA5SFCIkGpTSlMOdT12aJIhJHlC/bYwJDzO9vZ3ruRLazNA9v4yRV2lxssAM7D2+T39BxVN/oDJb4Igf4rnUVsyEc6F3m+x/CVqr60Da0Cy+lLbFSn5TCh7aFpvx3tRUJb+IjIU4cVY657fI31lTPLrYip/jbP5jSxcPH/9fse2YR4h/9k5TuhfUe7ZTPw9uUp7QlsWGuIoTqG4UDcVC7S23I25+3SQKL0sX88jRdf6u/1e9tRZGu+RMfAhCAAAQOi8Ac3ol3FSH2WZS6TxFCPe5RD6WRCxISdF1rPEhckPCg81Jc5aVwvU9XXd/Vwn7y+s2UT8l089addOPmnc10THVTMiFCID7w9Ts2gA0s1AZ2vamQrhuBOTxwtalxPgrCIoSFgKo88nSKl0/bZBHCAkeeVykPCQSlURQSEN71rnfVjq5w3UsiRduwNmJG3o5D/30+wFRMVY7QktO0yfGp61WO6qrwNnlOEWdXJ7jbOYRjWf3fdhvCVty2ktig9upvV/bUpb+qOFeFd8l7rLht6uq/s5yP0kZhoq86d7GVr309pY9+qa1ltYtXJUIotb/wl5O+y5Y75p22KtzX53S0CFM3GsRxcj5V4fu0T/2u/meDAAQgAAEITP1OXCdA6NrlNSEuj4RoK0KUFqXuW4SQ0GCBIZ9aqYuVKR89WyuvvrcqEUJCRNO6EIgQC3U+8hU8X8FjA9hA3zcb8isTmPqBq1yry6EWCSQG+FyjEeSIn0qEUD2eeuqppCmg4qb6xFEW8Rrn+xE4HWBBajtHS05zhXX9Gr3KUV0V3pfTte98dmm76jCUU1l5q//bbkPYSl0fevRIyY7q+qbKgV8VXpfXVNfa2IrilESaNml3aVcXW/nYl/udikk2WidC+Kv+Okd8yc6rxIaq8FIeU4e1abvaU5q2yUx1va9NUzKp/9kgAAEIQAACU78TdxUhoigxJxFCliQBQaMctO8yisEjIJR+iG0fEcLrQjAdE2IEX8NjA9jAwmxgiBsOeV4lMPUD19UaXQ2JIxfk5NcIBB0lQrQZOaB4L7300iZdKb6EhDjVU14Dl6URDKVN10v55mFVIy1KeRJ2lcDJaf8L7daJEHYEf+v/+X+vTCUTHaOO9z//Lx+8YgcWMaID+6Vv/eeNuGH7qPoS3I5tx9Mxd3LX5Vv6Yj/Wu+5cbaqqV1U61zevY1X8ruHq/7bbELYSWefretiOvvDFL7eyla/8H//iiq3E/rVNyVbUj9EG8tEE4ui6xXjKIzJ2HOWX2+DQtmI+uW3sYmexTVXnXWzlfZ9K6TuvtbWsdvHsMC9Nu+Qv+iVC1AkIHjHxv//Ly2sjeJ0EixjO46XvbKc78nUd89EEqr3rFuOVHPtV+baZTqmKktteqpfSeMqmkgjhayWmVeU1havf1f9sEIAABCAAganfiYcUIR48OEknJycpjoTQB3VHR8e9rgkRrUhChKZa0rOpxAT9btoUx2tADDECwuWXRIgbN2+nNiMhECEW5nTk63e+fscGsAHbgG8SHIclMPUDV5vW5Wsu6LenNJIAULflAoJHUsTRCg6LDrz8vO30R6pbLjY4/zy8rXiR16WpzXU8Dvnag5PxRAhPx2TnrJyn6ofcAWzHrh2+/u10dpI6XHlE574d93n8UnmluF3zdX3qjqWy6+L7mtJZdHFYn0f1f9ttCFsx67yv1MbY9ip+Tm9bUTqdl5gp3H/3tjnbZB6/5OB3WdHWHNbWBtv0XVVbS2nztrrebl8pza5hXWzlnR9K6da9tpbVLp4d/SWHucQDO/LtlLeg4NxLDneLAvkC1Aq3oGDnvtO7HOdbKs91zR3/XfJ1/nVHj4JQvnWbrud1UXy3qcS0Lr+6a+p39T8bBCAAAQhAYOp34j5FiNPT0+T95OQ0TSFCyKIkKsRRDRIjJExoXQhN1eTrimPxYdfRE10s2CLE62/cTG/cuJUkQCBCIC7wVTs2gA2s3Aa63EiIuzuBqR+4utRcznevw9BWhMjzd7qSCJGLBE4bhYwoiOTxLTbkIoHD8/jOn2M7Ars6JOvS2REqZ6rjlZy9duDmDmintyO1Kp7DcweyyqxyzsY6uW4uz9e65Os88qPba6d33sY8fum366G2lK73FdbOUvoXq1R/tzHnY0d83id5PPedbUV55n1vTgpXfzhPhzsPh1uYKnHPr7n+bWzQ5eXHfW3F7bKtRRZ5Wfv+bmsrb7vW76LUKteO/dxh7tENFh3sWM+d7nbYO57ylHM+FxUcLhEixlV4Ljg4z5IIULqmeG3yVVlVm9urfEp1L6VzGgsqjuM65kx9fZejFqdW/7NBAAIQgAAEpn4n7kOEODs7S9qjAJGLEMfHx0m73k+1HkTfa0KULMlig4UGPwfG4xjig+tWJ0J4cepbt+8m7bfv3NvsGgHhXetCMB3Typ2V/nKaI1/RYwPLsQHfJDgOS2DqB662rbMjXyKANosJURSIDzLx3MKF0kkg0LUoQrStg+O5Lrmo4DohQphUv8d9nZKl9HbqRnvRee5AVtqSw1hhMa4dvTFMaavCdc1ObDtkS+W47nk++W/HK+Ubr9Wdm0nehro0eRvq4u5zra1F7VNGVVqzzm2lrVM/txWVU9XXVeG5sFDH3YKBR0O4/qV+rcuniofC29qK6x3LLoXVldX1WltbkYO8780ihPKOe8kRX3K6KywXJupEiFK+dtpbdCiV43aXxJCq8vJ8nUfT0UxKdY1pS/EcJpZ9ihAqd4j+j+3hHAIQgAAEDoPA1O/E44sQ26mYxhAhogVIkNAoCI2G8IiIeH2Mc0SInwoI33vl1aQdJ+pynKj0JX2JDexuA2PcgCgjpakfuNr2gRz7UUyww18ihAUFiQLaLRIozcsvv5ze9a53bY4qy6KF07QtP8Zz/rGs3DFZ99tCigWRurila7nIEeu25POuTsg28e1ElRO2KX4e107dmNZh0dmqfKvCdS06gHPHcV4nX3f+bfPN82n6nbe1Ln5ep7q4+15ra9/7llNKX8c6j5/zc9poK0pTJTZUhdtxr+t16V0fxRtShFA5eVtdto+2D9fD4W3Sxrhdz9vaypgjIUp1yp36FgQsHjhNlShQFZ7nWxUv5h+Fj6r4eb5O3+ZoMaFJSDCDKOD83v+9FSBUr742RkL0RZJ8IAABCBw+ganfidciQszBUiRCbIWIq9MxeSTEzVvbkRAeDeFREKwJwQgIRBtsABtYqA3M4Qa1hjpM/cDVhrEFhzjyQGG/+Iu/mL7whS+0FiEsHsixL2FC6ZWP8i05+/MwiwfOJ9anTTuIsx+BIeb5b3KgRsennakWAJQ2/wrezmbHcfqqcF2fowjh+trZ7XaUjnaM5w72Utx9wrrM8z+ErZhJ3relNrWxFaWrEhuqws3a/VIVz3XSdTv/6+ofbdBp2x6dr+uUp8vrHK87bRumMV3TeRdbGXtNiNL/gnKsWwCwkz+fjqhKFKgKdz522lfFc3103XVQWFX8PF+nb3vMy2mbzsKERnT0tbEmRF8kyQcCEIDA4ROY+p14SBFCi1J7YerH0zFNMxJiDpbyWIS4tVkTwutCaGFqRIiFOhf5Onz3r8NhB7u12MAcblBrqMPUD1xtGJdGDEh8kJDQRYRwPu9973uTFprWaIjSgtP56Im8jogQOZFxfp+c9j/XfxcRQo5POWslPLz0rf+8mYYpd7xWOVWrwp2nBC/VRb/rHMvOx+X6d8mJO6RjOTqBzUTO5hje97n6v+02hK3UsS611VyqbEVpqvq6Kjx36Nf1cS6E1NW/Lp9S22KY87VNxms6z+scrzttyX5jvK7nXWzlfZ9K6TuvtbWsdvHafvHv3Lx+g45y0pdGClSJAlXhuVjQZjqmWG7bfN2GtkflG8WOtunUnv/pIynp2Nemflf/s0EAAhCAAASmfidGhBjPBncRIbQ2hEdDsCYEQgVfwmMD2MACbWC829C6S5r6gWtX+hIUJCA899xzjaMYPI2Tp26KwoXC8hENu4gQFjjy0RPxdy54eIRHjNN0vs80Uruynku607PpRQg7VH/9w09txAgLB3aS5o5fh9c5W3MHcJ0w4msut0u+rkubo8tR3eriu73+2r4u7r7X1P9ttyFspY51qW1NtqI04puPplF4WxHCZZQEAF9zH9bVP7fBUnuqwppspc5GmtJWldkU3sVWPvbllJ59sa1ltYvXVYSI8eWgL33tr7DSegptxYJclIgt8bVYbtt8Yz5N57GdGtnQZVN9tPe5qd/V/2wQgAAEIACBqd+JESHGs0FEiJ86D1kTgi/c1/KFO+3E1tvYwHi3oXWXNPUD1670LSg8//zzraZj+nf/7t9t1pSQWCDRITrz24oBSqutNBLCoojyKm2l6y7X+ZbSxbC83vHaGs7PL6YXIeT8lMNXYlHV19slB3JXB7DLsNigcu1Ujg7nrvnmzlvln7fD5cRwl5OLDQ6PdcrL6Ou3+r/tNoStuK2RS1Pb3I9Vaaqc8EpXEifcN5G3BQSLDapTqa6lMNffeUR78zUf97GVUr1dn9ymXN4+xy628rWvp/TRL7W1rHbxdnG2e6RC1SgBj5aIQoFq00UscBkxj6q6dsk3p6I83/Pxy6MWPJ1SFFJKYUqrsqNIod9VXPKyu/xWv6v/2SAAAQhAAAJTvxPXiRAXFxcp7ufn+e/zdH5+ns7Ozjb76elp0n5y4v0kPXjwYLPn0zHdu3d/dZ1fJ0JoSiatB5GvCcFIiAV+9dzGKUkcnNfYwHpsYHV3w4kaPPUDV5dmS3iIIwXklJcD34KCfmu3SKBrHtXw0ksvpS9+cfsZZZMz32l0LG3OX/kojtaW0IiMfKRDTIsIEWnsdv7w4TxEiCrHsZ2mdq7KVu1IdljJGV3lAHY50eZzJ/Eu+bqePnYpJ3cY27kcHeDOt++j+r/tNoSt1LGuaqvZ1vGxUKF+drwuIoTKdj9EW3Ferltd/RVXaXP7clof3Z5YTp7G5eS24vCYNoopLqOPYxdbkdP77R9MSYsU97VVOfbr8vdoBDncqzZd82LNFhIUFh37TluVn8Odj47Oy2l17JpvTKtzM4jl5G0riRBKa8HFafN0eVm7/FZ/q99VTzYIQAACEIDA1O/Eu4oQEh+8I0K0s2NECEZCMJUOohI2gA1csYF2txBi7Utg6geuNvW3+OARAzp6iiWdtxEhoqDQlwhhZ5rqoB0Rok1v7hfnZIApmbo6PeWwzR2sXfMgfjdBSf3edcNWujFeik3uYisffqb/KZm62qsc7yUxoWs+xG9HQFMxqd/ZIAABCEAAAiIw9TtxexHiYYojISxAMBKivR0jQiBCXHE+8rX7er52p6/p6yobaH8bIeY+BKZ+4Opad49CkDChbV8RQuKEBA0LCk1Hlec6WAhxPZrS5iKFp2NqShevW3Dpym0p8S8GmJKpi/PVX3MP9QV3l7qsKa76veuGraxThNjFVr757ZTe+4muFtZffI8IiAtD95c7OZUIqL/V72wQgAAEIAABEZj6nXhMEULvskdHx+n+/aO0xumY/sdPbiQJEa+/cSu9cWO737h5O22nYmI6Jhz0fCGODWADq7QBHofGITD1A1fXVnr6I6+9EEWImFcUF3LHfdNIiJhP6Tyvg+IwEqJEapiwKb9wZxTE+I7tXb5st+VhK+P315Ti2D62oq/if+d5W864R0ZBjMtb/cwoiHGZUxoEIACBuROY+p0YEWI8C6kSIR4LEawJsUoHZNXX0YTz5Tw2sA4bGO82tO6Spn7gWjd9Wr8LgSHm+29ynHrefqZhGt+p3WV+/9yesJXx+6vpb2nI6/vYyis/TOlt11L6zmu5FQ332wtFMw3TcIzznNW/6mf1NxsEIAABCEDABKZ+J0aEcE8Mf0SEYDomRBa+9McGsIErNjD87YcSRGDqBy56AQK7EDifeFqmIR2p5P3Yca5+3nfDVh7zXLJt9WErX/v6dlqmW/f2tTrSz5GA+lXTMKmf2SAAAQhAAAKRwNTvxIgQsTeGPUeEQIS44nzkS/d1fOlOP9PPdTYw7K2H3E1g6gcu14MjBLoSODtfh3N1yY7jurapf/vasJVl/630aSufey6l9/9WSggRff31zSMf9af6Vf3LBgEIQAACEMgJTP1OjAiR98hwvxEhECEQIfgKHhvABq7YwHC3HXKOBKZ+4Ip14RwCXQngXF6mc7lPp7JtClvBVmwLTUc5qvXF/JhTMzXVieu7E1A/qj8RIHZnSEoIQAACSycw9TtxFxHi4uIieT8/P0/ez87OkvbT09PNfnJymrb7SXrw4MFmPz4+TixMXV6YmjUhcEpecUrWfTXNNb6qxwaWZQNLf9CZS/umfuCaCwfqcbgEmG5nWc7lPqbVqbJmbAVbqbKNPFxT9mjtgKkWq87rw+/dCKj/1I9MwbQbP1JBAAIQWAuBqd+JESHGs7R9R0LcuXs/PbEE5+P3Xnk1aV9CW2jDspzB9Cf9OYUNjHcbWndJUz9wrZs+re+LgBakPTlbloO1bqqiJV5T/+2zsHBbW8JWDv/vZCxb0eLFH35m+xX9sy+mdPGwrZURb0oC6if1l0Y/qP9YhHrK3qBsCEAAAodBYOp34qFEiAcPTtLJCSMhohVGEeL1N26mN27cShoF0XYkBCIEIyYQbrABbGCBNhBvFJwPR2DqB67hWkbOayRwcYEYcWgChRzK6rexN2zl8MSIqWzlm9/eOrPf/sGUPvqlrYNbU/xonQGEibH/ci+XJ/7qB/WHhAf1j/pJ4oP6jQ0CEIAABCDQhsDU78SIEG16qZ84iBA/dR4yEoKvzaf42pwysbu52kA/txhyaSIw9QNXU/24DoFdCOhrd029c3qW0slpSg9ODs/hemhiQpv6qh/UH+oX9c8YIx+a7Adbmeffxhxt5cc3t9P6fOzLKb3vUym980PbqX7e+oGU2KdhoKmW1A/qD/WLpl1SP7FBAAIQgAAEuhCY+p0YEaJLb+0XFxECEYKv2Bf4FftcHdvU63BEl/1uLaRuS2DqB6629SQeBCAAAQhAAAIQgAAEIAABCECgbwJTvxMvSYT4y7/8y9Tn3ndfI0IgQiBCIEJgA9jAFRvo+2ZDfmUCUz9wlWtFKAQgAAEIQAACEIAABCAAAQhAYHgCU78TL0mEGL639isBEQIR4orzka/VD+drdfqKvhrKBva7tZC6LYGpH7ja1pN4EIAABCAAAQhAAAIQgAAEIACBvglM/U6MCNF3j1bnhwixAhHimc99Pr30x9/qLDb86K9+nJ588leLaZ997vfSxz/+ic0K5kM5QckXBzs2MJ0NVN82uNIngakfuPpsC3lBAAIQgAAEIAABCEAAAhCAAAS6EJj6nRgRoktv7RcXEWLhIoSFhPe8573pz17+bq0QcePm7fTpz3z2UTynLQkYdSKE073lLT+bJIA0OZKVv+LGOqqu+t0mfVP+8brrVhJQVJbq4V0CjOLH9JxP5xSH/bjs97u1kLotgakfuNrWk3gQgAAEIAABCEAAAhCAAAQgAIG+CUz9TowI0XePVueHCLFwEUKOWzvemxz6EiGuX//KxgkvkcHp/vCPXtyMerBzvu4oQcHprl17MmlvEj/s/J9KhHB9c2FC9ZYoIy44wMd1gMN7et7Vtw2u9Elg6geuPttCXhCAAAQgAAEIQAACEIAABCAAgS4Epn4nRoTo0lv7xUWEWIgIIdGgThyouxad/3L+SkiQQ/61v/jBTtMx2an/1G98JGmvEz/k6JdQIWd/Xo8hHNGuWxQcVD9GPUzv9B6iv8lz937d79ZC6rYEpn7galtP4kEAAhCAAAQgAAEIQAACEIAABPomMPU7MSJE3z1anR8ixIJEiOhYb+t8tQiQj1bwFEkSL3Se59dmOibV51/8n/9XrYNfAoDjTSFCaJSDyt+FXc6E37s7vGE3P3bVtw2u9Elg6geuPttCXhCAAAQgAAEIQAACEIAABCAAgS4Epn4nRoTo0lv7xUWEWLgIUScWyPGbixD6LTFATvl9R0LEPFSP3NHsUQkSOXQ9ihCuRxxFoTgWRRQeR3eUhBLn73ga7fDyf/3zjShi0cEiRCw7r6d/x/J97rxjPR1fR7fD8XRU2hjH9VSdNPWV47pNrqPDS3nE/Difn0P/EPtkv1sLqdsSmPqBq209iQcBCEAAAhCAAAQgAAEIQAACEOibwNTvxIgQffdodX6IEAsRIUpOTjvAtc5Dm3UN5ByP0xLZOS5nuPOKjvD83I59p/Nvj3bI6xDL03kUAlxedO4rjsvUudtsQcJOe4U7veugMNdLecRwpXO+MQ/n72MsP9bL6WOY0jh+zLNLvWKdS/WNDFxHjggQfdlA9W2DK30SmPqBq8+2kBcEIAABCEAAAhCAAAQgAAEIQKALganfiREhuvTWfnERIRYqQvjr+ei87uqctNNeTnSdKy8dm/JxOpdtJ310xjuOHfdyqLcVIZzG9bBj3+FuexRU8rium8MtGEiMKKVTPMfJ08ZrbqPbXBIK8mtmEdvveqlNpfoovBTf6TgiRuxrA/vdWkjdlsDUD1xt60k8CEAAAhCAAAQgAAEIQAACEIBA3wSmfidGhOi7R6vzQ4RYgAhhp7a/5t/lWHJ0RyempmZqWmTa8e1Ut7PeooBFAsVTnaMTvYsIobQuS8e8vFyUqIsbr7me5hfrq3gWIfLydc1lWnSoEwny+ua/Xac8T4c31SXG4xwxYlcbqL5tcKVPAlM/cPXZFvKCAAQgAAEIQAACEIAABCAAAQh0ITD1OzEiRJfe2i8uIsQCRIjcyWjndclZrrgKl6M9vy7HuR3wux7lhC851aPIYGe/RQrVKV7Xb7chCgGKU6p3Xp7bp/g5m1LZeRznp7LyOpbKz+vrMqqEHV933i7Pv10ft6OuL/I+dFqOiA/72sB+txZStyUw9QNX23oSDwIQgAAEIAABCEAAAhCAAAQg0DeBqd+JESH67tHq/BAhFiZC5A7u3BHZdD2Pr992kssZXnLs52kcPzrVo6jg8+hAn5MIofaYUxQdqkQQxXebJJo4bV8iRBvmeR/wGxFiXxuovm1wpU8CUz9w9dkW8oIABCAAAQhAAAIQgAAEIAABCHQhMPU78VAixMnJaTo5OUkPHjzY7MfHx+no6CgdHR2n+/eP0r1797tgWkTcKEK8ceNW0i4fqvabt+6km7fubvZbt+8m7bfv3Nvsd+7eT96f2NfZNYf033vl1aR9DnXZpw52lEfneczP16MAEK/n5/4aX+lkFJ/+zGc3DnfHs8M9Cg4lEULx5aCXY15xcwe98o/TM0WnvsuqqnteXimt88jjOrx0dNvNqqp8pXVcxdFvtTW2J+bvOniUh39Hhopf146YH+cIDkPYwCLucAfQiKkfuA4AEVWEAAQgAAEIQAACEIAABCAAgYUSmPqdGBFiPMNChFjYSAg7I+3YlhhhZ7ed6HaUO27pGNPH+AqXs/z69a88mrrJTnrn47S5U92O+lgnp1EZ0WlfcsC7/k3lWRjJhQ6V5TrkdXM94jGvk8s3zxg3Fx1cjtLEeDr3NbejilddO/I8+Y0Q0bcNjHcbWndJUz9wrZs+rYcABCAAAQhAAAIQgAAEIACBKQlM/U6MCDFe7+8rQty9d5QYCfFTIaNvJ2Bf+dl5Lud/ySkey7FDXHG1R2HA8RzHTnSH++jruaPf4aU8Va8Yvo8IoXrY0R8FA+epdrludvTnbXHcmL6Ko8Nztv5hX8gAACAASURBVEqrsmLepXzNxXUyx9iO/JryjHWLaThHkOjDBsa7Da27pKkfuNZNn9ZDAAIQgAAEIAABCEAAAhCAwJQEpn4n7iJCnJ9fpIuL7X5+fp68n52dJe2np6ebfTsVE9Mx5XaFCLHQkRByQtrhLUe4HNZ2zEdnv52VdsYrrp3pSn/t2pOPpl9SHnF0gZ3sju+86pzqips71JVO4bFernt0tCtO7tRX2qry3F6l0a5yX/uLHzyaEkptdp3dFsctlePy//CPXtzkVRfX+eZ1KOVbVX/n4euxvMjF8TgiPvRpA/nNgt/DEJj6gWuYVpErBCAAAQhAAAIQgAAEIAABCECgmcDU78SIEM191FcMRIgFihDRoS7Hee6YtIM/Ov3zOPrteHZ+y6FeimfnfMnBXop/qGFuZxWHQ20X9Ua8KNlAXzcZ8qknMPUDV33tuAoBCEAAAhCAAAQgAAEIQAACEBiOwNTvxGsRIV599dX09NNPb/br16+nF154YbhOrcgZEWIhIoQd5BICSsJDyclokaEqvpztceRDKY81hZkxIgRO+zXYfcU9g+CeCUz9wNVzc8gOAhCAAAQgAAEIQAACEIAABCDQmsDU78RLFyEkPDzxxBOP9je96U2PzhX+jne8I0mgGGNDhFiICLEGp+jUbUSEQHyY2gbHLH+MGxBlpDT1Axd9AAEIQAACEIAABCAAAQhAAAIQmIrA1O/ESxUhJCxIYLDQEEc+6Jp+W6CQMKHzobefvH4zaX/9jVvpjRvbXVPl37x156f73XTz1t106/Z2v33nXtJ+5+79zc7C1D8VMcZ0DlLWNM5wRIhpuGPv03Af+uZD/lsCUz9w0Q8QgAAEIAABCEAAAhCAAAQgAIGpCEz9TjymCHF8fJyOjo7T/ftH6d69+4Mil/ggcSGKD6UCo1ihaZqG3BAhGAlRXOcBx+80jl+4w30uNjDkjYe8HxOY+oHrcU2qz1RHdhhgA9gANoANYAPYADaADWAD2AA2cHg2UP2mN48rsqkpt/YixEU6P79IFxeP9/Pz86T97Oxss5+enibtJyfeT9KDBw82uwSIsUQIj4BoEiAid6WRaDHk1EyIEIgQiBCMZsEGsIErNhBvRpwPR2DqB67hWkbOEIAABCAAAQhAAAIQgAAEIACBegJTvxMPLUKcnGyFiLFECI1m0CiILgKEekjig0dP1PfY7lcRIRAhrjgf5/IlNvVgVAA2MJ0N7H5bIWUXAlM/cHWpK3EhAAEIQAACEIAABCAAAQhAAAJ9Epj6nbhOhNC1OPLh4uLy7zYjIapECE3JNMT2S7/0S5sRDbvkbQFjqNEQdSLEjZtaF4I1IXDS85U4NoANrM4GdrlhkaY7gakfuLrXmBQQgAAEIAABCEAAAhCAAAQgAIF+CEz9Trw0EUJTKkmI2GXzaIiuoyjaloUIwUiI1TlX+bp+uq/rYX847NveRIi3H4GpH7j2qz2pIQABCEAAAhCAAAQgAAEIQAACuxOY+p14aSKEplTadYFpixBPP/307h1ak3IXEeLO3fvJ+917R+mJJTgWv/fKq0n7EtpCGw7H0Utf0VdztYGa+waXeiQw9QNXj00hKwhAAAIQgAAEIAABCEAAAhCAQCcCU78TDylCPHhwksaajkmjFz796U9v1nXYZzolLVCtXfntk0/JCB6LEDfTGzdupRs3b2/2m7fupKrpmCxA6IgIwTQ1CDfYADawQBso3TAI65/A1A9c/beIHCEAAQhAAAIQgAAEIAABCEAAAu0ITP1OfOgihIQCTcGkERDe9xEP/u7f/bvpr/21v/Yor11HVZR6XyLE62/cSq+/US1C3Lp9N2m/fefeZkeEWKDDca5fY1MvRgpgA9PYQOmGQVj/BKZ+4Oq/ReQIAQhAAAIQgAAEIAABCEAAAhBoR2Dqd+KxRIgHDx6k4+PjdHR0lLQodV8LU2vqJIkPGrnwD/7BP9icv/jii+3gF2JJ0JAIofx0rlERfW2IED8VFJiOaRpHJw5muGMD87SBvm4y5FNPYOoHrvracRUCEIAABCAAAQhAAAIQgAAEIDAcganfifsQIc7Pz9PZ2dlmPz09TdpPTk5TnI4pihBHR8e9iRBahFpigbb3v//9e4sQf/2v//WkXZsFjs2PHv5BhECEYCodRrZgA9jAFRvo4f5CFi0ITP3A1aKKRIEABCAAAQhAAAIQgAAEIAABCAxCYOp3YkSIy906hgih9SDyNSFu3rqbtDMdEw7KKw5Kvl6f59fr9Av90pcNXL4N8WsoAlM/cA3VLvKFAAQgAAEIQAACEIAABCAAAQg0EZj6nXhIEUKjIbwwtUdCbKdk2o6EUNn7bocyEkJt9UgIRIhXXk2akqkvBx754AzGBrCBQ7aBfW+EpG9HYOoHrna1JBYEIAABCEAAAhCAAAQgAAEIQKB/AnN4J64TIi4uLtLj/WE6P3/8W9MweS9NxzSGCOEpk7QY9a/92q9tpmPaZ2FqjYT4W3/rb206Wnl7qqd9e14MSyLEzVt30navHwlx995R0v7EITvaXHfWhMBhbFvgiC1gAw/2vb+QviWBOTxwtawq0SAAAQhAAAIQgAAEIAABCEAAAr0SmMM78dAihEdDaBREHAkhx/y+mwQHLUytBaR93CfPv/E3/sYmH4kPyk9CRB/b2dn5T0WIm5upmDwdkwSIGzclRCBCMDKCqaiwAWxglTbQx02GPJoJzOGBq7mWxIAABCAAAQhAAAIQgAAEIAABCPRPYA7vxF1EiIuLh2FkxEXjSIi4OPVjEeJoszC1RlH0sb3wwgsbseD69et7Zad8JDx85CMfSZrmad/8YmU0KuT1N26l19/YihA3bt5O2hEhcLqu0unK1++MgMAGHttAvFlwPhyBOTxwDdc6coYABCAAAQhAAAIQgAAEIAABCFQTmMM7cXsRQlMx7S5CeF2Io6OjdHR0nE5Pz6rBTHBFooNEiH2mc6qqtvxtTSKEF6XW8fade+nO3fuPdqZjQqxArMAGsIGF2kDVjYPwfgnM4YGr3xaRGwQgAAEIQAACEIAABCAAAQhAoB2BObwT14kQuvZ4TYhqEUKjGuK6ENv1IE5THAmRixC6NpctTus0RJ0kKkiE2GdRataEWKgDki/CH38RDgtYrNEGhrjpkOdVAnN44LpaK0IgAAEIQAACEIAABCAAAQhAAALDE5jDO/EQIsTp6WmyEOE1ISxCeF0IjYaYy+Y1JYaqzxs3bl8RIdouSq0REYyEQIDgK3hsABtYqA0MdeMh38sE5vDAdblG/IIABCAAAQhAAAIQgAAEIAABCIxDYA7vxF1FiPNzjYjY7hoB4T2OhMhFCAsRj9eFOO51XYhde0sjILwItdaEGGITizgV066LUjMSYqEOyDV++U2bGfGADTy2gSFuPOR5lcAcHriu1ooQCEAAAhCAAAQgAAEIQAACEIDA8ATm8E68jwghMaJJhKibkkkO+jE2CSRPPvlk+oVf+IX0cz/3c+kf/sN/uFl8WmtASIQYSoBQ2+7fP7okQuy6KDUiBCIEX8JjA9jAAm1gjJsgZaQ0hwcu+gECEIAABCAAAQhAAAIQgAAEIDAFgTm8E3cVIfpYnHrsKZl+8zd/c7PotEQH7xIfnn766cG7/UZhKiYJEdvpmO6mm7fuJi9KrbUjvHthak/FhAixQOcjX4M//hocFrBYqw0MfheigA2BOTxw0RUQgAAEIAABCEAAAhCAAAQgAIEpCMzhnbibCNF+cep8SiatCZGvC6FRAhpJMfT2/e9/P/29v/f30t/5O38n/c2/+TfT5z//+aGL3OSvdTGqpmKqEyEsQMT1IBAhECH4Ch4bwAYWaAOj3I0ohJEQ2MAiCfz4Zkpf+3pKH/tySu/7VErv/FBKb7uW0ls/MP2ueqg+qpfqp3qqvlNvDx+mdH6R0ulZSienKT04Sel4pbvaLgZiISZiM/VG/5Ttkb4qc5nz3+4c+2zqv2/KhwAEIACBaQkcggghkcJrQGyPl397OiYdq9aFqJuSSdeWumlUQxQh9pmK6c7do/TEEr4U/t4rrybtS2gLbeDrfWwAG9jXBpZ6A5xbu+bwwDU3JtTncAl889spffiZlN7+wZQ++qWUnn0xpe+8ltKteyldzMCRLLKqh+qjeql+qqfqq3qr/mNvFxcpnZwdniNzbCerGInV2Bv909026avuzMb+e8rLm6rPxv57pjwIQAACEJgngbm8E3cbDfEwxcWpd10XwlMyjTUaYmwL0EiQn7x+cyNCaDFqL0jtqZhu3LxzaSomTclUNxXT3XvHiBD7OvtIj8MYG8AG5mYDY9+c1lreXB641sqfdvdD4JUfbp347/3E1rE/F8GhbetUXwkSqr/ECLVn6E1f1iM+dHfWitkYIyPon+59U3Js01f7c8y5Dvl7rL+vof9/JX8IQAACEDgsAnN5J+5bhNCICDnh8ymZTk5OsimZjtLR0XFa4miIfBSERYjtNExbAaK0HkTVVEyIEAuchmVuzlDqg4MeGxjfBg7rseVwazuXB67DJUjNpyag6Yw0xdHvPD91TfopX+1Qe9SuoTZNMTSkI3ENeYvhUBv906990lf98hzj73vIPhvq75Z8IQABCEDgcAnM5Z24SYQYakqmpY6G0FoQbUZBIEIgLDAtFTaADazcBg73Eeawaj6XB67DokZt50Lgc89tRw9oaqMlbWqPRkWofX1vZ+eH55Acw+m5Sxli2fdG/wxjn/TVMFx3+btpm2aIPuv775X8IAABCEBgGQTm8k48rQixHQ2hERGqx6FvasONG7cvrQXhURCeikniQxQgmqZi0noQjIRYuaOSL9TH/0Id5jAfwwYO/aZ3KPWfywPXofCinvMhIAf9+39ru77CfGrVX020boTa16cQgYO7f0dsn45S+qf//okOb/pqWL6RdV/nffZZf/87kxMEIAABCCyNwFzeiXcRIZrWhShNyVRaoDqOhtAIgkPf7t47GmQUhPJlYWqECL6axwawgYXZwKHf9A6l/nN54DoUXtRzHgQ0VZFGCshRv+RN7VM7+5iaiSl+hnPA9jF1DP0zXP9Ehzh9NQ7nyHzf8z76bMn3CdoGAQhAAAL7E5jLO3F3EeIiXVw8TFqU2vv5+XnyLgGimwixHQ2hRaqV7lC34wcPHgkQr79xc7MYdT4KwgtSx5EQ+YLUWhdCosPj/XhzjggxsvPxmc99Pj355K+mH/3Vj684fjWs5dOf+Wz6s5e/e+XaGF9PT1XGs8/9Xvr4xz+R1H7x0d61Li/98bcqubbJS2UqjzZxYxz1o/qzlDa2K6bhnNEQQ9vAod7wDq3ec3ngOjRu1Hc6Alq0WWsmLG0Kpiqiaqfau89i1RpRva8jkPT1DPcZtU7/1LPt2/boq3F599F/+/RZ1f+thEMAAhCAAARMYE7vxN2FiPYiRFygumk0hIQIiRmHtp2cPl4H4vU3bnUWICREeFHqx+LDUfJUTIyE6EmAkGjwnve8N73lLT97ac8d0/rtOPk1OSXlhJczXnlZiJBz3GnaHGO++6StalObOiiORYU2ztborDeDKqGmKj+1u2sa52UhIXL3tfyYC0VOG7k7TWyXwzgiQIxhA4d2szvU+s7pgetQGVLvcQl8+JnlLELdlpwWq1a7d91Ozg7P6diH43LMPMR4143+Gdc+6atxeffxd7hPn+36d0k6CEAAAhBYD4E5vRPvIkJUTckkEWGf0RBaH0IjLA5lOzs7T2/cuH1lFIR8oNpv3rrz0327FsQuoyAQIXoSIXKnohz41649+UhI0HU71/3FfZXD3PGqrse85OTOy46/VZb2GFY6r3Okl+K3qWMpXVVYyVmvMLevTkyx838fEUL1MoMmXmr79etf2QhDqp/T/eEfvbgRXtqINK5zFQ/CESr2tYFDudEdej3n9MB16CyPjo7StWvX0le/+tVDb8ps6//Nb2+nJ5ptBQesmKZlUvu7bnpv6MMJSB7NHHd5R6N/mrkOYXv01TTc9+nLXfqs6/+XxIcABCAAgXUSmNs7cZMQ4amXHh+bR0PsOi3ToQgRVQJEl2mY2oyCQIToUYSQ8PDUb3xk45QuiRBybsfRAfnv6HS0Y7vKWW0RwE76mDae1znvS87yqvJini67zagBp1M9S+W1CYvM6ri0ESH2qUfeXpWnur32Fz9gOqYe/45sMxz3E2LW+fgzfqvn9sDVlcDrr7++cfzr2HX7xje+kd797nenPO2uYoLS/fZv/3Z685vfnF5++eWu1bkSX2KG66e6SuBQGWveNBrg2Rf7I/AHf5LSWz9wdf+5X0vpT79/uZx//MWUSuGXYw33S+3eZTTEkF/Z/6cXvpGeeOKJS/vHnv7kpKLH9X/+1U19VLd9HJ67pN3la+2h+kf9EPvm53/+3ekvf/j66Ex24ThGmjn0lfpD/RL7yee//CvX0o1bR4P3l+swVnn79O0ufTbc/8jkDAEIQAACSyIwt3fiJhFC1x8LENt1IXYZDaEFqE9OTjb7gwcPknYtUO1FqiVAaFomHec8NZOmYCqNgMgFiO1IiF1HQWzXg0CE6NF5GkWI3CEu53dpZEOdEFHnhLUQ0EaEUBl1eelanXM/pnU8iwcqv00bFC+KCTFPnduhr3bl1+Jvl6/4ChdziQOuT9XRDJrqEcuK5yVRSddVD5fpOsV0u5YX8+B8P2f8Wvkt6aFmzm2Z2wNXV1Zyzstp08ZBL2HgqaeeeuTI71uEUN0laEg46GM0RBQh/tt/+2/pk5/8ZG8CR1fOc4j/45spvf2DKV087K82FiG++K8u5ynBQeJEDJ9ahFC71X5xaLsNtdbA//enL6ef+Zk3bxyouWNbIsCUQsSUIoQcrF3mrh+if6qcyuqzX//wU6M4tvdxNI+Zdq59JQa246H/lqrsZcx+6FJWlz5r+/8k8SAAAQhAAAJzeyfuLkK0W6C6y2iIXIiY62LVXoT6J6/fTFoDomodCAkQdYtRV42CkOhw995jAQIRokcRIjrSdW7RQY7o/Cv66BiVg9xxY3g8z53vU4gQdrirrvr6X6KC2qZ6qg1yxpcc8bre5IyPvGK78/OcQ7yuMnKOOaeqelSFO/9chLD4wUgIBALbyNyOPAqNQ2BuD1y7tNpChI512w9+8IP0i7/4i48c+RYhdNToBX+BWnWUuPDP/tk/a4xXld7hbQWKKEK4XQqTGLHG7WtfT+mjX+q35VUixL3jlP7RP0np7/9mN6d/v7W7mpvaLw5tt/MBpmKyADG0c7SLYzLGtfN2ipEQqoeYt92G6B/1C6Me2k01NHVfNQkAvj7k35rLOISREF3/vtr+HRIPAhCAAAQgMMd34iYh4vJIiO6jIdosUm0hQgKEdy1orbpNvakOWkBa4oP3KEDkoyBKAsSt23eTxIcoQCjPrfAg8eHygtQOf2JuzrNd6vO9V15N2ndJ21ea6Mj2udYJyB3jpfLkhP+VX/lA+sf/6//26Mt6f72v+LnzPXeul/JUmMUBf63fdCyJCC5LadUu5esw/451LLXXPJSuVNeSCFFKk3OIeZXil+oZ0+jcgoLWeaiqX0yjcmIbY52cVx3nuhEhsRzOETj2sYGpb2prKX+OD1w5e0+PZCd+12M+SkJOfDnzLULsOx2T8svLyNsQf6vcrm3I43uappjv0s8/9uV+p2ISryoRQtc0CmLK6ZdK/akpmcSh7Xba84LUmh5Gzso5O7mnFiHEvO02VP8cikM5ikdTnE/ZV2pvGwHAU54NJaq1qcMUfVNVZpc+a/t3SDwIQAACEIDAXN+JdxEiojihKZS8e4Hq0miI+mmZttMxWYTwccrpmVRfiQxRfNiOgri5Cc8FiN2nYbo6CoKRED2OhJBz2sJB7hCvc05Hh7adjsrHeSksOrr1u41zXfHyfJx/fszz93W1Qw71vI515TuNjnk+uXPe+YpPXMjb9Yl5KC+Hl8QStTV38NfVU/n5ep7O9W5zjHXSufLSsU1a4iA0DGUDPAqNQ2CuD1yx9RYh2o4giGmVpiQQSDiQY7/kzO9SnuOWyoj12OXcIzT6WF9il/LnluZ9n0rpO6/1W6s6ESKffin/rTUjJFIo3OdeX2KoERRqvzi03U5O230RXuXwy8M9CkKO/vxa3W+ni2Jankd0hr70rf+8me7J8auc6hYcHE+/HRadts7b8XQc6utyMW+79d0/Fok0VZaY1/WJr7XpGzvC8z5zeVGUMv9//W+f3whWYh37L++LUl1dnvsr5u9693Gcsq9Uf7OIfPJ2mXEex2nNqMmmZe8xrvvS+eT5O34Mz20l77uYl/rf5cW/xbx9XX936bO2f4fEgwAEIAABCMz1nXgXEaLN2hAlIUIjHKrXh9gKEV4jQkLEvXv30/Hxg1HXitDoDY1esPigYz4FU1cBom4UxHYapstTMd27f5wYCdGTECEneJWTvaujMRcPoqNbedl5npendF3LKsV3/hYJ8ji+nosEjmfRxWKB4uV1U5jzV/u0qLfSKY94zXnqmHOI13JmuhbrqbrkvLr+dn1jufFc01SpHXlbYxzOER7GsAEehcYhMNcHrth6O/pzEaIqPKbNRQj9lmNExz5GQrgOQ0yRhAgRezKld34opVv3Loft+6tKhPB0TJqSSefaqkQICQ9RdNCaDfodw/atp9Or/eLQdntw0q8IYQdzF6diKY2dmdHBaQem/j6j07kUV45LO0ljXVyW8nC48lU5OtrhqWuKY0esw/s4innbre/+Uf3dtsigql3mZVaKV+LtPHNedpDH/nKepfKdTxSAlMc/feYLj9aqcHrXqVRGVXu6hk/dV7b5+HdQaoN4RcbmGPvDecV4yqsq/F/+7nObvvb1WAf3QeynUpm6HoUI56W+j/mV2rRrWJc+a/t3SDwIQAACEIDAnN+JdxEi4mgInXs0hI4eESGHvvftSIjTVCdEeGqmKERYjNCC1kOOjFD9JD78j5/cKAgQj0c/lASIXadh2k69dFmAUBgiRE8CRMmpaEe6nN9aE0LH3DmvdHJY51/i5w713Pkenet52Y7b1cEe4+f1ycvo+jtvj9KLj8txnasYubwYz2E6Olx5tglXnFJfxLQWLXSM4WpLZLXLeV7PmD/niBR92ACPQuMQmPMDVxMBCQlay+H5559virpZjFqjFaJYEEUIixNynlTtipNvFiGq0jhc9ew6okHxlU71ZEvpbdf6XZRaTEsihAWIfCqmKhEij6d8PTJCafrctDi1OLTddnX0VaXLnY5V8RxeclxWXbMDMzo1HTcvty5fxdXfneI4fX60Y3soR+lU/eN22oksDrlT2nHqGObX8t/OwxxjGS5b/eB4Orp/65hbAInOdaV1eJ5nzH/X8yn7qg0TtSvafx2L0rWYtsQor4P7OrJ2nBimvBzuPvXv0t9wqexdw9r2GfEgAAEIQAACbQnM+Z14NxHiYYpCREmEiKMhSutDaFSExAXtEiC86/03FyIsRuiodH0IEqqTRltIWCiLD1qEuj8BIl8LomoUBCLEwCKEp+bRUc7rXDyocp7nTnvHs0M8z6eL0zLPqymtHOZdHO2lRbjVntzxrt8WIVQHxfn0Zz67CdN5qV5VdReXUrlV8c0vlh/La7oe4/rcZYlV3lbH4YjAMJYNtH1gIN5+BOb8wFXXMjvoS8JAXbp4LYoQOo8CRYxXd671JDSlU109lHcuQjSJHhJMtJC28kaE2PaARhz0vVmE8DRKPsYREC6zSoQoCQ0WMkr5OL9dj1047Orkq0rX5NDM09XFt8Myd2D6d8zLjm05SBVel28eN+ajczvO6xz0eZquv9v2bdd8u8SP7VRbcwdyHcO8b+yYzsUBl1ESIdxXrrPzyMN9XUfVKebla3l9HN7Hccq+atuu2Fd19p33h/PP+z5ycxz93XkatPxvUGWWhIWq8vL0sbw+ztv2GfEgAAEIQAACbQnM+Z24SYTQ9Sg4bM8fpl2nZdKog+YREVenZ5IAYTFC4oHECgkYEhMkSqhebov7xXU/OztPKvf+0XG6fefuI+EhFx/i9EtRgJD/0/t2/Yc7qWkERN00THfuXl0LQuKDd6Zj6lGIkPNcTmhN26OFju3kllPaU/lE53uV81z5aJch/Pv/8B8ffenfVYSwMz06xe0sd15NTtFY36a4Gl0Q13ZQfNchL0/tMx/FUzlmpzoqLB+t4LpHUUSLfyufmJfr6fh52S5L+eTXYl1K15x3PCqe8lK+aq/EFNXdccygVEfH4YhA0acN+MbEcVgCc37gcsu9foMcabvuTQKDRlPsMurAYkidUCDBobT2hNtnISPPw+F1AofzWMNxrJEQVSx3ESH6npJp6pEQVc7IkmMxd1DmcXzdDsvoDNW1GD86Xp2u5KxWmpKzW07Y0v8dVXnEsnc5r7KhPHyXvLumMVe136ybGPq645up+iGW73iRY+yrGDc60mO4z51XqZ8c5vo4TR/HvE+qfvdRVp6H+6apXWJnxk0cY9yqfov1cB3qGCtPXy8dXTfn1dSeWP4u51V9RDgEIAABCEBgVwJzfye2877uWBIi8rCmERGelqlKiKgaFVEaGREFCYkS3n/yuqZUerxLaMj3uOaDz732QxQf4vRL8ln2IUDUTcOECNGj+GAndHRaR+d9dM4rjgUJiw2581HhHhWguC//1z/fpHH+dmqrjDxt/K34+QgBO+ajIz+eq+yYR2xHDC+dx3b6einM9Y9lqZxcFFDaX/7lX0kf+vUPb67peu7IL7XRZbut5uZwH31d+bourkcTW+UR08f4Clc9JUSZbVUdXBeOiBB92sCuDxCk60Zg7g9cpdY0OfUlOOROfzv0Sw6UtmH5aAbVrTTKIa9zU31dt1yE8FRPTQJKXt5Sf4+5JkSJ4RxEiKnXhGjj1LRT0U5lOygd7qOv22FZ58CMjm2nq8rXddRRZTmt/s6jEz06a12nPo5d5qwfYk2IUhvMTAzExb+rmWCv3gAAIABJREFUGPq6+8ZMIz+V43gxH/M2f9enyXleystphzpO3Vd1Nu82O474KayJY7Trqn5z3jo6/194zy8m7aURD01lOj/nZbtxeJ/HLn1W+n+cMAhAAAIQgECJwNzfievEB1/LBYeLC42QuDxKIooQOvf6EF2mZsqFiO1aEY9HRlQJEh4pYVGhzfGx8HB16qUoQFh82B7vppu3trvWkfCukQ/eNfWS963ooJEP3rUOxOW1ICw++MhIiB7FiOhElFPaDnM7qxUmx7qEAY1wkMCQO6ftoI+Ocad3XMeJju9Yts4dR/nEeHleebr8d2xHfi3/XRIcnN6OeTvlLcQoD8Uphau9MV5enq7n7YtxzNrc4rX8PNZB5/n1+NsMXedc6FFcx2lTdsybc8SIPmyg9HBAWP8E5v7AlbfYIw+qRgc0Xc/z0285/+WcK4kMpfgxrElgUNymOFUihNJKgNDUTBIk1r6971Mpfee1fil4OqYv/qvmfLuIEF6cuu/pmNR+cWi7nZz2uzB1VydjnfPSeSlOdIaWHJi5Y7su3xi3zrGtPKLzvC9HqZi33frun7o22CFtcaCOYd43TruPCBH7paqedXWqSrNP+NR9Zc4lm3e7cm75b8fT0fbu/EprRMT4Oo91+N73f7D5m8iFiLoyY34xL9UlXuvrvEuftf07JB4EIAABCEBg7u/EFhqajiUhom5apjZCxHZ0xMlmrYe4TkS1GFEvSDSJD7nwkI98iOKDfMYWIOL0SxIhLD7oaPEhn4IpXweiNA2TF6O2AKEjIsRAIoS+rPfX9SWnYpWDveS8zsMsMNQ5y3VNDnyJHXaWq8w8r1LdYpjysZgSw0vnuQjRVJbbofqpbv7t8lR2FUNdqxMgVD8zUD1K9VWYhQrlpbJUD52XhAXXL5abt1l5ROFEv2P8qnoQjvjQpw3wKDQOgbk/cEUKHhkgwSAf6aB4vl66FvOJ53LyW3yQgPHUU09dcvjXiRoWD6oEEZfTJCQ4n3wkhNI3CRguYw3Hj305pWdf7LelfYgQpSmXuuTbpUVqvzi03U7P+hUh5EisckiXnIx1cX1NR6Wtc2DmTlCnVXgs107Y/It/O2Ud12UNIUKIedttiP5xG/OjWEXnchVDpfM1902VM9vhkWPeV66H40pocFh+dLl5v+bx+vo9dV/ZDnP7dPtKzEpheXzz899D7B/H9TGvg/OPaRxW13fKL8/LZfR57NJnbf8OiQcBCEAAAhA4hHfiJgHC10tCRB7WdURE3fRMJTHi8eiIy4KERklcFhk0wiHfb15ZcFrCQ5X4IBGiDwGizTRMFiIQIQYQIeyslhO85Fhsuu40dojLid12V5nacye6wtrmEZ3oXdIp/1iu6m9BwW2KRznoS9ftuFd+yiOm0XmpfWaat1Fx8/T6HcsoxbE4EdtTysfxXG6pvq5zU5xS/oQhTuxiAzwKjUPgEB64SiQ8ekHORp1bgLCgUEoTw5w+j69wCREafVAldjgfCQR5el+Lx31ECIsgqpc3hb3rXe9KOq5p+9rXU/rol/ptcRexoGokhBaKjiMe/vT7Kf3cr10O66vWar84tN3OL/oXIeRQtKO55DzVteis1LlFATsjS07NOgemy7NT3M7V6FRX3i4rlleVVnGio9V12/co5m23vvvHXMzJbSnxjrxi/LZxXVbOMeftOujoa9E+lM8/feYLm6/4Y56xTgr/9Q8/lVS3mN++51P2lepeZ/O2ZTHL22mO8VpVXu7P3Nb/5e8+t+FZSif2eb9W1Ufh7qtSXnnd9/3dpc/a/h0SDwIQgAAEIHAo78QWGuqOueBQmpZJcXYRIprEiCpBQqKEdwsKbY/yk+Z71eiHXUdAPBYgLk/DVBoFwUiIHgWI3BktR/5rf/GDjZPdzue6Y8kZv4vzUU7wKCLskkdMIwd927rlowJiPnM4V1vcByXhoVRH92tV/L55l+pAGEJEVxvgUWgcAofywFVFw+KDHCZtBAGLD4qvvTTVkeI0jaawONA0CsL1kxBRtcWREMrPdVMap4/1bFO/qrIOOVxTHL39gylpcea+tj5ECIkTms5JYoR3hfW9qd1qvzi03R4+HEaEkCMxOoxtszpGx6gdjnZqxnh2XDpOnQPTTteYplS+rpfi2oHq8hVPYblj1nXZ5yjmbbeh+idvr9od2cX2KdxcfCzFLfH+1//2+c1i15FjiX8sz05xl5ULSYrrPOrixDx3PZ+6r2zzbmc8lgS+2M6co9KKW4zj81LfOa7rkJfnPoj902QrVXm5Hn0cu/RZ279D4kEAAhCAAAQO5Z24TnyI1/oWIk5PT9N2Wqbt8cGDk6Rd0zPlUzRJiPBu4SEe24gPueig3xYePPKhbvRDlymYugoQiBA9ihBdnYTEx7GMDWADQ9kAj0LjEDiUB64Sjeiwl2NeTns5YqLD3uksGkShQukd10KAxQL/jvGdl685rcNLR4seOuabBYboeCqJGs7D12K98zyX/vvDz/Q/JdOuzDziYQjBoVQnTcWk9nfdTgaYkqkPZ+IS8xDrrhv9M5xQVmdj9NU03Ov6pOnaLn3W9e+R+BCAAAQgsE4Ch/ROHMWGuvM+hIiqBastSORiRJ0gYWGiJDBUhUXhweKDF52Ox6r1H5rWgNhFgECEQIQoTlU0lGOUfHG6YwPj2MA6H3/Gb/UhPXCJjgUAOe5LAoHiyElfJUZEwo6nuFUjH6JQoDjf/e53N3FL8WPd6oSFkiAS61U6t8CiaZjUboslpbhLDvvmt1N67yfm0cKxRQi1W+3vul0MNCVTk8NwjdfFuutG/0zjDKevpuG+z/8Lu/RZ179H4kMAAhCAwDoJHNI7cZ3wkF8rCRH5QtVNUzPlQkQ+KiIKEh4ZEY8WH3ysEhwcXhIe8lEPFiCi+JCPfhhKgECEQIRAhMAGsIEF2sA6H3/Gb/UhPHBFIaBKeCiRk8hQF1+O/K7OfMVvMwKiVJ99w1R2nfiyb/6Hkl6jAX7n+elrO6YIofbuMgrClPjafniH6z5fadM/w/dPdH7TV+Pyjux3Pd+nz/z/IEcIQAACEIBAFYFDeCeOdc/FhrrfuwoRWjNCAkTcJUDE3QJEfiyNkLAwkYsMpd8SHaqEh3zdh93Eh6N0957Wf2i3BoSEh7izMPUCHZB8bT7O1+ZwhvNcbSDeZDkfjsChPXANR4KcD4XAKz9M6W3XUvrOa9PWeCwRQu1Ue9XuXbeh1h7Y1aG4xHT7zFVP/4zrFKevxuXdx9/7Pn226/+bpIMABCAAgfUQOMR34jrhIV67KkJcpKrFqtuMiiiNjKgaHRHFCQsTFhjyo0c3VB3zUQ8l8aHd6IdqAaJqIeooQDASAgGCr+CxAWxggTawnkeeaVt6iA9c0xKj9DkQ+NrXt9My3bo3h9oMVwe1T9Mwqb37budMy1RctLcPB6nY7rvRP+M4xumrcTj38XflPPros33/PkkPAQhAAALLJnCI78RRaGg631eIKI2KqBIjmgSJKpGhFF4SHtqKD3fu3k/bNR8kOmz3O3f3FyAQIRbofJzrl9nUi1ED2MB4NrDsx5z5tO4QH7jmQ4+aTEngc8+l9P7fSmmpQoTapfapnX1tZ+eH54C0I3KuRzHta6N/hrVP+mpYvkP8jfbZZ339nZIPBCAAAQgsj8ChvhM3iQ/xep0QUVonojQqoqsYEadusjjRRWzIRQiNdMh3iQ35btEhHvsSIBAhECH4Ch4bwAYWaAPLe7SZZ4sO9YFrnjSp1dgE5KDXSIGpp2bqu91qj9rVpwDhOuLo7s8RO4SDlP7pr3+iU5y+GoZrZNz3+RB95v8HOUIAAhCAAAQigUN+J45CQ9N5X0JElRjh9SNy8SH+zoWFut+54BB/58KDf0fh4fF5ef0HX8+nW6r7rQ+TWRNigQ5Ivjgf74tzWMN6jjYQHwo4H47AIT9wDUeFnA+JgKYq0poJc1isug9uaofa08cUTFX1Yeqf/R2yQ04RQ//s3z/RIU5f9cszsh3qfMg+q/p/kXAIQAACEFgvgUN/J24SH/LrdWJE+dpFkvBQtVt8aHPMRYcoLDSdW2goHS0oXD1WCxB1YkPpmv1miBCIEHwJjw1gAwuzgfU+Ao3b8kN/4BqXFqXNlYAWbf7wM9vRA8++mNLFw7nWtFwv1Vf11ugHtWOfRajLJVwN1UKvJ2eH55wcyunZNl8xG2ORXPpnf9ukr/Zn2Pbvoq94Y/XZ1f8RCYEABCAAgTUTWMI7cS40NP0uiw0PN4tWV03PpDRVQkQMrxMjmoSGeL0kNuRhV0WHftd/sBhhAUJHRIiFOR9j53LOV/rYwDptYM0PQWO2fQkPXGPyoqx5E/jmt7dO/Ld/MKWPfmnr2NfURlpfYS7ChOqh+qheEh5UT9VX4oPqP/Z2cYEY0caBKueoWI290T/dHen0VXdmbf4GhowzVZ+N/fdMeRCAAAQgME8CS3knbhIe8utlIeJiI0RcXDxMdWJEG0GilP/p6VmK+8npaTo5OU0PHpyk4+OTzcfFd+9dXechig9VwoPCm9Z+UBwLC22PuU8SEQIRgq/gsQFsYGE2MM/Hk+XVaikPXMvrGVq0D4Ef39xOZ/SxL6f0vk+l9M4Pbac4eusHUpp611RLqo/qpfpp2iXVd+pNX95rCpTTs5ROTlN6cHJ4jsy+nKRquxiIhZiMMfKhqf/pn7I90ldlLn39LQyRzxz7rOnvj+sQgAAEILBsAkt6J86FhqbfJaFgG7YdFdFGjLAgEfOqKvfs7Dy12R+cnKaj4wcbwUACRJ3w0FZ86EOAkCCBCLEw52OuMvF7nV/C0+/r7vdlP+bMp3VLeuCaD1VqAgEIQAACEIAABCAAAQhAAAKHQGBp78RVAkBdeBQQLp+3EyPq8o7X2ggQeRyNlJB/MBciNOrh8sgHrf+wnY4pP7Yd9RDjVfkkESEQIfgKHhvABhZmA4fwsLKEOi7tgWsJfUIbIAABCEAAAhCAAAQgAAEIQGAcAkt8J46O/7bnl8UHTcsU98tihKdqapu34+UCQ5ffJ6dnG79fW+Fhl5EPFiGqBAiFI0IszPlY19lcW/fX8fT/evp/nMcNSlniAxe9CgEIQAACEIAABCAAAQhAAAIQaENgqe/Edvx3PV4WH6IQ4fOHqWuejt9FdKiKq5ER9+5fHRkRRz9YTNjl2OR3RIRAhOAreGwAG1iYDbR5WCDO/gSW+sC1PxlygAAEIAABCEAAAhCAAAQgAIGlE1jyO7Gd/7scS2LELvnENFXCwi7hWsg6Cg8+30V4cJomAULXESEW5nxs0+nEWc8X8fT1Ovt66Q86c2nfkh+45sKYekAAAhCAAAQgAAEIQAACEIDAPAks/Z04igC7nkuQ2DVtTLeL2FCXRgtY7zPtksUHHdv6HhEhECFaG0tboyLeOh3f9Pt8+n2ejyfLq9XSH7iW12O0CAIQgAAEIAABCEAAAhCAAAT6IrCGd+IoBOxybta7pI1p6gSFXa5pbYrTs/MUxYRdzrv4AhEhECEQIbABbGBhNuCbHMdhCazhgWtYguQOAQhAAAIQgAAEIAABCEAAAodKYE3vxFEQaHte1a9t08d4uwgNeRoJD/muOBISugoQXcQHx0WEWJjz0R3LcT5fpdMX9MXYNlB1oyO8XwJreuDqlxy5QQACEIAABCAAAQhAAAIQgMChE1jjO3EUBurOu/ZtXV66lgsKTb9zsaHut/JqK0Ls499ChECE4Ct4bAAbWJgNdL3ZEX83Amt84NqNFKkgAAEIQAACEIAABCAAAQhAYGkE1vxOXCca9N3PVSJEnbDQ9VrT1Ez7iA9OiwixMOejO5YjX99jA+u1gb5veORXJrDmB64yEUIhAAEIQAACEIAABCAAAQhAYC0EeCdOVxadHqrvu4oKu8Q/OT27MiKiT98iIgQiBF/BYwPYwMJsYKibHvleJsAD12Ue/IIABCAAAQhAAAIQgAAEIACB9RDgnfhxX3tkxOOQfs92ERV2SXN8fLIRIvoUH5wXIsTCnI/uWI7r/Qqevqfv+73VkVsVAR64qsgQDgEIQAACEIAABCAAAQhAAAJLJ8A78Xg9vIugsGuao+OTQT5WRoRAhBjEsHCE4wjHBqazgfFug+suiQeudfc/rYcABCAAAQhAAAIQgAAEILBmArwTj9f7uwoKu6Q7PT0bxFeMCIEIMYhh4YCezgENe9iPdxtcd0k8cK27/2k9BCAAAQhAAAIQgAAEIACBNRPgnXi83t9FTNgnzfGD/kdDIEIgQiBCYAPYwMJsYLzb4LpL4oFr3f1P6yEAAQhAAAIQgAAEIAABCKyZAO/E4/X+PoLCLmlPz8579xUiQizM+chX8HwFjw1gA+PdBtddEg9c6+5/Wg8BCEAAAhCAAAQgAAEIQGDNBHgnHq/3dxES9k3T92gIRAhEiN6VLZzgOMGxgWltYLzb4LpL4oFr3f1P6yEAAQhAAAIQgAAEIAABCKyZAO/Ew/T+Cy+8kK5fv35p/9KXvpzq9j/4gz9I+4oOefq+14ZAhECEQITABrCBhdnAMLdBcs0J8MCVE+E3BCAAAQhAAAIQgAAEIAABCKyFAO/Ew/T03/7bfzs98cQTnXalyUWEPn4fHfe3NgQixMKcj3yBPu0X6PCH/xxsYJjbILnmBHjgyonwGwIQgAAEIAABCEAAAhCAAATWQoB34uF6+tVXX01x/94rr6SmvQ/RIc/jwclpbx8uI0JMIEI887nPJ+11zso2cerSc21cZ3jsr2ef+7308Y9/It24ebuyj3VNcd7ylp9NTz75q+lHf/Xjyrjqy5f++Fut4tHv4/b7XHkPdxsk50iAB65Ig3MIQAACEIAABCAAAQhAAAIQWBMB3onH6+1cHBjrd58LVCNCDChC/NnL303vec97N45mOZvtmI4O65ITU+muXXsy6ajriv//s/fGvrYcyZln/yv6C2iMTAEti4R8AS1DgLyhJbUhvJUz00YDmjG0S0COIBKChAWomXEE0JCgGY4amMHQaEeidtYhtWrsTr+WIYBtCA2wW2Sjz+K7rR9fMBiZVeecqrons74C3suqzMiIL76Ic09m5Dn3an7rXy5iq6CtPslrbmUj9qnALVlhxSbY18yPupbuwQYXUT77mf2Kso92L+xwFQ8h8LeKnXiXHzqQ8CGEDw+2zOnj3gbPbckLrnPH396bATNgBsyAGTADZsAMmAEzYAbOzID3xMdFX4cO+rsP+rsQRx1AYGerepUPITY4hIifao/F5lYRPRascyDRpUJ2HMsHE4xJVy7oU/jWQUY8zGBObqXjOQ8hwJv9kM+/97//H91vFGRfnus5xrQ6hODA4VZ8/iaEDymuyZ3j3gbPbckLrnPH396bATNgBsyAGTADZsAMmAEzYAbOzID3xMdFX4cP/J2Ib33rW4ceRPz4J9v8XQgfQmxwCFEVB2NROo/3xlTA1rjmUJxXAbo6hODbCrnAzbwX/9vvXPQPfRmHntGrYn/8JkQlu0Uf2OKBg/C1Dmy2sHmEjhjTWw4h4CUeYl1734vzERzYxuMclBz3NnhuS15wnTv+9t4MmAEzYAbMgBkwA2bADJgBM3BmBrwnPib6f/Inf/LFAcRzHERs9XchfAjxQIcQ8dPufCNCxfm//b/+7y8OC3RoQLE3FrvpU0tBW4X+//Af/1O3wK/CNXLPcQiBn/FQIvoyyv29hxA9Pzls0qGEDxoep9Dfi9lzjx3zNmgrIyy4hNH/zIFzwDngHHAOOAecA84B54BzwDngHBgvBx59162c8rUvAxxAfP3rv3zh32/8xm88HUoc9Y2Izz77/Ita9D31Lh9CPNAhhArM8dPv8VCAQrQOHhRwDhrytyDimAr7/9//evl0CMG8mCxRh8Yre7HoLRnhk82MtYcDn3Sg8tHH/88THg4dOISItiPGeB/tc4/uiDPOgTfk1GpulIEHYfpv//1/fBEDfAJjT0fmQ7LySTrkd5yb71vYhRHbkpEefWMlHkRFP3zvAwpyYN+3QGuHAS+4YMKtGTADZsAMmAEzYAbMgBkwA2bADJyNAe+J9404BxC//Mu//PTrlziE0N9qOPIg4vPPf/qlOiq1p2tbH0I80CEEwaNwThFc/bpX8ZriPTKxoI18LKqriK0CNvOwoVbFeBW2Ja/7eBCA/lggj4X/WMiXjHBgX7qZH+2CK/oRfcs6Ilbw4m/EBTexL8rfiks6wBz9wF7mINuP8/WNlPz3OThgiHo0J/6TLdnW4YhipedR/k5G9MP3X47r3nzs+zZo7TDgBRdMuDUDZsAMmAEzYAbMgBkwA2bADJiBszHgPfF+EY8HELKig4d4CHHkQcTnP/UhxBfF2r//3v970b+9C3st/RSlKZDf0nIYQNE7F7SjDd1HLHqOBwjooHDO3DgPGeyoEB51cIjAuOxJRr7FPvVnWYrr+BSxIgs2xtAt/dW8aD/PjWP4iM9VgT+PwUX0H1zytcKj/iiv58yLdKD7P/+X//rFIQK6GQMz/bTiioMLyYBDdiq/mOf22IL/I/K939ugNUcGvOCKbPjeDJgBM2AGzIAZMANmwAyYATNgBs7EgPfE+0Q7H0DISnUIceRBxBa1L38TIn3yfAtSpaNVlO6NUbxvFdlVhP6TP/k/v/StBubEAjjFbfRUMipqxyK6itrxmcOCqJeDglw0z/aqufCaZelXC04OcaJtjbfsawybFOc1N/oT7WQM+RnZrJN+tRmL7GW8kkO3vsmgeIBPY/FgIeqO85CPstKpPzgufHmen30AoRzwdQwDXnAdw7OtmAEzYAbMgBkwA2bADJgBM2AGzMDjMeA98T4x+YVf+IWLfgVTvFqHEBxEaI7u9/q3Rb3RhxA7HkJQQM6BahWsKXpThFdLIV1zVMTmbzxwEKAWGexQ+OYQQv3CghzF/ta45MESC+vSIUzYbtnTuOQq/yvb6KEFv3RkjJX9jBcbfHMAvbSMoxt7PCOHH7LZ+gcX4inKoAvdkhMf9MtGKw8yPslqfvQnP4PZrQ8hlAO+jmHAC65jeLYVM2AGzIAZMANmwAyYATNgBsyAGXg8BrwnPi4mvUMIjf3997632wGE9G9Rb/QhxA6HEBSRqyK8gtYqPrcCij4OBKRXBWn+yDP9zKfwHQve8VCBewromiedHFLoGZmoWzLVIUC2J72Sq/zHl4gN3LFFLtpr2c94mRuL9pVuMGT8yPb8QIY2xlQ40S0e+ZVK8V42W99mkK6MvTp0kBx2wOHWhxDKAV/HMOAF1zE824oZMANmwAyYATNgBsyAGTADZsAMPB4D3hMfF5OlQwiN7/lvi3qjDyF2OISgqB2L/DFYsWAd++N9PATgHn0U2VWgz8Vq6cB+LlBT3FZ/nqfC+VaHEOCVvehTD1uW0zOHAPjdO4RAVjKaK9vRn6gffsDHc+ar50fURzywrRZd0qHDBtlATnYlg/2oS305NhqXf7kffdiKenx/7sOI494Gz23JC65zx9/emwEzYAbMgBkwA2bADJgBM2AGzsyA98THRf85DyH8h6nD4cFz/2HqXPCtCsZRRoXmqgAtGRWn8+GCZGOhmeKz5Co9raI6hfpqnuzGon1VgAeb9ER/sj3w5aK55oAh+hN1xfuMCfuVz+qL+LGjOVFnxIAfGT/yPT+QUYscttTin2xwH21HrFFH7seO9FR8YrsaY67b8x1IHPc2eG5LXnCdO/723gyYATNgBsyAGTADZsAMmAEzcGYGvCc+LvrPegjx+U+/Ulu9pdbob0KEw4xbCMxzKApXhXJkNVaNV/0U03PBXMXq//xf/utT4T0WuWWjVVSnvyp0q3Ae++85hBAGcEc/0alDEDDDF/7BEbJxvjBqrv5R8Jc8/bFP/Zor2ai70gsvYAKDWvzIY+oHG/OxIxzISwY56UO2wsWvbYrY8bdqOXiAQ2xG/L4/3wGEYu7rGAa84DqGZ1sxA2bADJgBM2AGzIAZMANmwAyYgcdjwHvi42LynIcQn332uQ8hKLA+0jchVHCmOAy+3ObCdB7nORfMKbbHYjMF6FjUptAd5dAZC+T0qVX/locQ0kkBnwK68PCHtTM2cYIcLUV9cOL/f/vv/+OpyI+c2izLnIyhku3xJT2MR3vxYEE2YszhGF/BRjz1jC+MgbfVZhstOfef89Ahx/24t8FzW/KC69zxt/dmwAyYATNgBsyAGTADZsAMmIEzM+A98XHRf85DiJ/882c+hKDw9giHEBwGxGI0+HK79hBChWqK3UtFaxWpVSSXXLY3y/MSB8/lZ46ncOqQ5T/8x//0xTci1BcPeYQVf9QuYfchhA8XlnIkjh/3NnhuS15wnTv+9t4MmAEzYAbMgBkwA2bADJgBM3BmBrwnPi76z3kI8eOf/PNi3TLWpFr3/nVMG/06JhWi86f7W6TnonVLzv1fLjxTtF/77YEj+NPhk34tVsQknPpj1MoHfftBz63c4NsRSwcRPoT4ci4cEduRbRz3NnhuS15wnTv+9t4MmAEzYAbMgBkwA2bADJgBM3BmBrwnPi76z3kIsVV9zIcQGx1CbBUQ62kXmx/xEOKoePkQop0XR8VgJDvHvQ2e25IXXOeOv703A2bADJgBM2AGzIAZMANmwAycmQHviY+L/nMdQny20R+lVk3NhxA+hNjkKzVHFGjPfAhxBL+2Mc9Bx3Fvg+e25AXXueNv782AGTADZsAMmAEzYAbMgBkwA2dmwHvi46L/XIcQW/09CB9C+ABimAMIF8jnKZA7lvvH8ri3wXNb8oLr3PG392bADJgBM2AGzIAZMANmwAyYgTMz4D3xcdF/rkOIT3+8zd+D8CGEDyF8COEccA5MmAPHvQ2e25IXXOeOv703A2bADJgBM2AGzIAZMANmwAycmQHviY+Lvg4hvvOd71z+/nvfu+j+iH+fffb5pjVD/zqmCQuQ/qT5/p80N8fm+JFz4Li3wXNb8oLr3PG392bADJgBM2AGzIA4pM7aAAAgAElEQVQZMANmwAyYgTMz4D3xcdE/4tAh2/jxT7b7FoS/CeEDiE1PtB65KGtsPjQ4Uw4c9zZ4bktecJ07/vbeDJgBM2AGzIAZMANmwAyYATNwZga8Jz4u+vmAYO/nLf8gNfU4fxPCBxE+iHAOOAcmy4Hj3gbPbckLrnPH396bATNgBsyAGTADZsAMmAEzYAbOzID3xMdFf+9Dh6x/629B6CDChxCTFR85XXLrT/47B86bA8e9DZ7bkhdc546/vTcDZsAMmAEzYAbMgBkwA2bADJyZAe+Jj4t+PiTY83nrvwVBfdKHED6E8KfgnQPOgcly4Li3wXNb8oLr3PE/g/d/83eXyx/9+eXy239wufzqty6Xr3/zcvnFNy+Xf/Wv/c8cOAecA84B54BzwDngHHAOOAdyDmitrDWz1s5aQ2strTX1rJf3xMdFds9Dh6z70x9v+7cgfAgxWdGRgLo976ffHXvHnhw47m3w3Ja84Dp3/Gf1/vv/eLn8/p9dLr/yO5fLr//uz+//6q8vl+/9w+Xyo08vl5/9bFbP7ZcZMANmwAyYATNgBsyAGbiPAa2VtWbW2llraK2rtabW2lr3WmvPdHlPfFw080HBXs8/+clnu31Q2d+E8GHEbslFQdSti+POgWNz4Li3wXNb8oLr3PGfzftP/uly+fd/ern80m/+fIOkjZMvM2AGzIAZMANmwAyYATNgBu5nQGtrHUJora01t9beM1zeEx8Xxb0OHaLef/7s811rxD6E8CHErgnm4vOxxWfzbb6VA76OYcALrmN4tpX9GXjvg59/bVwbI31yy5cZMANmwAyYATNgBsyAGTAD2zOgtbbW3PqVTVqDj355T3xcBONhwR73n33+093rwz6E8CHE7knmwrgL486BY3PguLfBc1vyguvc8Z/Fe30SS18R/5/fm8Uj+2EGzIAZMANmwAyYATNgBh6bAa29tQbXWnzky3vi46K3x8EDOj8/4ABCdcEpDiH+1/d/cNE/FzqPLXSab/PtHHjMHDjubfDclrzgOnf8Z/Befyzv3/yR/87DDLG0D2bADJgBM2AGzIAZMANjMaC/H6G1uNbko17eEx8XOQ4Mtm51APHpj4+pbU1xCOFC6DHJYp7Ns3NgjBw47m3w3Ja84Dp3/Ef3Xpudf/fu6F4YvxkwA2bADJgBM2AGzIAZGJsBrclHPYjwnvi43Nv68EH6jvgVTLGO6EMI/zomf4PEOeAcmCwHjnsbPLclL7jOHf+RvdfXvvWpK19mwAyYATNgBsyAGTADZsAMPD8DWpuP+KuZvCc+Lne2PoTY+49Qx8MH7n0IMVnxkcC6HeMT646T47RHDhz3NnhuS15wnTv+o3qvP4Cn3z+rr3/7MgNmwAyYATNgBsyAGTADZuD5GdDaXGv00f5YtffEx+XOlocQP/nJZ8/yYWQfQvgQ4lkSb4/Cq3W6oO8c+HkOHPc2eG5LXnCdO/4jev/JP10uX/+m/wj1iLEzZjNgBsyAGTADZsAMmIG5GdAfq9ZaXWv2US7viY+L1BaHEJ999vnl0x//87PVgX0I4UOIZ0s+F4x9aOAc2CcHjnsbPLel0Rdcn3zyyeXNN9+8qL32+uCDDy5vvPHGV+Z++umnTzrfffe6PzbAvK997WuXa+dG7MIlHd/+9rdjt+//hQF9xfv3/8x0mAEzYAbMgBkwA2bADJgBM/CIDGitPtKvZRp9T/yIOdDCdM8hhP72w49/8nyHD9T+fAjhQwgfQjgHnAOT5UDrTcv92zIw+oKLgr0OInQI0Ls++uijy4sXL76Q2/oQQocGr7322pMNtbJ37aXDFB2M6BDiVh3X2hxJ/vv/eLn80m9eLj/qh3okl4zVDJgBM2AGzIAZMANmwAxMxYDW6lqza+0+wjX6nngEjsF4yyGEvvnwCIcPPoSYrOhIQN3u88ly82peR8oB3qTc7svADAsuDiLU9q6XL19efu3Xfu2L4j6HEGpV8Ffhv/ev+tYE9jiA4OBBzz155sWWAwgOVG7REfXNeK9PVflbEDNG1j6ZATNgBsyAGTADZsAMzMTASOv2GfbEo+TO2kMIfevhJ//82bP+2qVW/czfhPBhhD8F7xxwDkyWA6O8iY6Oc4QFV/w1R71DgtYYRX1ipeK+fl0ShxD5Vzlhb82vVMoHB9hQq/lrDyKwGbFWfVH/Ge9/5Xcul+/9wxk9t89mwAyYATNgBsyAGTADZmAcBrRm19p9hGuEPfEIPK7BmA8hPv/pTy+ff/7Ti77toEOHR/rGgw8hJisytgLqfn9i3zngHFjzBmaZ+xkYYcFFMX7NoUBmRHNiYZ9xHUTo0KI6JFhrT7qlo4dLBx2SUdu6OMgQpuryNyJ+zsrf/N3l8uu/WzHkPjNgBsyAGTADZsAMmAEzYAYejQGt3bWGf/RrhD3xo3O4Ft8MtT5/E8KHE/4UvHPAOTBZDqx9E7PcfQyMsOBqHQq0+iMj+RAiHhzc+k0I/col/fomHW58+OGHi7/K6f3333+SrQ48OKTgICP/3Qp8AXfvMAPZWds/+nP/KqZZY2u/zIAZMANmwAyYATNgBuZjQL+SSWv4R79G2BM/Oodr8fkQYrLC3QwBtQ/+FLxzwDmw9k3McvcxMPKCS4V5HQaoyL90cWARv20QDyEo8rd+pRPfeLjnWwkcXkgH337If3yav1sRceIb86tvdiAzc/vbf3C5/NVfz+yhfTMDZsAMmAEzYAbMgBkwA/MwoLW71vCPfo28J350bjO+GWp9/iaED1L8KXjngHNgshzIb1Z+3oeBURdcFOT5BsEt7MRDCN1Xhf9b9C7NWcK+NM7hi+TOdP3qt/z3IM4Ub/tqBsyAGTADZsAMmAEzMDYD+rsQWsM/+jXqnvjRea3w+RBissLdDAG1D/4UvHPAOVC9YblvewZGWHDpcKD3DYU1Y0sHDPo2hb6VsObXHfEthmyXbyhIRx7Tc/XrmFoR1UHDW2+9ddE3OHz9nIGvf/Ny+ZHpcDqYATNgBsyAGTADZsAMmIEhGNDaXWv4R79G2BM/Oodr8c1Q6/M3IXyQ4k/BOwecA5PlwNo3Mcvdx8CICy4V6HsFfR045PHWwUF1WNDq41cnoSseWAhTPITI9iWb++6L3Plm/+Kbl8vPfnY+v+2xGTADZsAMmAEzYAbMgBkYkQGt3bWGf/RrxD3xo3PawudDiMkKdzME1D74U/DOAedA603L/dsyMNqCa+lXFS2NV+zxzQUOGSqZ2LfVIQRYW4ceVb8OO856/at/fVbP7bcZMANmwAyYATNgBsyAGRiTgRHW8KPticfMhJ+jnqHW529C+CDFn4J3DjgHJsuBkd9YR8I+0oKLPy6t4nz1rQLGq7FWTPStCQ4fdCjw4sWLL/0KJA4KYvF/q0OIFqbcj1/gzONneR5hA3OWWNhPM2AGzIAZMANmwAyYATOwhoER1vAj7YnXcP7IMj6EmKxwN0NA7YM/Be8ccA488hvnTNhGXXDx7QUdSOj+2kI983NhX/06iNCvVmoddhx5CHGtXzPlZvZlhA1MxuxnM2AGzIAZMANmwAyYATNwZgZGWMOPuiceMa9mqPX5mxA+SPGn4J0DzoHJcmDEN9QRMY++4KJIrwODfKBQxYPDB8nrH3/HIcpKpvdtiq0PIfi2RcaPb7k/Yj3T/QgbmDPFw76aATNgBsyAGTADZsAMmIElBkZYw4++J16KwSON+xBissLdDAG1D/4UvHPAOfBIb5QzYxl5waVfkcRhgg4O9KuVWgcLVaE//jFpDhakQxfP1QEAY9im5UCDQ4yPP/746TCD8fgrnaqcAj9y8VdFVfJn6xthA3O2mNhfM2AGzIAZMANmwAyYATPQY2CENfzIe+Ie9484NkOtz9+E8EGKPwXvHHAOTJYDj/iGOSOm0RZc8QCgOiBQjDic4FCgFTfkdEjQ+uYD30aIMmDQYQOXdGGPQwjJXXtxWCJ7Lf+u1TmL/AgbmFm4th9mwAyYATNgBsyAGTADZmALBkZYw4+2J94iLs+lw4cQkxXuZgioffCn4J0DzoHnelM8m90RFlzxIOCawrwOBnry+qYB33zYMu73HEKAI38rgv4ztyNsYM4cH/tuBsyAGTADZsAMmAEzYAYyAyOs4UfYE2deR32eodbnb0L4IMWfgncOOAcmy4FR31RHw+0F1+NGTIcZ+kZE/MbF46LdH9kjbGD4FgzfetnC6z10boELHXw7Jx7Y6b53wMfctXLIP3JLnCIPEe/SoWeUffT7KuaPjvkWfHwbzj9jb2GvPWfP/OF9ccufwW1Plkdm+hmXvb3Ft0d4TfGz+lFyJPO69ln8x2/p6llrQv6teQ+WLV6PzFMrXddcfBhozTxkZWfpZ2v0kdxZ41e0ETHpfs38a3yXLNiyPxW3kh31ivHY2odHWMMv+eQ98RJD2437EGKywt0MAbUP/hS8c8A5sN3bnDX1GPCCq8eOxx6JgUfYwOxR3NhDZ46bNpa3FmTYZN+y0b+mIICdvMmXL/fgz1zc+twqQkjfETG8Ffct84hFjPkteh59Ti+mj479EfBRCMx5slf+8DpTcfPWn2db83bNz7itbe+t7xbfHuE1RZ48So7cEqf8GhKv2R/FR68FjbUuuIjvq+iOBxyt+bzGZUf/8mu9mkcOSD7azbLgQKfm6QDh9ddfX7TD3IzplpzNuKpnfIr+VH2aKwxRrtL3iH1wSjy2xvgIa/gln7wnXmJou/EZan3+JoQPUvwpeOeAc2CyHNjubc6aegx4wdVjx2OPxMAIG5hH4gssFCFyAYPxpbbamK7d6K+VE4bWhv5e/Ev+rRmnENPiUAWHpYLLGjuPIlPF/FGwbYmjlXNb2phZVytPWv33ckG89FprvRbvtXHt/Gt+xl2re0R5YvScRdhHeM+4N3biMX6i//vf//5XVPK+1DtMkIz4yBfvWbLTuiQDhrWvabjXa3TpPTH7SO6seU1JRj8D5Lvu977ARl7DR4+/vTFtrT/HY2v9I6zhvSfeOuptfT6EmKxwN0NA7YM/Be8ccA6037Y8siUDXnBtyaZ17cnACBuYPf2/VTdFgVuLdmy240Z/TZFAeNfKSTZv8vH3XvzouaftFWzWFILusf0cc6uYPweOvW22cm5vu7Pob+VJq/8ev9H51ltvPRUeb/15dg+Gau41P+Oq+bP1PcJr6hHeM+6J6zX4lX+9Q4gWDl5PiteaC3nZ613g0eu0dwhR+UjuvPfee08+tbCBBbklTD28a8fAxiEEawKe1+p5VLkqHltjHWEN7z3x1lFv65uh1udvQvggxZ+Cdw44BybLgfbblke2ZMALri3ZtK49GdhrA8OGVhtZ7vkUX97cVxu1uDnlnvlrNsdLOqUDfa1NPRti5Ni857ka55ONihUFdOapzcU9OIm+6D7qacUduQ8//PBJb7TD5h39cUz3mqt/uR+7kbeXL18+FS2QRSbjyvEBA7pyvJkvHK0x8MO55mBH+qMPEVerH5tgwqccF+SqFvvvv//+F7zH+WBGd8QlfYwLY74ibs2vZHI+Sg6u0Zdzr+I3y0hP5BldVZtxVvrhSdi4h5PKr1tikudEriPPmbPKfuWn+rChGOu1Jhv4EeMe5zMHObXZJjLSoVxC9jvf+c4XeUWfWjju+dXCE7Hle/JAc3mtL+khnuI15kLkv9Uf8WcskRPhkg7p7P2Mk46eTnRIhgs7kV/JcVVzNFb1wx/xkRx9UX9+bVW6NBdfmBv1Rt7BSit9zFEb50VMuV9jvD4yxsyT5n788cdPupdyRHrBCy5hzNcS7qjnlnzL9vBV7dIlbBVfS/OIYeazNQ/5ih/mRNzw2vIhyjI/ztF9yy+NxZ8FEZPu42uc/JD82p+N4CAn9Ewf/oA/2saP2Eb7/OxCb8QZ5+heepFTW3EBptb7PBjRU+nALrL4R/+W7V5r+C0xek+8JZt9XT6EmKxwN0NA7YM/Be8ccA7037o8uhUDXnBtxaT17M3AXhsYNtd5o8fmMW7c6IvFDTaCmh83pGzqYl/F0ZJO6ediYxo3ihrPm1l9QlB+6ar0q19FqBcvXnwhpz64iJirPo1nm0/G0n/gFTdgpviV58Mjcqhq4adfuqOuln5hibGU/nfeeeeJH3TlcclU/oNNbcUFvkS/saE+/SOuFV5sIgMOxXXNVdlnHnkZdWcfsK9+LnBGjio56Y/zND/rh4sopz7FgwuZ+FqrsCNPW83TmGzFeKgv8hSxYCf24WvkTX29mFR6xOPbb7/99PpDp3BVfkb7+Fe1+Cw9VXyibs0HV/QFHXE+fRkfGMCfcdKf52E3y6Ov1Qonr3EwZZ/y3Bhb2dXFXOHSP/wnt7HBc+QC/fiATvmCPvqYjz7NhZPKd/VFWeGUf2q5sAvm/Cy56B9ysR/byEUOK30Zl3TBa9bPa5dxuIj2oz31S7+4QxbeerxHu3Aa9eKb9MZ+2YsXtiLvGhcW8KAr68m4NQ+/oz/MJz/A3rItPYxVHET8ukd/xpflqmfw4mslE/vgmhyKY7oHC+M9/S0f4xzsZXzYkSz32BQO3ceYIqMYRE7Rn7nT/BhD6QRX7McH9WUdkZtoP+JifuyLPGada3FhG8zwh73IAbK9MWS2aPdaw2+BDR3eE8PE/u0MtT5/E8IHKf4UvHPAOTBZDuz/9mcLYsALLufBKAzstYFhM5o3g+KFMTa5bCjjBpHNXuyDU8bYCNIf255O7CK/Bg+ytJV+xqpWNuNGNdvUHMlUfGV9ktMmXTzES3zk/hZXLfz0x8IANhgjJpUPyC61LVyal+2gizk5fvSDC/nMx1p+mZ9b7GT74G31g6viSzqrmGOrl+Pok6yuNXOEMeYhPva46RVTqjFw4Dc2Kow9u3Ee93Bd6UYGXrKfFVbmVC22qvhk3NhUf77yWE+v5mZ59NF/r1/RBrkDph6vmkdss5/05/n5NZif8U36ol96zj/LJJvnw0nGI1n1VbHDplpyAtzwEPXJpvToD/siF7FoXJfmRB+eOgscGVfPB3TAL7bAXdnLY/kZnWoznz1ZcEYOoi7dZ5x5vKe/GkNfjEe0k7Fkf7AP9qyHcVowVO9/yLRabGdMLXn1L+HKOQUf5EHU3dIV5+BfxigZXivVayDnLDLMiTiyLLzIRr4km7lGt/qrnwHSEWUyF4zhIz6vea1IN3wJW7zgN/tBf0s+90edW9zvtYbfAhs6vCeGif1bH0JMVribIaD2wZ+Cdw44B/Z/+7MFMeAFl/NgFAb22sC0NmbihU0hm8S8aZQMG8G8wdQYuvNmMHJ+jc4sy3O1acUGMvhAf9Wy0Y4bdnyIG1TdR5lKl/pacpXOFo8t/K1+sMg2vGBvDQfMV5vjH8d0T9Eix77lC/I5H8BHv7Dngke23Xtu2Vd/FTf8zHwJhy645jnabvmEDL7JH+aDD3+RpWVONc7czLnmMg876KPNc/MzclEXGKTzmpjAS4UTOz28slfFirmxJT5Vfmcf83PUk/Ogp1fzWvhb/Zpzr19LmPCn5SdxIa7Ig5n+yg59yPT8QR+5mJ+x29OBDHFR/vEaZV58Fi7lgH49S8wd9SMHjugDdtQXczzHSuNRL/Nim3VgDx6irO6jPH6CNcrmuPX0Eqfq9SCd2GmNS6anP+OuntWnK+P+l+4v9Mv/eK3hGP/iz9Soo3cP30txzDp6fKAz/qyr+tDZ8jHPkb6Ik7iRS/DAs/TnnEWminW2l+eCV22WjWPEWPGIeCXTs69x2STfexxXGFqYos6Is4VFejLuOG+r+73W8Fvhkx7vibdks69rhlqfvwnhgxR/Ct454ByYLAf6b10e3YoBL7i2YtJ69mZgrw1Mb+PHppdNYrWJa20ExUdPN3xdo7OS1YZTm99WQaKag22wM582bkgrH3qbdXSrbclVOsESCxnS0cLf6sd+tE0c8U+21lwUFyp5dJIbUV/Ll5Y++MAOcsJb6Ucef7Jcy37MlTiXe2yhX/K6eEauasFOXCqZSl/MNTiM/ld61CeZfDEPLK1x5rZ40jx8BjO6ZRuesv74rHmVb1Em24hjeb6eMxf4Cef3FtpkX3bwr6dXsi38rX70R15afrVeX0uY4LAVW+IId8iDOfbnGGhuxF75k/VJhy7084yc2myHvhzvnHvRR/hSH7aEl35yA/8r3fRJBgz4ix5y40mg+C9i0jD2Iq9xGuNqezaQQ09+jjrRg89xTPfwU8UC2Z5+yTCuVlf2e0kPGPBH8mtyG7uKVZyLvVYLJzmHWvK5H7yZM/BkLC0+ej7mOchiE1twnseFOb+WkKlyIdqDn1Z+Z9uZHz2jTxxnjJX9jBcb0lNdjKMbezxrDn7wWq7aiKXHT4Xhnr691vD3YMpzvSfOjOz37EOIyQp3MwTUPvhT8M4B58B+b3vWHBnwgiuy4ftHZmCvDUxrcy0u2NCxMa02bNVGEB57upG5RmclC8a42WTTLhvVHPWzodW8KC9/KDxJrvIhb/TxJbctuUpni8cW/lY/GLJt5CNPstm7pIPYZzl8qHS0fIHzPKfShQ7wtnBkXHpmbixOqD9zUs1VH3gkXz235sVcjDkE9+jTfLjAvyjPWOapZZf+pXmMq9XV4kljmYMoD+ZeTNZwXdl4AnZFrCQPv7G4hJ7s4xIujeNXT6/0t/C3+jVnyT64iRVct9rKZ+nIfme9ObfAHPtzn7Bney1/mKtxXfkZPGqzDrDL54hHcsQm6pQM+sUbr0PJE0P0wCvPEUe+j7jQGe1neT1Lr3DzGluyx7jang3kwJ2fIxb05FghA1fyr3X19GsO42p1Zb/Rixy46QdD7EcWncjSYiP+rGSs15IDikvP554O8Mb58Nx6bcZ+fOr5iH/ICk/MQd3HmOJXxBTlNR+ZOA8/oz18aeV3Dzf61CKHvZ59yUe8zI05UemGn4gfuSU/kKPFJjrp36Pdaw2/JVbvibdks69rhlqfvwnhgxR/Ct454ByYLAf6b10e3YoBL7i2YtJ69mZgrw1MtbnGl7yBzM+SqzaCzGeD19pUSu4anZUstth8svHHZmtO3PyiQ63mxSJHxU9rbtSj+5ZcpbPFYwt/q1924aIqKDAPnlqb7wpj9K/lm2RavrTyAVvELNpBl/BS2Ijj1T1zsm+t/qwDPPJRF5wt2c/z0Mt89NGvFk7kH/Fq6YnzqvulefI/5naPD3BJJl/M68UEmRyDqKuHt5dfUYfu4beKT8aRn6MuXjfo6enVvBb+Vr/mXONXxMb9EibkWn624gpmzeOKfHz44YdPuZPj2fIHfeR8fsaG2qgDm7wWslzsR1bx0h87j2PSqWf94fSY8z0c0VbGVT1neT1n3pfsSR58+BP9wEaOW0/vUo4sjctmTz9+gptn/TzI+ZFx4w/6ybee75qDnoobdFYteoUNW5XcUh94yecl+ZwHkgdLy4dqDnZfvHjxlCfRB+IYMcXXkmwiw8+0iDvby3N7snEs3uMj9nr2kYUPfI3+RN3Cuybnen5Efdl+HNvjfq81/JZYvSfeks2+Lh9CTFa4myGg9sGfgncOOAf6b10e3YoBL7i2YtJ69mZgrw0MGz82gtEPNv5sfKsNJRvZauO4ZjPY05kLGpVsxKv7jJmNJpti5IUt+4xs3OjCT/RvjV+y05KrdII7+wymjB8uIlZ8q/QzRkvcsr04XunWOLYjJ8xT29KNj+QTc8Cb+xnHXuaA8dy27GOnhRs9lVwrlsxRy7zsB3637BJj8jE/Rxu9+948xiKH8FThWvJ3KSZwUenGh57Mkn10qO1hwUfyvGeTMeLX0xvtZh/Rk/s15xq/oo/cL2FCLvtNP7mIj/SDOffrWT8HVAQlP5mjtuUP+uCghZt+ftZUeSo7yGUMwqc+5TW2JC8/wR1zHv1ZT/SJ++xbizvk1QpPLMb37DEW8WWb6FZ/LKQzt/IDnFEvemhbdhjv6Wcs6s9+owcsGo8X+UF/fo6y2Kt8jXLVfct+JdvrA594W3NVfKADn7Oeag6+K/a8RpjHayJiynFFJsaK+dlei6uIQTK9C3tg4jljlw74QBY7VZwZi35k/OBq+cE4LfZb8UBuq3avNfxW+KTHe+It2ezrmqHW529C+CDFn4J3DjgHJsuB/luXR7diwAuurZi0nr0Z2GsDw0ZMm9y4waM/9rGhjH1sBGOBRFzQv7TB6+nMG94sq2dtYLVB5ZK9vOHNG3PJVhtVyeXNPjywUdbcSh/2Y9uSq3RWfeiq9MCF8MZNO/2xT7rfeust1D210olMnlNt+ONkuMvxQYbY53Hm5ZzAd/qFVX1ceZz+VtuyL3n5nXOVfvBiT7Jc9MFZ7FeBVpzBW5RhnmyiT/iwJT3wz7j64Cq+1uhHjnmVvTxPc/LrAp4yH/Sr5VqKSTWHPvBKlzjSp9bVwk0cx16Fl7HcwkP2WXJgiHzTp5ar0lH1Ia+2irf6t/Ir2uK+wkRfzAN8jH5LB3kVfY+Ycz+6c46ApxWnigMwRRuaL90xN5EDOzxLLvoY/dEY8uqPuHN+wUHOF/VH2co38EYfZOudd955oiRjVydcZHuV/koWvDkG9EfMzJcs9uAickdf5B0+pfda3JXf6Mu4o254VJuxPIEIsYx+MhZb8iTq6emNcysu4zi8LmFgTsXHEpZqjvTRn20Tw9iv++g/MuQC+KJe4l3xJznpVAz1D1m1lc6Wfc2t8i/2yRY8Z91Zb4VffbrwI+KlX+/VsqFrKR5PQhv+t9cafkOIPoTYkswFXT6EmKxwN0NA7YM/Be8ccA4svHd5eCMGfAixEZFWszsDe21g2PRpk8dmlw2n+uJVbWiZ8/777z9tSpmbN4BRT7zv6WTDi3wlK5loM29qNZd5kosbdLAzX8/6F2UiP+CoNsSMxbYlV+nUvIgncl/hp0+bdXGPD2rzBj7rzjLogjs4FZ58scFHNo9HWzl+Lb3wgT3wRJ+yrsouffDYmgOOln7wxBhIN77HeZnrjF08ffzxxwr6zlsAACAASURBVE8FGPRVevAdH9RmXbKLjjieY1Hpzzg1H57WvHYrLJFfdGU/4BLOll5b+C8/oyz9VQu2no8Rq3RkXMKXsff0giPqIQ70xVghf41fzIlthYk+7EueeGS/yf3sK5hzv3T1MLfG0Jc50DO5AOeVjiwn3OqLPgobvudcia+BzEGcF7FIf7wqXBqHQ+ZGTC3eIx7mVfla6ZccP+NzfDIWyb58+fKJJ/TDUcSJn5nnzMFa3C2/wZdxkx/qBx94wUaLLLxVrfSANeZC9i/PhRNwZv8zhtY4crSZjyUfNS/PQRdzhTFe9EdMuo/+I1NxW9mDw8iT7FayVVyynWifHEZ3lsW3CkMlW2FCh1rGsbeWl6hjy/u91vBbYvSeeEs2+7pmqPX5mxA+SPGn4J0DzoHJcqD/1uXRrRjwgmsrJq1nbwb22sCwkYwb2Wt8YaOXN8jX6LDs9QzEzb027VteygWKM1kv+aK4+zIDZmBuBigI3vr+MDc79m4LBjgAmHkNcQYfq1zYc51S2Vvb9xzx2GsNv9bnNXLeE69haRsZH0JMVribIaD2wZ+Cdw44B7Z5i7OWJQa84FpiyOOPwsBeGxiKyrcWmXwI8TwZstfmfikflCfxE4XP472tmgEzcAQDz1GsO8Iv23gMBjjkah16PwbK+1CcwccWQ3utU1r21vQ/Vzz2WsOv8XmtjPfEa5m6X26GWp+/CeGDFH8K3jngHJgsB+5/e7OGNQx4wbWGJcs8AgN7bWCWis5LvvsQYomhfcYfcXO/j6fWagbMwHMwQLHu1gPq58Bsm2bADDwOA16nvIrFXmv4Vxbuv/Oe+H4O12rwIcRkhbsZAmof/Cl454BzYO2bmOXuY8ALrvv48+zjGNhrA+NDiONiuKUlb+63ZNO6zIAZgAF+tuh3qfsAAlbcmgEzcC0D/Cyp/qbDtbpGl99rDb8lL94Tb8lmX9cMtT5/E8IHKf4UvHPAOTBZDvTfujy6FQNecG3FpPXszcAIG5i9ObB+M2AGzIAZMANmwAyYATMwEgMjrOG9Jz4uo3wIMVnhboaA2gd/Ct454Bw47m3w3Ja84Dp3/EfyfoQNzEh8GqsZMANmwAyYATNgBsyAGdibgRHW8N4T750Fr/TPUOvzNyF8kOJPwTsHnAOT5cCrtynf7cmAF1x7smvdWzIwwgZmS3+tywyYATNgBsyAGTADZsAMjM7ACGt474mPyzIfQkxWuJshoPbBn4J3DjgHjnsbPLclL7jOHf+RvB9hAzMSn8ZqBsyAGTADZsAMmAEzYAb2ZmCENbz3xHtnwSv9M9T6/E0IH6T4U/DOAefAZDnw6m3Kd3sy4AXXnuxa95YMjLCB2dJf6zIDZsAMmAEzYAbMgBkwA6MzMMIa3nvi47LMhxCTFe5mCKh98KfgnQPOgePeBs9tyQuuc8d/JO9H2MCMxKexmgEzYAbMgBkwA2bADJiBvRkYYQ3vPfHeWfBK/wy1Pn8Twgcp/hS8c8A5MFkOvHqb8t2eDHjBtSe71r0lAyNsYLb017rMgBkwA2bADJgBM2AGzMDoDIywhvee+Lgs8yHEZIW7GQJqH/wpeOeAc+C4t8FzW/KC69zxH8n7ETYwI/FprGbADJgBM2AGzIAZMANmYG8GRljDe0+8dxa80j9Drc/fhPBBij8F7xxwDkyWA6/epny3JwNecO3JrnVvycAIG5gt/bUuM2AGzIAZMANmwAyYATMwOgMjrOG9Jz4uy3wIMVnhboaA2gd/Ct454Bw47m3w3Ja84Dp3/EfyfoQNTOTz29/+9uW11167fPTRR7H78sknn1zeeOONy9e+9rWn8e9+97tPz2+++ebl008//ZLsPQ/vvvvuk40PPvigqUYYhUWY1l7CKKzCjw/Zx6gLHMj38MR5+f5aPcjLx94luSpOvTmtMWK7dSzh/NpYtXA+ej88kjNq13JK3OPca3NO8mtzQrLX4NuTe+V69LuV+5nftb7uiV26j8KP/zGn9DNMPLQ429v3vfRnTnuvBTggh27lAn7RE3mu/ER+rzzkZ0LPd3DJ571wYGPW9pb3KfN9TDZc8xrYC9EIa3jvifeK/lf1zlDr8zchfJDiT8E7B5wDk+XAV9+u3LMHA15w7cGqde7BwAgbmOh3tbmm2BKLMlVf1HPr/dKmk4LTNYWmCmvLTlWQUJ/sSc/a6xY9+KYiWM+/yp+1uCq5rfVho+KAsdlafFVeccHrUnFQRcZ8UEN+9vIAOxwoKG+WbGkOuCQfX9PoO7KVf7HIymsg46I/8qH7Nf7u6c+R+Ilb5KbiZU9/99bN6yi+Hsjv+NoCB6+TmEPqi8/I9trKhvoqm+hR7Ne+5phzTVv51pp/xGuB2MjWc1x72UdvzLkl/47gu8IA1ueKQYVpz75rXgN74RhhDe898V7R/6peH0JMVribIaD2wZ+Cdw44B776duWePRjwgmsPVq1zDwZG2MAs+V0VaJbm3Dq+tOnU+LWFx2oOm/lY0BNmbe5z3y2+3KJHc1TU0r9ekYF4qH3kC46vKe48sj89bPJVReJ8rSkSa57m50s50Mt1+CVXluTRz2vsEQ4hwBTb7Ad+5tdlqz/qeo77vfBXhxDP4d+eNls/28Rp/jki2d7rYy1OXqPX/DxlzpkOIfBZsXiOay/7/BzJ+dXzMb/Ge7Jbju3FwZYYt9TFe9U1r80t7UvXCGt474m3jnpb3wy1Pn8Twgcp/hS8c8A5MFkOtN+2PLIlA15wbcmmde3JwAgbmCX/KQxpQ7j31dt03lqEaxUMcmGLDf69G95b9MDx22+//VRYaxV6bimY7B2zlv6RsLZ8uLefnG3Fs6dfr4VriqytPI82yM233nprl1+nFm3dep/9BnP18yfL3mpzy3kZ01b4yaV8GLMl9ufWJe5U2M8/gzOn/Gy55XWVfZSOazjFtua8ePHiqtdott17bnFRzVnz2q/mXdNHHm/B+TV2kd3LPvH0IQRMP057zWtgL9QjrOG9J94r+l/V60OIyQp3MwTUPvhT8M4B58BX367cswcDXnDtwap17sHAXhsYitbapMWr2lDHjZwKCCry8C8Xe2Ixg6IXsrQqvvzgBz9oFjHBhnxrcw8u5PRMX8YlH9HLGL5oTryQo1hS6YSnWHySXAtr1L90f60eeBbepUIL49Hn6B+ciNNYwG71yxfsZy6kQ1zGufRlDuCTWMr2hx9++FTcy5wSH2SjL/gXuUAu6wEDc5BTG3VmH99///0y/7Ofer73gttbdMmHGMMlLLLRkydGivPLly+br98lO/gE39EmsRAW7pFrxS/b09woS77kmGoeY2rXXqPiB3d8ncJxzC/ygNcf/Mc4iSvyIXINh/AqzrGb50tWtqR/iX9wZltgQHe0CxbsxLnoW7IbdVT3+FblViWvvvi6hGvhqa7WeNUPF/gpO3ALz8Qy4630VXhu6QMXtmnBSSyEAczEs4UrzomYmI8NxXfJPvPJHeaCj3G1WZdw8jqp5OPceI9fzMWm2ionybMoJx3VdQ8HUR829fNCOOUr9rFNHHJ/1JN5zbkXZeN9tH/rey5cVJxGW3ve77WG3xKz98RbstnXNUOtz9+E8EGKPwXvHHAOTJYD/bcuj27FgBdcWzFpPXszsNcGho1h3hCyyY4bajZy2mhGeW1E1Rc3eGyuY1GlshU3mLLJhS10VngkW9lmbsYk+UpP1VfhquRki0JJ1F9t2COX+NlqsXWNHnGBDYoC6quuKj4Vb/BAcUEyusAXfUc2FjejTuZqfhU35uNDtCP7sV+6om3Jvvfee1/8IXT8z/MqG5oLTvJNfeiI/jBfemN/xBpxoqMVB81bc1WvnTXziFPEtDSvyo04J3IPH5mLKF/d40/kRVj1DR618LY2ftlGL54ayxd4YvyzTHxGfkT8VczgO/qje/Gvf/BCPsXXHn1VjsETnFd2skzkubqv5Kt4C3/EyTy1XJonmbVFYOblNuqOvIk7fI9z4IGxjDXK6h79yKuPOGYb9EunLs0hjnE+OCMfSzieFN75H76DD3X0C2sea+FiTpTXfc7Fd95554tfc1fNAQNcwUmV2/AbbSAn7LEfva1WWIlNthlzV/N7OZBt3sNBxoq/whl/zsNV9hmcMSaSzf7E9+tsMz637EsG3qP/VXzBCsdR/1H3e63ht8TvPfGWbPZ1+RBissLdDAG1D/4UvHPAOdB/6/LoVgx4wbUVk9azNwN7bWDYMGqTFq9qc8dGLm4uNafa9EkmbzorW2ww4+YWfRkT/div9OGDZLQ5zpvOrAN5+rGpNuOXLLxQOMgycTxujPEz9mG7aq/VAxf4iz9wFW2AJXKu8VZ86c/y2ISzSi9zM44Kn2Qyn8KFXrjjOeOJPqK/0scYmLIfUU8ew3alV762+qtcjHZ69+DF/55sHpOPsk2M8nj13IqDZMGCPvjoxSLbWDMHOxWfjBE/6Y+vF/lb4enZhSdePxlzfO7pQQ6Mo+AHb+QUTog1vuXXBNxX+ZllpSO+TphbxQt7VSts2CMeETtz8IGf1zm+wlKNMS/Loze3+Jlfa+iPHFY+y16VK9ipfJRNzXn99de/lO9gATsYMj+tmPdwgOeetrIrffQT12ijxQ9z8C0/Rx3ct2Toj7GKuLDRwkKMKvzYzq105ZyRDDEEC9jAEPXksfwcZblfI4MsfuW8oF/4yTXNIb/hAblrX+NL9jUufjIu+iMuXgMRJ/qPavdaw2+J33viLdns65qh1udvQvggxZ+Cdw44BybLgf5bl0e3YsALrq2YtJ69GdhrA5M3u/iRN5Lqb23kqk1mtVGvbLXmsoEFj9osW9lAvoW1tWnVPPTpE3ra2Eo2XuCPhYDcB8a4AUYHslkv47G9Rk9VUKj60A8OtfFqcYZ8xo0N+sEciw0tnVk2P0dcOReRrXKEeWCLsWIMfeAk7pqTL2whm5+Rp7+y1+KPub2WuVU+9ebho+aBvScfx1p84GPUV/VFXdU9PqltXdfEr9KBjYhVcuRjjBN9azlG96j4q5hVfLfyIMuSa9XrEa74GaEYRPv87ZrqtVfFlb6IQTizbcZj/Ks+zVXcYz5kjPJv6SKHoj3NqbipeK36sk3JRD9lU/b0K2piIVb9Wa7K7RgHfFyDI+O69pk4yFa8Wv2SaeHKc3jOcVhjJ/PLnMhT79dHVrFGR6td6xf5Vf3MyXbv4aDCGf0nTySX7ca5kUvmx5yMskv3zM8xpV+28pV/7vT4y3P3et5rDb8lXu+Jt2Szr8uHEJMV7mYIqH3wp+CdA86B/luXR7diwAuurZi0nr0Z2GsDkzdr+FFtMFsbOTaDcZNYba4rW3kudlU0af2TnR/+8IdPBZjWxhZbarmyLfppGZfd6IvGGcv9Gou8IFfhYqzSAQZaZJf0tIoiFCLyBh1+K73RD3CohUuNxwsb9IM5+tfSmWXRlfFiT/0Rs57Jj2pOT1/kQPwJb9SNTbXI4lPGjSz2wFS14gJ9eTzmKTrxMRYYGeu1EUvFTW+uxjQn2wR35qnFB9ijn+RJpT9jwocKfwtL1tHKW/rBptjmQu7M+KuYVXy34pRle/GAa2JPjOhXDPIYMkut5hFD6eO6Bg9xjvPR0/Kf8diCpfKFMdmI93H+GltxLj6qj3hIP/38vJKNOC/arPJgDQ7swb3a+HMBTuO4MHAxX3LxavVLpoUrz8F/bEe72Mpz1J/nMT+24vRv//Zvn342ZuzoVn/kQjGJOnQfY7PWr5ZcZTf7spYDdOW2yhPJYCf6y9zMg57hQff5iuPIgbtlnzgiX7XoUKvx6nWesez1vNcafku83hNvyWZf1wy1Pn8Twgcp/hS8c8A5MFkO9N+6PLoVA15wbcWk9ezNwF4bGDbJbNbwo9pgtjZy1SZRm8pcyKxs5bmVXTDFdkkOW3HTWfVVOrVZjYUCyTA386QxNsPyuYcr+xpt5/u1ev74j//4i819tQmnj40/WCs/WvFt+Z51Vf61dGZZdIEz86H+WOyAH/xTG+f29DFX+rY+hIgYsg9rn8Enn3IeLukgVpqr+1su+dB67Ua+q/s1eCv9Gefa+CmPWhc5tiYm4irmV0un+kfHDy8xVhXfLT+zLPla8Uc+5p836FAO5bEe93EM3TnX0V3FPfve+vm0Ns7gAUvlCzb+4i/+4inHqtdN7MuvPWzgl/RxL7vwL3/xL+LAvmTjhWzMg1bM47x778Ge49Pql70WrmoOfkVOIx/VHDiscjj6W82N48K5pCPLV/HOdlr+oyvbvYUDdOUWXTFPJNPjLONBNsZEMmuulv3MUU9X6zXQm7P12F5r+C1xek+8JZt9XT6EmKxwN0NA7YM/Be8ccA7037o8uhUDXnBtxaT17M3AXhuYVvGETWPcULc2ctUmsdo0V7bWzq34rWwgl7FW/iBLqzkqCOhXhGizrGeuCjtjeTPcwoWvazff9+jJmMDa0qnxzBlzWr5jA57wLxYrWjqzbH7Gttpe7BijuAEWsFVcZ1s9TpBFD8/RR2Fs9Uc/1t7LlvzB5tp5+FwVtdbqkFyPj6znFr9bORF140vFwVqbyFU6oi18XiMn2dHxw0vM4YrvVh5kWV6D8b0CfqufHcjL/osXL75y4MXcXosPmi890XbGF/UwD98rfMjL/6iX/qrt2VS+LL0mW1xHW5E3vUdFbGDlVwkKD1crXzMXkl+DA723ti2uWv09XL05+Md7g2KtqzVnje/oJH8iB8QnxiWOV/ctmxljK4bSid0KE3jXclBhREfWj93KX/JRc+PFHPDIr6WrZb/VX+nr8VfJ79G31xp+S6zeE2/JZl/XDLU+fxPCByn+FLxzwDkwWQ7037o8uhUDXnBtxaT17M3AXhuYvNnFD/rjBrO1kas2g9Xmuir4VHMrOXDFtiUXN7q58NDa9OKvxpkffa9wgiXz0sJFP5iY32qRz5jp7+nBH8WBCx9iH2Nqsx+MYS/jwAb96I/FipbOSrbKGWHATowH2Ggzxt6cLJuf0amWMbW6KtzIt/AzvqYFdytGPR1b2Jf+a/T0+GhhXeMjMlXMiQl517KzVk629Md91a65wNaLETKPiL+KGXijT608uEZWOlRwjLHSPUX5SteaGEgv3OY4Vz+/0ZllKy4kS3/kAx1V27JJf/yZWM1vcZ1lxZ38lr6ITX6JUw5lZJdLcxQDycQLHyO2tTiinmvvsRvxS0cvF1o+0J91RUzI4H/Lfs6NqCPetzgCP3kZ57Tul3ThF7p5jvoYk5+tay0H1Xz4inkiOXK78lc4q370r+Va8i37Gmvxhx3a7D/9R7Z7reG39MF74i3Z7OvyIcRkhbsZAmof/Cl454BzoP/W5dGtGPCCaysmrWdvBvbcwGgjF4sUbC7VFzeSrY1ctUmsNofVxrOaG+1TOBC/6leRRZtunrUxpqBFDPAn+iTsWQ557EVf2dhLF1eFH7m8Qc/+42fUh95ee6secEV74I+cRtut+DJP4/HCBv34GLlo6axk0RfnIxdzUX3yS3Hjkp0YX3RpXtRHf+yTDumL+aI+ZCOH4Mnzo3zMI/qVtxGv+qsLrlsxYg44sEUOV7iYQ0tMiBv9tPI3ckl/1YJjjd04HwyRW/mgT3irhfs18RNX2T7zc7/sRm6Ra3ERMcf7kfFXMYOHGI9WHlSy9EW+yWXFEH6Ri3bgMsYlcp3v0YtOjWeslR385jWD3pa+LId8q61sCuOa11LGz+s5zwVr/lmFb+qP3Apri1/mxJhlHC1f7+nHt8xvxR92wBrnIB99Vt9bb73FtKdWPsV5Lfv0Z27VH9cd2I28gU9zo60vASkeWnxjI8aSOMa8x27Ecg8HBcTmIQB8Vf5GzoVRz5LnWvu6kHzlI3rgKWNQf3zPhbu1P2PQv2W75xp+K5zeE2/F5LKeGWp9/iaED1L8KXjngHNgshxYfvuyxBYMeMG1BYvWcQQDe25g2ExqA80//aFWbWzj5q61kas2idXmmgLK0iYaPrEHplyQkVyFXXaYq/sKHzbi/LxBlQ+yHfGy6QVTHkevWjAgG/VEuaX7W/SAUz7ows8Yz2wXO5kHPVd+YgO/Kp5bOitZ4UEnnAnvy5cvv5KLYIpy0smFHvkPBmThBFnarFPymYsWbnTAM7bUxgIRcq02Y416dM9rABzEk+csH5/xGxtqq0ty2KnGYx92r/GR+cQIjNEmY2vjtyZ2spvjE22Ca20LxtHwVzHDF3JEHLTyoJKVfI6BckLvI+JHucY8chaewbMmFtjI+VbpRi/xURv9w75a5iOb9UfZ3n22mX1tzc1ck6eZE/TnfuSFP//M4vWe+9EVfc04Wnjv7Y98wxF9a2OkefJJXMQ5+NuLJbYkg318yvMz15KL89FRvU+hs9W2+EZ/9KuyK9vCm6/sQ4wxstgAv/Khuqo8kRw5l/nTmHDHfl63srVkL2No2UcOHOhWm/2Fj/waQMcR7Z5r+K3we0+8FZPLenwIMVnhboaA2gd/Ct454BxYfvuyxBYMeMG1BYvWcQQDI2xgjuDhFhtsgJ9zA3oL7i3nUHCoChZb2nkUXfibiziPgs84+gyMHr/R8fej41EzYAbMgBm4hoER1vDeE18T0ftkZ6j1+ZsQPkjxp+CdA86ByXLgvrc2z17LgBdca5my3HMzMMIG5rk5quzzKbn4qbxKbva+1icuZ/XbReCxIzt6/EbHP3b2GL0ZMANm4LEYGGEN7z3xcTnjQ4jJCnczBNQ++FPwzgHnwHFvg+e25AXXueM/kvcjbGBG4tNY52bAReCx4zt6/EbHP3b2GL0ZMANm4LEYGGEN7z3xcTkzQ63P34TwQYo/Be8ccA5MlgPHvQ2e25IXXOeO/0jej7CBGYlPY52bAReBx47v6PEbHf/Y2WP0ZsAMmIHHYmCENbz3xMfljA8hJivczRBQ++BPwTsHnAPHvQ2e25IXXOeO/0jej7CBGYnP58aqX48U/5Bivj/z36947tjYvhkwA8/DwCP+XOSP2uaf0Tyf5e/sPE9G2KoZmIOBEdbw3hMfl2sz1Pr8TQgfpPhT8M4B58BkOXDc2+C5LXnBde74j+T9CBuYkfg0VjNgBsyAGTADZsAMmAEzsDcDI6zhvSfeOwte6fchxGSFuxkCah/8KXjngHPg1duU7/ZkwAuuPdm17i0ZGGEDs6W/1mUGzIAZMANmwAyYATNgBkZnYIQ1vPfEx2XZDLU+fxPCByn+FLxzwDkwWQ4c9zZ4bktecJ07/iN5P8IGZiQ+jdUMmAEzYAbMgBkwA2bADOzNwAhreO+J986CV/p9CDFZ4W6GgNoHfwreOeAcePU25bs9GfCCa092rXtLBkbYwGzpr3WZATNgBsyAGTADZsAMmIHRGRhhDe898XFZNkOtz9+E8EGKPwXvHHAOTJYDx70NntuSF1znjv9I3o+wgRmJT2M1A2bADJgBM2AGzIAZMAN7MzDCGt574r2z4JV+H0JMVribIaD2wZ+Cdw44B169TfluTwa84NqTXevekoERNjBb+mtdZsAMmAEzYAbMgBkwA2ZgdAZGWMN7T3xcls1Q6/M3IXyQ4k/BOwecA5PlwHFvg+e25AXXueM/kvcjbGBG4tNYzYAZMANmwAyYATNgBszA3gyMsIb3nnjvLHil34cQkxXuZgioffCn4J0DzoFXb1O+25MBL7j2ZNe6t2RghA3Mlv5alxkwA2bADJgBM2AGzIAZGJ2BEdbw3hMfl2Uz1Pr8TQgfpPhT8M4B58BkOXDc2+C5LXnBde74j+T9CBuYR+Hzo48+urz22muXb3/7248CaQocn3zyyeWNN964vPnmm5dPP/10U5/Qrbgpfs99vfvuu5evfe1rlw8++OC5oWxuX6+La3l+hNcUObJH/m1O8h0K13K9Vu4OKIdO1WuulZfE/hF+ps/8s2FtwInHEa/F2fjWe4reW+TXCJdec3rfV8yXrlveW5Z0XjP+yLkywhree+Jrsu0+WR9CTFa4myGg9sGfgncOOAfue2vz7LUMeMG1linLPTcDI2xgnpsj7M9WnMOvI1sVE3KBac/Ck+ypMNMqQh7pu2w9cjHjXi5uKRQ9wmtqz/y7l9Mt56/leq0c2KrXtMbQ85wHbkuxfaTX41osLb6JxyO0OkzWz3lhveZaitc1upZk1/K9pOdRxkc6hOBnw9r8kNxzvoc/cq6MsIb3nvi4nxIz1Pr8TQgfpPhT8M4B58BkOXDc2+C5LXnBde74j+T9CBuYR+Hz2o3zo+B+FBytAlOr/17cxMuHEPcyud98YrS2GLUHkr3ybw+sR+i8JiY97h6hcEdhtjoIoVCeD0WP4PhWGz2+b9W5x7xrcmgP+2t0PkJ+rsG5VoZcl1+Pfgnjcx4qXMvPI+fKCGt474mvzbjb5X0IMVnhboaA2gd/Ct454By4/W3NM69hwAuua9iy7HMyMMIG5jn5ibZHKKxEvI923yqgtfrvwR8LjC9evHiYgscjFzPu4fvWuY/wmtoj/27l4xHmXROTHnfPnev8DGj9ypeRirbkRY9vZB6hvSaHngvvc+fn1n6Pks+j5HCMzyPnyghreO+JYzbtez9Drc/fhPBBij8F7xxwDkyWA/u+9Vk7DHjBBRNuH52BvTcwbIz1aXT9qwpCbEqRUVt9MpqNIHLSnS/NY7ylJ8/Rc9ZdfUovFla4x1blF0WwnkyFJfsgbLrgSZ/c/fDDD58K6+i+9tO8siEfpUdz0VP5HW0jp7aKEXoVG3GCXPZJ/djq+VXxWnGW+8QZ+sGkmLUu4inZnLPw3+onzi2s0T55Jl2ZE+wIY08nOCr5GJ+YE9Uc2Wn1R5xwlvHqOV7Rz9hPfMFGXCQTeY9zdA+Gah6yLZstvRmLYvbxxx+v/psk6AVTFfM1uNEj/MQAncS11Y/v17bRZm9ulMsYYk4JO5hpFdu//Mu//NLPJsYkrwt+pJv7LBPx5ZhFDMyHszgPP6oxyQlPjB92pP/ly5df/PwStrU5G3XoSauJHQAAIABJREFUNSwbzM18ZVz4Il6qK8+PuPBVMvmKGDQWZXN8q/lZRnZbGPm5RTxpI89ZJo5l/m7Bm/ULw9tvv/30PhdtRb4ztzk2mUM4jlzSpxbd+E8ORJnqHn1L83JMhI8+sMND9BmbWZb+qm1xE2N1zXoE22rjlTmL45n/nm3J6spc0o9N7MkO9/Dek2W+Wjhmnlr4j3J73u+9ht8Cu/fEW7C4TocPISYr3M0QUPvgT8E7B5wD697CLHUvA15w3cug5x/FwJ4bGDZ2bCbZsMVNsTaTKvqo5ZJ83sxpUxjnSfadd975Yl6lm01o3lBiR201T/1gjxtK9AlbxMKGuOqLtiUnzK2r0iPZ995772lDzXi2D65YnGvZoF+4pEf/cnxywaSKB1iiz9KN3qxDY8zJOOnfwi/ZgQ9iJ0wVHriIc4Qhxgx/1B9x5/zgGS7RjW/oRE76wCdZ7DC/lZeSzfGQrL7tIb+54AC74Ig+RLtVP7GtsGT96Mo8gxUckpM+FQXVVnoqe5oHd5m3bFOylV76oq/wkuMrHfmq7Gs+r+lrcIPl1nzL2NY8YzPGopqHXOakiiX8RU7RCV/kdO7Pvlf6wRJjrj79TNSFjTiOHflZ5YbG0Ru5wBfhivOIK3088/rAnlp8wGfplz79ixgr3PQxN+rlHoyZ78of5mQekBWmqAfskRP1xWfpzPqwE1ts5Lngj/3q4zXEeMSFrjV4mR9jQ7w0P/bDd46NsKkvxqHlM9iiP9Krf1zYj7YZiy38x7mVXXBHOeZGX3p2kY86IhbdV1yq/571SAuT/Mz8xPVd5gFs8jfmCtyoP+rD3xwnyelf7O/JaowLDNE+c3u8Mn+rds81/FYYvSfeisllPTPU+vxNCB+k+FPwzgHnwGQ5sPz2ZYktGPCCawsWreMIBvbawLA5z5sx+uOmL/vJRpXN3Zo5skORKOpjUxo3j3E8b257Y+Co7DCGX0t2ox3ue1gkw6a3sr80Fxu0ktfmO8cnb6KzX8xXW4219Eoe/MQVXfRv4VfOHdlYww2+xMJF9DFjAzO+5Gd8g0/yj7wQpnhhn378yHg0B505dlGf7qUrzs/PYP7GN77xpdcO/WCRney/9OMLvkk+yqEHjjI+PWe/wR31xHnZRn5GNuvt8YnstTixRdvCovE8hs0YH8nRn/1fwyU4Wi26haV3IZexVRz2cOX8wCb9Fd+MtXIKHUttD5fmZjvqY45+LmIfO4yBufUaFLeRNz3nIic6c05UmJClzTjoJ2ZVbLMdZCNO6anii/7YMl94WxcyGc+Sj5V/6FqDN/sKPvRGHWDJGLEX+1t6K1lsxpZ8yXmFDPiiTY3RT9717OEPcenFEzzIgiO2LZ+RAVv+WaXx1twKf9WHDdqsr2Wb/vwarriAL7jFllrGiFd+lowwxXxifsZK/17tXmv4LfF6T7wlm31dPoSYrHA3Q0Dtgz8F7xxwDvTfujy6FQNecG3FpPXszcBeG5jWBo1NYrXxk69sFrWJZIPHJrU1B52yma/eZpt5Lb15LjgqO+BGF5tWtWsusFS6mY8MNuhXiz02zXGsupedqniQfezpxWfiJDstvRpr4W/1a07P/lq/epjQkf2mv4UN32MsKjvqizItf7Id9EduwZTzkv7Yyq5eQzHGzCNH5PPrr7/+VHCVHWHTBReSA5f05Qt9zMv+M469PD/aQj/2ImdxHjpbNpHFB/TmZ+TULtmUjOxFLuP8NToy7haeFhbyocVLxlM9t2xm2Z5cjnELr3SKs1wM7PVrDNsxvpWOjDk/w3eVey0ue75Iv3zn9VjJ0gd25rTyJmNs8RV9w0bOA3gj3+OcHLNrZKMe3TNXMalsIY9clsHHyBFz1Fb+tXRJPvpWzUU3MSd+6gdLzpFKT7SDTrU9bMgRZ3HW8lv9VZ5k3C3MsoUdbOS54Klk45ju4SDHL8ohk3NRMi2clZ9wWOnBXua/Zbvns3Ssib9sggkusz95HJw936PMlvd7reG3xOg98ZZs9nXNUOvzNyF8kOJPwTsHnAOT5UD/rcujWzHgBddWTFrP3gzssYFhI6hNd+tf3HBqc1jJsWHM+tgYwg0bwkoHfXmO5jKvtdFmnLk8V/JgBDOysl8VF8BOmwsI9Me2tfGWTN4kow//1WbOK1zgxke1lRy4NI7P6uvJt/C3+q/1K3MQMfZ8kFz2m7ktbMQ7cgrn5Atzea78adlBf+QW2Wwn6o3xzrmXfRQu4RdOtcRc/fDFnKw3PuNfjn1+Bn9s0Y/t/Bxldc94yybyyKG34gxZuI6xZEwt41UskMv26KdlHNw8gw85ciZjAUPuZ55aZGJsdC/fdbVsRh1LcjmmLbzSI1+jfey0+ivbxE16evyjWy08tOTRSSyY2/NFMtn3/Cy9vG7QmWXoV5tx9HhhXgtjL7YZwzWy2Ms5pWfpbV0tG/RrfuZKurAX85w5lb3oW0+uyokW3xWGaCf6XNmkr+Is5xy6pL+Sp49cbuGQHuxio/IZezn36KddGpdcxRPzK25b8uDEV/CjS232e0kXfGUdsb/CiDxcyq6uLAs/YK5ayRxx7bGG3xq398RbM9rW50OIyQp3MwTUPvhT8M4B50D7bcsjWzLgBdeWbFrXngzssYFhUxk3fC0f2NxpExc3n9r8xflsOuNmD/m8YWzZyv1L8xhfY6fyOW9Uq6ILmJDFFv2xhYNYoGFc88TN2o1v3tSjB5/ZfLfkkM9x6sm38Lf6ZWOtX+iI+VHdt2KQ/cY/9GbOiXfsz32KRbbX8ifbQVd8DYAp5wrP8pe4wV20j05hlj21yAsXttSHXy1ewBLbHPv8HGW5z/rzM3K0jAuvrpYN5DSuC46Y99T5L/9FXnSfL8bhJ4/rOdvLMoxjn2fwIZ/zgH4wEBf6r2lbNrOOnlzmu4VXOuVr9TOp1a85lW3keT334hB1wHX2Tz5UOnq+SEf2HazY0XiOT54TseScxE/1t64WRrDIXr4yhrWy5Jx4jz9HwFDZwnbPBn4Tz0p35LGnK/rWk8OXGPcW3/gXMUQ7+Kg222SufIu2kCNXog7dt/RfI5dtVD6jjxi08CyNSw++Rp7QX3GLTrX5Qhc5oTZiy/wgn233fJaOGJMKI7jgUnN0ZVl8iRiZe3S7xxp+ax+8J96a0ba+GWp9/iaED1L8KXjngHNgshxov215ZEsGvODakk3r2pOBvTYwedNY+XDNhpH5bD7ZrGozSF/ekDKn1S7NY6PJpjlvTKPeni705MJEnN/TjVzPRt4kM6fVtuKTcfT0Er/Ie0uvcLTwt/o1p2e/5Vvu72FCNvtNfwtb5bvmCK+Kah9++OGXivzoa/mT7aA/Fk3QQT5Jl66Wf2CRb1z06Y+LCie5jU71yya6My70VG3GIR3KeWxUczLvS/bAic5sExtZb35GTu2STcm07KBnSUfG3cLT0kM+xNcatte2LZt5fk8u89DCK52t+Lf6NQeeyL+IjXnKqR4PGWPU0fOt5wv8x9cjfcKi13t8PWGzhwV/yOX8jI7YtjD2/MoY1sq25MAgva2rNTfKE+v4vojuGN+eruhbNRd7xCrGr8V3pSfaQafajA2fpDteyOV+ZFpYGKftyWXblc/oybL004K3F+OKJ+ZnnD0szFGLTuVEfO/I/CMX80Tze3akY038pSfzk/1Zw0/0a8/7vdbwW2L2nnhLNvu6fAgxWeFuhoDaB38K3jngHOi/dXl0Kwa84NqKSevZm4G9NjB5E1f5wYYxbyTZYMYNY56fN4V5k5rlW8+9eXnTysazwrXkL75Wc4VtaVwy8JL50ljmo+Uv/S2/8VHjuvIz8+OYbHO19GocHzP+Lf0CR2x7mJBr+dnC1vIFPS9evCiLkq04VXZauNWvAg286znnFfjip4zlK/jyHOwLt/5OhOS4WjgYp81y0RYyua1ksp44J+Nu8Um/5HXBR+ZJY7x2c15Gu8jAeRzj/hrcld/SQxwyFvDnfmyvaVs289yeXPaxhwvO1MYrxyaOZf1xTPctfpBjnLjTTyvb+TXBGHOr8RYn6NPrpsot4YivVWzBW5wDL5kv5qhlXs4DsLf6o08tX6Q/8o+ccMWLuLY4lix4ejKSwx94YF70AxyVrohX+vIzuNGBHfW3+K4wtGTpBxvc5Bgip7a6wIeeSkZ9PTnNzbnW4qOSjTZzXOIY9xVPjOEvPIC75T/zaPP87EfLdg+3dFTxV3++sr2Mp2cn69r7ea81/Ja4vSfeks2+rhlqff4mhA9S/Cl454BzYLIc6L91eXQrBrzg2opJ69mbgb02MGzS4qfZ5Iv6VbDRplRXa3OneWwYJfvWW299iYq8oWSTyxyE1S97sgumWJBhM5vnZVzShw1hq4oksU/z2YBrLnbY8FKs4Dnqz1j06XTZRke0g58VXsaqNm+ykcHHiAvdarlaWFp6mVeNt3RpDrYjl+ha22abVR5Ufkt/Cxs6qljIXs4RsLb8qeyAKdogb6SfeNDHs2yBIeZ69EfzJRMv5uT8A0fVz2sLm9ke/kZb4u7tt99+ej2iO47DRbaHrpgLlSw6s4/wFG1FWXgmttkX+Ik8y/4777zzRGOFRQMVbuxGLJJFB1ieFIdibe5nfE3bspnn9uSEt+Il90lnSw98xByWPP2RX/3clx4udCKT5xDjmCPMJa4tDuFeuGLu0R/70MlY9oVxckbjERP9sQ9f6EN3tlvFQPaYDzfqw06MDxxqLF9RN3xF+8yVP8yvcFZzwYh/emZu1hVjhE1kIuaIV/3IxvnYyHGFr4gnYqp0rOUizpV+2dY/YoNtnmVXvkQZ/FR/xIhc7ENfnl/xUeGhT7q5mBt91tgt6xHhizmIDbWys7S+E644n5hGnqWrlXcak47oS4sz+tVy0Rc5h7OMQf2RR3Ts1e61ht8Sr/fEW7LZ1+VDiMkKdzME1D74U/DOAedA/63Lo1sx4AXXVkxaz94M7L2BYfPGJjxuJPFNGzbG1bKJa20YJZM3ftLFBjTqinKMr8EQbYOTTbnwZr/yphNbEUvc1LKBvWZea+MtfOCR3jWX7FY8RB+jHvpb/iDb0ss4PkgP9umLsUL+Wr+YF9uMidhgX7L4l+PRwoaOCjOxjfEGT8uflh10wbvsvf/++18pVqEXOT3rX/QRDPJRchqPFzoyB5LBX/Srzb5nntENt8yNmBirbIKTedVrUjbQEeXEm+xkvRWfL1++fCpO4Q++Rpz4kudXmNbgBnPG18oDMIERPNe0LZtZR09OeDMvYBb/eYyc0hi+0qc8lj/ETa34jVfUjVyUQZdaOKpiIp3ETrLVhS1h4jWGzR7vFSfoZ0y2hQt9mSfJ4wv+gSf7Q790ZT2yhw210gkGxVXXNfGNtqRPWD7++OOnVnp1IZNxYod5kiNGGeOToqAr8o0e7CGrNvumPuSxIY749XgRY+YbvfgTMVR6pUuxkv6ILduXHn5dF7mHbZ6xTY6CXS35gIxa2Ysy0sPcJZ3CQ34jy9zoh+z04tXiSfOkF+w9OXxCHp8y9znOLZ3gjXHGhnTEfmyu+TmEbI4FOMCtNnOI/b3avdfwW+D2nngLFtfpmKHW529C+CDFn4J3DjgHJsuBdW9hlrqXAS+47mXQ849iYIQNzFFc2I4Z2IIBFSxisWMLndZhBmZhoFXQu9c/ir/SX125CJllKCjmAmiWi88UPVuFR/Xng4I43/fHMECcrontMcjmt8IBRy7gP7fne/0cOtqvEdbw3hMflxU+hJiscDdDQO2DPwXvHHAOHPc2eG5LXnCdO/4jeT/CBmYkPo313AxQyGwVJc/Njr03A1/+lPSWfPQK/hxQ9F6XvHavKVQvFVh7mLb03br6DBD/1gFVf7ZHb2WAw59HPJT3IcStUb1+nvfE13N264wZan3+JoQPUvwpeOeAc2CyHLj1Tc3zrmPAC67r+LL08zHgQ4jn496W52NAhY1HLLjMx7Q9GpWBRy3+XXsIQYG1d7DhQ4hjs1S5lePBAcQ1h0vHora152DgUX8OXcvFCGt474mvjert8j6EmKxwN0NA7YM/Be8ccA7c/rbmmdcw4AXXNWxZ9jkZGGED85z82LYZWMOACl/6fdA+gFjDlmXOzMCjFv/WHkIgt+b3v/sQ4vhM59sp8ff0K+d8mYHIwKP+HIoY19yPsIb3nnhNJLeRmaHW529C+CDFn4J3DjgHJsuBbd7irGWJAS+4lhjy+KMwMMIG5lG4Mg4zYAbMgBkwA2bADJgBM/AIDIywhvee+LhM8SHEZIW7GQJqH/wpeOeAc+C4t8FzW/KC69zxH8n7ETYwI/FprGbADJgBM2AGzIAZMANmYG8GRljDe0+8dxa80j9Drc/fhPBBij8F7xxwDkyWA6/epny3JwNecO3JrnVvycAIG5gt/bUuM2AGzIAZMANmwAyYATMwOgMjrOG9Jz4uy3wIMVnhboaA2gd/Ct454Bw47m3w3Ja84Dp3/EfyfoQNzEh8GqsZMANmwAyYATNgBsyAGdibgRHW8N4T750Fr/TPUOvzNyF8kOJPwTsHnAOT5cCrtynf7cmAF1x7smvdWzIwwgZmS3+tywyYATNgBsyAGTADZsAMjM7ACGt474mPyzIfQkxWuJshoPbBn4J3DjgHjnsbPLclL7jOHf+RvB9hAzMSn8ZqBsyAGTADZsAMmAEzYAb2ZmCENbz3xHtnwSv9M9T6/E0IH6T4U/DOAefAZDnw6m3Kd3sy4AXXnuxa95YMjLCB2dJf6zIDZsAMmAEzYAbMgBkwA6MzMMIa3nvi47LMhxCTFe5mCKh98KfgnQPOgePeBs9tyQuuc8d/JO9H2MCMxOfoWD/99NPLm2++eXn33XdHd8X4zYAZMANmwAyYATMwLQMjrOG9Jz4u/Wao9fmbED5I8afgnQPOgcly4Li3wXNb8oLr3PEfyftH3cB88MEHlzfeeOPyySeflHRSLP/2t79dji91fvTRR5fXXnvtrmK7dLz++usXtbdeW+i41XY1T7y+9dZbT9zc45cOMW45yCCu1dy1ORHn6l6HKtJ776VcuzXfbrG9pT1xdw8P4jHyeos/cY7i8eLFi7teO+jTzwj9rNDruZWz4vJrX/taVwZ9t7TS3/p5Jd562G6x15qzlO89nC2d9Et3y0dk3JoBM2AGzMBxDDzqGj4y4D1xZGPfex9CTFa4myGg9sGfgncOOAf2feuzdhjwggsm3D46A0dsYFQY/LVf+7UvDhRUzFIxrHd9//vff5JR4VDy+VIRU3pVFLu1uKrC7K3FQdnW3LfffvsLv6Rvya/sh/T0DjKiToqt4uTWf2uKiNipeM/4q2cOEoRR+JcucYYccyvbkunhr+ZKTy8/pLOVYxm3cF4b36xj7bN8ETblGD4TlzWxz/xJV4+HJVzvv//+Exbp4ZKNW7Bovuby2lvrF7Z57WEbPeJMuhQjxmjhAxlyhfFr2pwD4AEf/KjFTp6DTMt3+SR9iv0SNnyD116cwRPngGWpBWvLlzwfW0v4GSfPpQdbjLVa/fyVv9U48SA+lcxSHzqyb342A2bADDwCA0es4e/103viexlcP3+GWp+/CeGDFH8K3jngHJgsB9a/jVnyHga84LqHPc89koEjNjAq5FAYozC1tgimudcU5CgqUSiTHfqubdGR4yFM0pULVJJXP77mefi+hIP5YH/vvfcWP8lP0W4Nr+hdwtEbX7KDr/iSueBZcvJPtsQf86QfPns4NAaWOBf9GosYkEEnBWzJS5b+W9ucE+C4tQVvlYuMrbEpmchDxNMr0sIt/ES+oo5r7rG3BnelV/N7B3fiquKr0lX1LelnDq+5KlewLx+rcfXFort05lzFDu0aXFnH2pxWbvzwhz98ypEW3jX90SfyM+YQvuRWPMW5cVw86xBb/ovXJX3EhfzKvFW4sv2sI+LxvRkwA2bgURg4Yg1/r6/eE9/L4Pr5PoSYrHA3Q0Dtgz8F7xxwDqx/G7PkPQx4wXUPe557JANHbGBiUXDL4g66lopS4pPCU6sQKxnpWSqyypdWsUw6KDr2ZGJ8c4EsYl3CEvVcw0Wcx7386nGDXGzxdU1xspKhSCid4kGFxpcvXz7hqGKaC4URi+6JcZyr+2w72sV2r6iNnZjH9D1nW+VOxAMf2X+eydFKD3Mjl9J9LweypbzOMYi4l+4rvHHOGoxVXsDLmlbzec1lX7Df4lBYNR/+wa6+3mtwaRy9WUcLh3Bm7GCJbea7pS/O0T1ya/iUTOYDfeL53kMI5dxaHFFuDT/gdGsGzIAZOJqBI9bw9/rkPfG9DK6fP0Otz9+E8EGKPwXvHHAOTJYD69/GLHkPA15w3cOe5x7JwN4bGApRKqDpUkEr/mqme3ylCIjuJV3I5yKd5kmHik+tohN+xALV0n2rqBZx5gKf7EtvhTHOy/f4tpaLOB/frrUprGt8jLZ0D9bMtbigWFj50bKHvhwP+cOva5GPraulN8tTXM79z/UsjtbGLPsYn3MOyh9yoorDrf4SX3Sq5f4anRXeOH9NnGS3xV1Pf+SFvBOX8cJ+5DiO617282unhynazbric0uHsOj1ofFo/8MPP4zTv7iXb/JDdjMfEYvG9Lc91JevKJfH8nOPK2G55xAi24rPxCr2+d4MmAEzMAoDe6/ht+DBe+ItWFynw4cQkxXuZgioffCn4J0DzoF1b2GWupcBL7juZdDzj2Jgrw2Mil25KFw95wKe/F5bvKIISGEtc7YWQ4WLPhWpWpfGciERWRXnNC6MuigCoveWtuWn9C9xAa6qhe+er9W8VuGw1Y8OsBJ7nsXl1t+EWMIiTPIb3+/JmV588H1tm3HD0dq8yXkpbLEv6s9FZmEkJ7byCX055vC+lhfJCS+HVZEPDhViPFt65Zfk9bcuog5xJIz6ZowK9JJhXDbp03xigk/Ykn0V5jW3xZ/6Yzw0F0ziKl9VjKKM5oKTVvZlg+elNmKVD3wzKdsmlpLX61VyspVxI7dkl/HMh3hlrGoVD2HLV4zLko5Kb+6LvGRbfjYDZsAMPCcDe63ht/TJe+It2ezrmqHW529C+CDFn4J3DjgHJsuB/luXR7diwAuurZi0nr0Z2HsDoyJR/ObDmgKhClt/+qd/+lSAyoWpyAfFpr2LRNKfC1PXPFcFuuiHOFJBrVVUi7Kte7j4xje+8YT1Gk7WFgvX4AOHirC6X7pUJIx6wSL86OpxHfMjzsUufWt1yG6Ml/ApZ/OlPo3pwsY1nGd9+VnFceEQ7kqv7ON75jDr0rN0IK9nzeE5F5k1Hn3SXPjTHA6K6FvTZh/0HHmuMLf6KrxRn7jpYVqyW+mvsJCf5AEysq9/uqTrrbfeYuiLNuKls+pjTPqWcEu2pwNdS222lfmIuSFd8IDPS/rXjpOjH3/88Ve+CZExRZ3gyXGJMtwL89a40e3WDJgBM7A3A3uv4bfA7z3xFiyu0+FDiMkKdzME1D74U/DOAefAurcwS93LgBdc9zLo+UcxsPcGRoUgime5eLXkI8WkVpGIcRXeepcw9IqS1VhPp8Y0Jxe59BwL6j1MjKHr2nnMp4ULcaUCnfSt1cncns9rfZN9ittgu6aNOaJ7HWbInzVXnLtGvpIRB+SrxvXJd/kTY6179fGrbLawW2FRn/DkOJIzEZN4j7izvuyX5iJfFXQrn/Bb+RIv8qf1Oo2yuo/2mFu9Bqs+YYjz0R39E46IpYVbczUW7RDr1jchYi6CXTriFe1LXvETvniB9wc/+MFTLkUMuo8xx476FTP9irFsE93oVfx0Zf+yHZ7RJ+z59Zv5rnIDjLKvf+i9tZWf3/nOd56wLB1CCHNlB5/EA/gquVZfnA+/bs2AGTADj8TA3mv4LXz1nngLFtfpmKHW529C+CDFn4J3DjgHJsuBdW9hlrqXAS+47mXQ849iYO8NTCzIUQi6tbiztriVi2iyl/ta/FYFtigLhuhDLNJpfI0tuGgVwHJ/tBfxcI8+2eeiOKe2d1Eo7dnIfjEn47zmORZaK3zEgmJ5JRP7kBdW+Ry5iHK9e83J9sQLfTHW6Il26durFT5xnGMFBnBm+9mvW3zSnCq3pTv261n/qos8jfKVnPoUw8qfKgbRP82LOd/C3bK7th9fqpzP9nOuR7zYq/o0pn7xpW9UiA8dQrT4yzqWfMcHyemev70ApmtaxSX+fYioO+rJ8dFYFVOwq+XbdJorH6N81lfZrfoipnh/jWyc53szYAbMwNEM7L2G38If74m3YHGdDh9CTFa4myGg9sGfgncOOAfWvYVZ6l4GvOC6l0HPP4qBPTYwKhCp6FYV52JfLNTd4i/FIhWlepeKWNHumvtKp/o0V/p0Yb8qMOa+iA89Kijq1+60CopxztI9WDJuYtGzIX96eGVbens6WvbBDY6MDy7WxKQlQx6pRYYYrYl99Et4FBf5oxZ9rTbKZt/wfasW/6JvETsHEbEP25oLT+qTDmHXnFjQRR5d0SfNybqruBNrcKJTLT5kPVGGe8mCkT61FV7iJtyVr9Ee+FoxXdOv18t3v/vdJz6yn9m+MGdfIl58q/oiv4yTm9KZL2TEgy5hW+NP9GHtHPRWMZJtsCO31OafQcKhuOnwBV/lH3qQr/jOvFyLRTYiJ1mfn82AGTADj8DAHmv4rf3ynnhrRtv6Zqj1+ZsQPkjxp+CdA86ByXKg/bblkS0Z8IJrSzata08G9tzAqPATP1mrok6rYFX5WBVCoxyFJRWmehfFLMkvXZVN+ihkYjcXqqIdCp0Uz2RX45pD8Qy9S/iXMGscTC1dwtHiXnPwrWVrSUb6ezqWxrNduBFfkcMsp2e45u8oRA5iTKq5eVxzWzwJR4UFrNFuZeuWPtkTHn3CPPObsaOfPFOrq8IX/ayK+tWcyl7Ug3216s945Yv63nvvva+Mxbnc47uwxIt4KzfiP/Gk14HaGIsKd9SX71s+ZTlec/DMuHDrX7zAjGxlo9UHj3G8ipnsRRk9L/ne8kFwvcOuAAATgklEQVRzGcu+4JdsiX98op+W+Xm8xY9+BZb84tI84pt1RP8rfeigbWFhPLbXyMZ5vjcDZsAMHM3Anmv4rXzxnngrJpf1+BBissLdDAG1D/4UvHPAObD89mWJLRjwgmsLFq3jCAb23MCoUMSv0ZAva4pF0WfNV8E+F6CQoVikYljvisUsilpLLTopxgo79jhEwGbUr0/t6neYc2me5H/rt37ri8MHxtDXwwIO5rRadK2VR8/aefKjVZyP/lf2Ga/GwBFb4i6butRKR7zUR3GWfmIV7WhelkNebR7X3JafsgmmqKOyG8dvva/0wo1wg52ivp6r1wsx1jhX9FM6cwG4so096dNVzYv6ldfwpTkcEmQ9zMmt5laxqObjj/5otuIdfa3ksy2eK78Zy23Fq2RaeSKM8FHJ4IMw6CLW6teVxyt+JKOfufqnXNCvbur9fGEs8vVk7F/+AwO4GdNz/jnIGC38YGOpzfp6cYu5V3EJBtprsQhrixN0ujUDZsAMPDcDe67ht/LNe+KtmFzWM0Otz9+E8EGKPwXvHHAOTJYDy29fltiCAS+4tmDROo5gYM8NTCyaXVPcw++qyMaYWgpLFOni2NK95qjQdMvcaJvCWixYxQLZEo7WOL5FvS3ZiOdafySfi3+VnaVYaA4xFicUj4Vfz5q/dMX5UV79+iZALKhWfjI/jmGfOFVtPKTQXLBnvMIUcTFe2WXsnpYCcMwB2Qev+nWvwrswC7v+5Xgip5ziin5W+Vr5FPWQnxWfuS/il/2oBzxVK1+rWETseV7lS8ue9GSsa541TxccZP9aeRKxVjLSq8MgxY+DhOh/9jvnh3AIf44/drFZxRaZqsVP5ZoOvGQj4qrm9PrA0ZPRGP60YoKflb6cB/iQY1VhuEa2mu8+M2AGzMBRDOy5ht/KB++Jt2JyWY8PISYr3M0QUPvgT8E7B5wDy29fltiCAS+4tmDROo5gYM8NTCwOqbCjwpqKQ2suCkEU/Ko5a2RUdKJYpXsKuNLXmk+/8MdLz7EglseZJxkVzPV865WLaEt6sN3jK+ugiLk0h6Jl9jfri8+xgLg0D/2R21wsRKaHtZLJMY8YdZ/HpV8F1njgEXFV95LVnIwNPLcWbDM24gU3cRzcygPZizbFf46B5OlDb+Vb9Cna08GHXs/RTuZWz5XtqKeaQ5/mVvorncyBB3HP1bKXZfNrjteU5usinnCSx7HXw1fJoFf88/NJNrhnTsarfuT+8A//8It4Ih9bYixfsIcf6BHu1qV5MT/gpCUvXVH+mntiLhuZA+zFWFV8x3HNIVbX4FjyESxuzYAZMAPPxcCea/itfPKeeCsml/XMUOvzNyF8kOJPwTsHnAOT5cDy25cltmDAC64tWLSOIxh41A2MCmQcHrR4oLAUi2lRlnGKayoq9XRKjqIXhTrmRr35XnopbrWw5DlLzxHLkqzG8XWtfeQp+PVs4N+aohx6xYd0f/jhh0+c67maLz81Bs/MRzbngZ6jfMRNzCIH0kNMoyz3eVxzW5wIIziZr7ayq358iXjivKV72QILNqL9iD0WmWMBNvZjD13givItGcmK9xb3zFvTRtw9+eg/cnAqHflqjbXs5VhnHrK+zFseB49wxzjRTxv19OKTfcx4pU8Y9C0hHQq1LmFR3NAX7TOnwhxjHl9D0kMu3JIPlS1wxLYVN8nEWFX68txWrKI97q+RZY5bM2AGzMBzMPCoa/jIhffEkY19730IMVnhboaA2gd/Ct454BzY963P2mHACy6YcPvoDDziBoYimYpLuigKxcLX0r0OG37v937vSwVo9PbmUqhbilurQLc0L4/3fFuLJXIkXEsXNmNhkTmMZY6W9EY+iBs61Ua9Pb+inDC07EoHGJEhvjzLbpRDPreRB82l8B/x674qdkbfsl9VgTnrbD3DQ/Qly8pexJ7H4YN4qMX3OC8WdNHBXNlnnuyBK85nztp2Cbf0YD/HojdXOLO8dLXm5FhnHvBV8yMmYsI4nMYWzp8mpv9uzYuMN6n90iM2hAn8UUC6Il79vPzud7/7lE/042ecl++JE3OkR3//hudbW8XxO9/5TlcPB8pV3OHq3/7bf9vVsQZflVOZBz+bATNgBp6DgUdcw2cevCfOjOz3PEOtz9+E8EGKPwXvHHAOTJYD+73tWXNkwAuuyIbvH5mBETYwj8BfLratKdAdiZuC6BpcVdHuFqwqblLE6xVdo25wtuRzITjObd2jU1goTCLbKkC3xileKt75EmZwSw7f1VaFSsncWqyH21xAznkInoxVz+JSvzJJ/NxzSY/+FkC8ZDf6v3QfcbZikjmVzuy/9EguXz1fe/Zi3HLukVdggHvs53EwCWP0V/eZnzjOvKVWdiPeJfnRx1txk18xVsQhcpx/DozOhfGbATNgBioGRljDe09cRW6fPh9CTFa4myGg9sGfgncOOAf2ecuz1syAF1yZET8/KgMjbGAelTvjMgM9BnIxuifrseMZWFvUj0Xu5yxur8V7PJO2aAbMgBkwA8/BwAhreO+Jj8uMGWp9/iaED1L8KXjngHNgshw47m3w3Ja84Dp3/EfyfoQNzEh8GqsZMANmwAyYATNgBsyAGdibgRHW8N4T750Fr/T7EGKywt0MAbUP/hS8c8A58Optynd7MuAF157sWveWDIywgdnSX+syA2bADJgBM2AGzIAZMAOjMzDCGt574uOybIZan78J4YMUfwreOeAcmCwHjnsbPLclL7jOHf+RvB9hAzMSn8ZqBsyAGTADZsAMmAEzYAb2ZmCENbz3xHtnwSv9PoSYrHA3Q0Dtgz8F7xxwDrx6m/Ldngx4wbUnu9a9JQMjbGC29Ne6zIAZMANmwAyYATNgBszA6AyMsIb3nvi4LJuh1udvQvggxZ+Cdw44BybLgePeBs9tyQuuc8d/JO9H2MCMxKexmgEzYAbMgBkwA2bADJiBvRkYYQ3vPfHeWfBKvw8hJivczRBQ++BPwTsHnAOv3qZ8tycDXnDtya51b8nAL755ufzsZ1tqtC4zYAbMgBkwA2bADJgBM2AG9mJAa3et4R/98p74uAjNUOvzNyF8kOJPwTsHnAOT5cBxb4PntuQF17njP5L3X//m5fKjT0dCbKxmwAyYATNgBsyAGTADZuC8DGjtrjX8o1/eEx8XIR9CTFa4myGg9sGfgncOOAeOexs8tyUvuM4d/5G8/9VvXS7f+4eREBurGTADZsAMmAEzYAbMgBk4LwNau2sN/+iX98THRWiGWp+/CeGDFH8K3jngHJgsB457Gzy3JS+4zh3/kbz/7T+4XP7qr0dCbKxmwAyYATNgBsyAGTADZuC8DGjtrjX8o1/eEx8XIR9CTFa4myGg9sGfgncOOAeOexs8tyUvuM4d/5G8/6M/v1x+/89GQmysZsAMmAEzYAbMgBkwA2bgvAxo7a41/KNf3hMfF6EZan3+JoQPUvwpeOeAc2CyHDjubfDclrzgOnf8R/L+b/7ucvn13x0JsbGaATNgBsyAGTADZsAMmIHzMqC1u9bwj355T3xchHwIMVnhboaA2gd/Ct454Bw47m3w3Ja84Dp3/Efz/ld+x38XYrSYGa8ZMANmwAyYATNgBszA+RjQ34PQ2n2Ey3vi46I0Q63P34TwQYo/Be8ccA5MlgPHvQ2e25IXXOeO/2je6yvd/pVMo0XNeM2AGTADZsAMmAEzYAbOxsBI63bviY/LTh9CTFa4myGg9sGfgncOOAeOexs8tyUvuM4d/9G8//4/Xi6/9JuXy48+HQ258ZoBM2AGzIAZMANmwAyYgXMwoLW61uxau49weU98XJRmqPX5mxA+SPGn4J0DzoHJcuC4t8FzW/KC69zxH9H7f/+n/jbEiHEzZjNgBsyAGTADZsAMmIFzMKBvQWjNPsrlPfFxkfIhxGSFuxkCah/8KXjngHPguLfBc1vyguvc8R/R+0/+6XL5+jcvl//5vRHRG7MZMANmwAyYATNgBsyAGZiXAa3RtVbXmn2Uy3vi4yI1Q63P34TwQYo/Be8ccA5MlgPHvQ2e25IXXOeO/6jev/fB5fLrv3u5/Oxno3pg3GbADJgBM2AGzIAZMANmYC4GtDbXGl1r9ZEu74mPi5YPISYr3M0QUPvgT8E7B5wDx70NntuSF1znjv/I3usr3v/mj0b2wNjNgBkwA2bADJgBM2AGzMA8DGhtPtKvYYJ574lhYv92hlqfvwnhgxR/Ct454ByYLAf2f/uzBTHgBZfzYGQGfvsPLpd/9+7IHhi7GTADZsAMmAEzYAbMgBkYnwGtybU2H/Hynvi4qPkQYrLC3QwBtQ/+FLxzwDlw3NvguS15wXXu+M/gvTY7+tSVfzXTDNG0D2bADJgBM2AGzIAZMAMjMaA1uNbiox5AiGvviY/LuBlqff4mhA9S/Cl454BzYLIcOO5t8NyWvOA6d/xn8V5f+9bvn/Ufq54lovbDDJgBM2AGzIAZMANm4NEZ0Npba/ARfwVT5NZ74sjGvvc+hJiscDdDQO2DPwXvHHAO7PvWZ+0w4AUXTLgdnQH9Abyvf/Ny+f0/u1x+9Ono3hi/GTADZsAMmAEzYAbMgBl4TAa01taaW2vv0f4IdcWo98QVK/v0zVDr8zchfJDiT8E7B5wDk+XAPm951poZ8IIrM+LnkRn45J9+/kmsX/rNn2+MvvcPI3tj7GbADJgBM2AGzIAZMANm4HEY0Npahw9aa+vbD1p7z3B5T3xcFH0IMVnhboaA2gd/Ct454Bw47m3w3Ja84Dp3/Gf1/vv/+PMN0q/8zs+/Iq7N0l/99eWijZM+ueW/HzFr5O2XGTADZsAMmAEzYAbMwL0MaK2sNbPWzlpDay2tX7uktbXutdb+/9u7o9umgiAKoEVBKdQAXVAJZVAHBVBAhCNMYhs7OI69aMgfBUykO+dJ+V7tmSvtm919TtKjJ+6rZsJeny8hHKS4BS8DMhCWgb5lcPZIXrhm13/C7L99X+vL19d/lvfh8+tn4+8/rfXuoz8GMiADMiADMiADMiADMvB/BupduX5qqd6d6x9O17t0vVOnPnrivso6hAjbuEsoqDm4BS8DMtC3DM4eyQvX7PqbPQECBAgQIECAAAECBCYL6In7qp+w1+dLCAcpbsHLgAyEZaBvGZw9kheu2fU3ewIECBAgQIAAAQIECEwW0BP3Vd8hRNjGXUJBzcEteBmQgb5lcPZIXrhm19/sCRAgQIAAAQIECBAgMFlAT9xX/YS9Pl9COEhxC14GZCAsA33L4OyRvHDNrr/ZEyBAgAABAgQIECBAYLKAnriv+g4hwjbuEgpqDm7By4AM9C2Ds0fywjW7/mZPgAABAgQIECBAgACByQJ64r7qJ+z1+RLCQYpb8DIgA2EZ6FsGZ4/khWt2/c2eAAECBAgQIECAAAECkwX0xH3VdwgRtnGXUFBzcAteBmSgbxmcPZIXrtn1N3sCBAgQIECAAAECBAhMFtAT91U/Ya/PlxAOUtyClwEZCMtA3zI4eyQvXLPrb/YECBAgQIAAAQIECBCYLKAn7qu+Q4iwjbuEgpqDW/AyIAN9y+Dskbxwza6/2RMgQIAAAQIECBAgQGCygJ64r/oJe32+hHCQ4ha8DMhAWAb6lsHZI3nhml1/sydAgAABAgQIECBAgMBkAT1xX/UdQoRt3CUU1BzcgpcBGehbBmeP5IVrdv3NngABAgQIECBAgAABApMF9MR91U/Y6/MlhIMUt+BlQAbCMtC3DM4eyQvX7PqbPQECBAgQIECAAAECBCYL6In7qu8QImzjLqGg5uAWvAzIQN8yOHuku81uXW+32QhmT4AAAQIECBAgQIAAAQLjBKoXrp7Y0yOQsNfnSwgHKW7By4AMhGWgZwk0yubnfl0uLyAIECBAgAABAgQIECBAgMAogeqFqyf29Ag4hAjbuEsoqDm4BS8DMtCzBBpl+3Bcp6dnEAQIECBAgAABAgQIECBAYJRA9cLVE3t6BBL2+nwJ4SDFLXgZkIGwDPQsgUbZ//6zdocnEAQIECBAgAABAgQIECBAYJRA9cLVE3t6BBxChG3cJRTUHNyClwEZ6FkCjXI+X9b99gCCAAECBAgQIECAAAECBAiMEqheuHpiT49Awl6fLyEcpLgFLwMyEJaBniXQKCXw497/hZAEAgQIECBAgAABAgQIEJgjUP8PonphT5+AQ4iwjbuEgpqDW/AyIAN9y6CR6hNUP8kkBwQIECBAgAABAgQIECAwRUAf3F/phL0+X0I4SHELXgZkICwD/cvh3BEvL9d1t9mt6+02F8HMCRAgQIAAAQIECBAgQGCEQPW+1QNXL+zpE3AIEbZxl1BQc3ALXgZkoG8ZNFIJPO5PvoYQBQIECBAgQIAAAQIECBCIF6ivIKoH9vQKJOz1+RLCQYpb8DIgA2EZ6F0KjXa9vt4EOT+/wCBAgAABAgQIECBAgAABApEC1fP++yWAq18C6C6wQ4iwjbuEgpqDW/AyIAPdi6Hx1jqezut+e0BBgAABAgQIECBAgAABAgQiBarnrd7X0y+QsNfnSwgHKW7By4AMhGWgfzk0YgnUJ6m/Ho8wCBAgQIAAAQIECBAgQIBAlED1un6G6e1K6hAibOMuoaDm4Ba8DMjA2y2LRt4+HNfjzu9jSgIBAgQIECBAgAABAgQIZAhUj1u9ruftBBL2+v4C9b83xJdCVxUAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "在MindSpore官网的安装文档中获取mindspore的pip安装命令:https://www.mindspore.cn/install\n", + "![image.png](attachment:ece43565-7aac-420c-a7aa-1421b3f50b03.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple\n", + "Collecting mindspore==2.2.14\n", + " Downloading https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/unified/x86_64/mindspore-2.2.14-cp39-cp39-linux_x86_64.whl (743.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m743.0/743.0 MB\u001b[0m \u001b[31m68.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", + "\u001b[?25hCollecting numpy>=1.17.0 (from mindspore==2.2.14)\n", + " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/b9/14/78635daab4b07c0930c919d451b8bf8c164774e6a3413aed04a6d95758ce/numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.5/19.5 MB\u001b[0m \u001b[31m121.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting protobuf>=3.13.0 (from mindspore==2.2.14)\n", + " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/19/15/da43113361db20f2d521bc38d92549edbe06856aeec085c420b2b8af5751/protobuf-5.28.0-cp38-abi3-manylinux2014_x86_64.whl (316 kB)\n", + "Requirement already satisfied: asttokens>=2.0.4 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore==2.2.14) (2.4.1)\n", + "Collecting pillow>=6.2.0 (from mindspore==2.2.14)\n", + " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/32/3f/c02268d0c6fb6b3958bdda673c17b315c821d97df29ae6969f20fb49388a/pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.4/4.4 MB\u001b[0m \u001b[31m135.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting scipy>=1.5.4 (from mindspore==2.2.14)\n", + " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/35/f5/d0ad1a96f80962ba65e2ce1de6a1e59edecd1f0a7b55990ed208848012e0/scipy-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m38.6/38.6 MB\u001b[0m \u001b[31m181.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: packaging>=20.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore==2.2.14) (24.1)\n", + "Requirement already satisfied: psutil>=5.6.1 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore==2.2.14) (6.0.0)\n", + "Collecting astunparse>=1.6.3 (from mindspore==2.2.14)\n", + " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/2b/03/13dde6512ad7b4557eb792fbcf0c653af6076b81e5941d36ec61f7ce6028/astunparse-1.6.3-py2.py3-none-any.whl (12 kB)\n", + "Requirement already satisfied: six>=1.12.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore==2.2.14) (1.16.0)\n", + "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore==2.2.14) (0.43.0)\n", + "Installing collected packages: protobuf, pillow, numpy, astunparse, scipy, mindspore\n", + "Successfully installed astunparse-1.6.3 mindspore-2.2.14 numpy-2.0.2 pillow-10.4.0 protobuf-5.28.0 scipy-1.13.1\n" + ] + } + ], + "source": [ + "!pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.14/MindSpore/unified/x86_64/mindspore-2.2.14-cp39-cp39-linux_x86_64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "下载 MindNLP套件\n", + "
\n",
+    "    MindNLP是一个基于MindSpore的开源自然语言处理(NLP)库,集成了多种先进的NLP技术和算法,支持多种语言(包括中文、英文、法文、德文等),支持多种NLP任务,如语言模型、机器翻译、问答、情感分析、序列标记、摘要等。\n",
+    "
\n", + "更多MindNLP的相关信息和学习文档见其官网:https://mindnlp.cqu.ai/zh/" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: http://repo.myhuaweicloud.com/repository/pypi/simple\n", + "Collecting mindnlp\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/72/37/ef313c23fd587c3d1f46b0741c98235aecdfd93b4d6d446376f3db6a552c/mindnlp-0.3.1-py3-none-any.whl (5.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.7/5.7 MB\u001b[0m \u001b[31m43.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: mindspore in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindnlp) (2.2.14)\n", + "Collecting tqdm (from mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/48/5d/acf5905c36149bbaec41ccf7f2b68814647347b72075ac0b1fe3022fdc73/tqdm-4.66.5-py3-none-any.whl (78 kB)\n", + "Collecting requests (from mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl (64 kB)\n", + "Collecting datasets (from mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/72/b3/33c4ad44fa020e3757e9b2fad8a5de53d9079b501e6bbc45bdd18f82f893/datasets-2.21.0-py3-none-any.whl (527 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m527.3/527.3 kB\u001b[0m \u001b[31m12.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting evaluate (from mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/c2/d6/ff9baefc8fc679dcd9eb21b29da3ef10c81aa36be630a7ae78e4611588e1/evaluate-0.4.2-py3-none-any.whl (84 kB)\n", + "Collecting tokenizers (from mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/0c/52/24180c93a1a3d0f386d66a7f90e0e597c238667fd6d1689b3688409b2dd6/tokenizers-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.9/2.9 MB\u001b[0m \u001b[31m30.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting safetensors (from mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/9a/2e/810c5db5dc49657c8a8dbaff3c10bfe15411390e7e91a914a65c74305f94/safetensors-0.4.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (436 kB)\n", + "Collecting sentencepiece (from mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/5f/01/c95e42eb86282b2c79305d3e0b0ca5a743f85a61262bb7130999c70b9374/sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m30.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting regex (from mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/36/67/851cf82e2c47d46846cca15ba84f845e876257a54cb82f229d335cd5c67e/regex-2024.7.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (775 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m775.9/775.9 kB\u001b[0m \u001b[31m34.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting addict (from mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/6a/00/b08f23b7d7e1e14ce01419a467b583edbb93c6cdb8654e54a9cc579cd61f/addict-2.4.0-py3-none-any.whl (3.8 kB)\n", + "Collecting ml-dtypes (from mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/23/1c/06b52d3dcd75a81f6ca1e56514db6b21fe928f159cc5302428c1fed46562/ml_dtypes-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m48.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting pyctcdecode (from mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/a5/8a/93e2118411ae5e861d4f4ce65578c62e85d0f1d9cb389bd63bd57130604e/pyctcdecode-0.5.0-py2.py3-none-any.whl (39 kB)\n", + "Collecting jieba (from mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/c6/cb/18eeb235f833b726522d7ebed54f2278ce28ba9438e3135ab0278d9792a2/jieba-0.42.1.tar.gz (19.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.2/19.2 MB\u001b[0m \u001b[31m78.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25hCollecting pytest==7.2.0 (from mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/67/68/a5eb36c3a8540594b6035e6cdae40c1ef1b6a2bfacbecc3d1a544583c078/pytest-7.2.0-py3-none-any.whl (316 kB)\n", + "Collecting attrs>=19.2.0 (from pytest==7.2.0->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/6a/21/5b6702a7f963e95456c0de2d495f67bf5fd62840ac655dc451586d23d39a/attrs-24.2.0-py3-none-any.whl (63 kB)\n", + "Collecting iniconfig (from pytest==7.2.0->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl (5.9 kB)\n", + "Requirement already satisfied: packaging in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (24.1)\n", + "Collecting pluggy<2.0,>=0.12 (from pytest==7.2.0->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl (20 kB)\n", + "Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (1.2.2)\n", + "Collecting tomli>=1.0.0 (from pytest==7.2.0->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/97/75/10a9ebee3fd790d20926a90a2547f0bf78f371b2f13aa822c759680ca7b9/tomli-2.0.1-py3-none-any.whl (12 kB)\n", + "Collecting filelock (from datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/ae/f0/48285f0262fe47103a4a45972ed2f9b93e4c80b8fd609fa98da78b2a5706/filelock-3.15.4-py3-none-any.whl (16 kB)\n", + "Requirement already satisfied: numpy>=1.17 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from datasets->mindnlp) (2.0.2)\n", + "Collecting pyarrow>=15.0.0 (from datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/af/61/bcd9b58e38ead6ad42b9ed00da33a3f862bc1d445e3d3164799c25550ac2/pyarrow-17.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.9 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m39.9/39.9 MB\u001b[0m \u001b[31m68.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hCollecting dill<0.3.9,>=0.3.0 (from datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/c9/7a/cef76fd8438a42f96db64ddaa85280485a9c395e7df3db8158cfec1eee34/dill-0.3.8-py3-none-any.whl (116 kB)\n", + "Collecting pandas (from datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/bb/30/f6f1f1ac36250f50c421b1b6af08c35e5a8b5a84385ef928625336b93e6f/pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.1/13.1 MB\u001b[0m \u001b[31m69.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting xxhash (from datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/b4/b4/332647451ed7d2c021294b7c1e9c144dbb5586b1fb214ad4f5a404642835/xxhash-3.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (193 kB)\n", + "Collecting multiprocess (from datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/da/d9/f7f9379981e39b8c2511c9e0326d212accacb82f12fbfdc1aa2ce2a7b2b6/multiprocess-0.70.16-py39-none-any.whl (133 kB)\n", + "Collecting fsspec<=2024.6.1,>=2023.1.0 (from fsspec[http]<=2024.6.1,>=2023.1.0->datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/5e/44/73bea497ac69bafde2ee4269292fa3b41f1198f4bb7bbaaabde30ad29d4a/fsspec-2024.6.1-py3-none-any.whl (177 kB)\n", + "Collecting aiohttp (from datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/23/69/200bf165b56c17854d54975f894de10dababc4d0226c07600c9abc679e7e/aiohttp-3.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m19.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting huggingface-hub>=0.21.2 (from datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/b9/8f/d6718641c14d98a5848c6a24d2376028d292074ffade0702940a4b1dde76/huggingface_hub-0.24.6-py3-none-any.whl (417 kB)\n", + "Collecting pyyaml>=5.1 (from datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/3d/32/e7bd8535d22ea2874cef6a81021ba019474ace0d13a4819c2a4bce79bd6a/PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (737 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m737.4/737.4 kB\u001b[0m \u001b[31m16.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting charset-normalizer<4,>=2 (from requests->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/98/69/5d8751b4b670d623aa7a47bef061d69c279e9f922f6705147983aa76c3ce/charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (142 kB)\n", + "Collecting idna<4,>=2.5 (from requests->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/22/7e/d71db821f177828df9dea8c42ac46473366f191be53080e552e628aad991/idna-3.8-py3-none-any.whl (66 kB)\n", + "Collecting urllib3<3,>=1.21.1 (from requests->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/ca/1c/89ffc63a9605b583d5df2be791a27bc1a42b7c32bab68d3c8f2f73a98cd4/urllib3-2.2.2-py3-none-any.whl (121 kB)\n", + "Collecting certifi>=2017.4.17 (from requests->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/12/90/3c9ff0512038035f59d279fddeb79f5f1eccd8859f06d6163c58798b9487/certifi-2024.8.30-py3-none-any.whl (167 kB)\n", + "Requirement already satisfied: protobuf>=3.13.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore->mindnlp) (5.28.0)\n", + "Requirement already satisfied: asttokens>=2.0.4 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore->mindnlp) (2.4.1)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore->mindnlp) (10.4.0)\n", + "Requirement already satisfied: scipy>=1.5.4 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore->mindnlp) (1.13.1)\n", + "Requirement already satisfied: psutil>=5.6.1 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore->mindnlp) (6.0.0)\n", + "Requirement already satisfied: astunparse>=1.6.3 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore->mindnlp) (1.6.3)\n", + "Collecting numpy>=1.17 (from datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/54/30/c2a907b9443cf42b90c17ad10c1e8fa801975f01cb9764f3f8eb8aea638b/numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m18.2/18.2 MB\u001b[0m \u001b[31m81.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m\n", + "\u001b[?25hCollecting pygtrie<3.0,>=2.1 (from pyctcdecode->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/ec/cd/bd196b2cf014afb1009de8b0f05ecd54011d881944e62763f3c1b1e8ef37/pygtrie-2.5.0-py3-none-any.whl (25 kB)\n", + "Collecting hypothesis<7,>=6.14 (from pyctcdecode->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/e1/8c/8c58a2773d00bdfe6895180006127128c5dce51fafba984c530200e6fff6/hypothesis-6.111.2-py3-none-any.whl (467 kB)\n", + "Requirement already satisfied: six>=1.12.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore->mindnlp) (1.16.0)\n", + "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore->mindnlp) (0.43.0)\n", + "Collecting aiohappyeyeballs>=2.3.0 (from aiohttp->datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/18/b6/58ea188899950d759a837f9a58b2aee1d1a380ea4d6211ce9b1823748851/aiohappyeyeballs-2.4.0-py3-none-any.whl (12 kB)\n", + "Collecting aiosignal>=1.1.2 (from aiohttp->datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/76/ac/a7305707cb852b7e16ff80eaf5692309bde30e2b1100a1fcacdc8f731d97/aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n", + "Collecting frozenlist>=1.1.1 (from aiohttp->datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/70/b0/6f1ebdabfb604e39a0f84428986b89ab55f246b64cddaa495f2c953e1f6b/frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (240 kB)\n", + "Collecting multidict<7.0,>=4.5 (from aiohttp->datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/39/a9/1f8d42c8103bcb1da6bb719f1bc018594b5acc8eae56b3fec4720ebee225/multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (123 kB)\n", + "Collecting yarl<2.0,>=1.0 (from aiohttp->datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/20/94/5b4942f71a50db09b540b6ba6b1ba2d23f633cf5009b5124751a58dfccd7/yarl-1.9.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (308 kB)\n", + "Collecting async-timeout<5.0,>=4.0 (from aiohttp->datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/a7/fa/e01228c2938de91d47b307831c62ab9e4001e747789d0b05baf779a6488c/async_timeout-4.0.3-py3-none-any.whl (5.7 kB)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from huggingface-hub>=0.21.2->datasets->mindnlp) (4.12.2)\n", + "Collecting sortedcontainers<3.0.0,>=2.1.0 (from hypothesis<7,>=6.14->pyctcdecode->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/32/46/9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-py2.py3-none-any.whl (29 kB)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from pandas->datasets->mindnlp) (2.9.0.post0)\n", + "Collecting pytz>=2020.1 (from pandas->datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/9c/3d/a121f284241f08268b21359bd425f7d4825cffc5ac5cd0e1b3d82ffd2b10/pytz-2024.1-py2.py3-none-any.whl (505 kB)\n", + "Collecting tzdata>=2022.7 (from pandas->datasets->mindnlp)\n", + " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/65/58/f9c9e6be752e9fcb8b6a0ee9fb87e6e7a1f6bcab2cdc73f02bb7ba91ada0/tzdata-2024.1-py2.py3-none-any.whl (345 kB)\n", + "Building wheels for collected packages: jieba\n", + " Building wheel for jieba (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for jieba: filename=jieba-0.42.1-py3-none-any.whl size=19314458 sha256=ae1bf116c6e61f433a6af50cc5e9a91f7c4ee0e0662cefcb75dfab6b014eec58\n", + " Stored in directory: /home/ma-user/.cache/pip/wheels/2d/22/9e/9af7e8c2773513ac75905acfb75073922bcc1aa176f730a0c9\n", + "Successfully built jieba\n", + "Installing collected packages: sortedcontainers, sentencepiece, pytz, pygtrie, jieba, addict, xxhash, urllib3, tzdata, tqdm, tomli, safetensors, regex, pyyaml, pluggy, numpy, multidict, iniconfig, idna, fsspec, frozenlist, filelock, dill, charset-normalizer, certifi, attrs, async-timeout, aiohappyeyeballs, yarl, requests, pytest, pyarrow, pandas, multiprocess, ml-dtypes, hypothesis, aiosignal, pyctcdecode, huggingface-hub, aiohttp, tokenizers, datasets, evaluate, mindnlp\n", + " Attempting uninstall: numpy\n", + " Found existing installation: numpy 2.0.2\n", + " Uninstalling numpy-2.0.2:\n", + " Successfully uninstalled numpy-2.0.2\n", + "Successfully installed addict-2.4.0 aiohappyeyeballs-2.4.0 aiohttp-3.10.5 aiosignal-1.3.1 async-timeout-4.0.3 attrs-24.2.0 certifi-2024.8.30 charset-normalizer-3.3.2 datasets-2.21.0 dill-0.3.8 evaluate-0.4.2 filelock-3.15.4 frozenlist-1.4.1 fsspec-2024.6.1 huggingface-hub-0.24.6 hypothesis-6.111.2 idna-3.8 iniconfig-2.0.0 jieba-0.42.1 mindnlp-0.3.1 ml-dtypes-0.4.0 multidict-6.0.5 multiprocess-0.70.16 numpy-1.26.4 pandas-2.2.2 pluggy-1.5.0 pyarrow-17.0.0 pyctcdecode-0.5.0 pygtrie-2.5.0 pytest-7.2.0 pytz-2024.1 pyyaml-6.0.2 regex-2024.7.24 requests-2.32.3 safetensors-0.4.4 sentencepiece-0.2.0 sortedcontainers-2.4.0 tokenizers-0.20.0 tomli-2.0.1 tqdm-4.66.5 tzdata-2024.1 urllib3-2.2.2 xxhash-3.5.0 yarl-1.9.6\n" + ] + } + ], + "source": [ + "!pip install mindnlp" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2.数据处理" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n", + "Building prefix dict from the default dictionary ...\n", + "Dumping model to file cache /tmp/jieba.cache\n", + "Loading model cost 0.775 seconds.\n", + "Prefix dict has been built successfully.\n" + ] + } + ], + "source": [ + "import os\n", + "\n", + "import mindspore\n", + "from mindspore.dataset import text, GeneratorDataset, transforms\n", + "from mindspore import nn\n", + "\n", + "from mindnlp.dataset import load_dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n",
+    "        mindnlp.dataset 的 load_dataset方法提供了一种加载数据集的快捷方式。通过该工具,用户可以从Hugging Face Hub或本地加载数据集,并将其转换为MindSpore支持的数据集格式(GeneratorDataset),便于后续模型的训练和评估。\n",
+    "        接下来将加载 imdb 电影评论数据集,并将其分为训练集和测试集。\n",
+    "        IMDb数据集是一个广泛用于情感分析任务的数据集,它包含了大量的电影评论,每条评论都被标记为正面(积极)或负面(消极)。\n",
+    "
" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading readme: 100%|██████████| 7.81k/7.81k [00:00<00:00, 14.5kB/s]\n", + "Downloading data: 100%|██████████| 21.0M/21.0M [00:03<00:00, 5.60MB/s]\n", + "Downloading data: 100%|██████████| 20.5M/20.5M [00:02<00:00, 9.93MB/s]\n", + "Downloading data: 100%|██████████| 42.0M/42.0M [00:03<00:00, 12.4MB/s]\n", + "Generating train split: 100%|██████████| 25000/25000 [00:00<00:00, 121684.07 examples/s]\n", + "Generating test split: 100%|██████████| 25000/25000 [00:00<00:00, 137141.00 examples/s]\n", + "Generating unsupervised split: 100%|██████████| 50000/50000 [00:00<00:00, 141983.04 examples/s]\n" + ] + } + ], + "source": [ + "# load_dataset的split=['train', 'test']参数指定了要加载的数据集分割方式,即同时加载训练集和测试集。\n", + "imdb_ds = load_dataset('imdb', split=['train', 'test']) # 加载后的数据集imdb_ds是一个字典,其中包含了'train'和'test'两个键\n", + "imdb_train = imdb_ds['train']\n", + "imdb_test = imdb_ds['test']" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "25000" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# get_dataset_size方法返回 the number of batches in an epoch,因为还未对训练集进行分批,所以这里返回训练集的样本总数\n", + "imdb_train.get_dataset_size()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "def process_dataset(dataset, tokenizer, max_seq_len=512, batch_size=4, shuffle=False):\n", + " is_ascend = mindspore.get_context('device_target') == 'Ascend' # 判断当前运行的设备目标(device target)是否为Ascend处理器\n", + " def tokenize(text):\n", + " \"\"\"\n", + " tokenize(text)将文本text转换为有效的token\n", + " tokenizer的两个核心参数truncation=True, max_length=max_seq_len指定了一个输入文本超过了最大长度会被截断\n", + " \"\"\"\n", + " if is_ascend:\n", + " tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)\n", + " else:\n", + " tokenized = tokenizer(text, truncation=True, max_length=max_seq_len)\n", + " return tokenized['input_ids'], tokenized['attention_mask']\n", + "\n", + " if shuffle:\n", + " dataset = dataset.shuffle(batch_size)\n", + "\n", + " # map dataset,对数据集的文本数据进行token转换,对标签数据进行类型转换(转为int32类型)\n", + " dataset = dataset.map(operations=[tokenize], input_columns=\"text\", output_columns=['input_ids', 'attention_mask'])\n", + " dataset = dataset.map(operations=transforms.TypeCast(mindspore.int32), input_columns=\"label\", output_columns=\"labels\")\n", + " # batch dataset\n", + " if is_ascend:\n", + " dataset = dataset.batch(batch_size)\n", + " else:\n", + " dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),\n", + " 'attention_mask': (None, 0)})\n", + "\n", + " return dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 25.0/25.0 [00:00<00:00, 113kB/s]\n", + "797kB [00:00, 2.58MB/s]\n", + "448kB [00:00, 1.27MB/s]\n", + "1.21MB [00:00, 3.92MB/s]\n", + "656B [00:00, 1.88MB/s] \n", + "ftfy or spacy is not installed using BERT BasicTokenizer instead of SpaCy & ftfy.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3\n" + ] + } + ], + "source": [ + "from mindnlp.transformers import GPTTokenizer\n", + "# tokenizer,加载一个预训练的GPT分词器,这里指定了分词器将基于OpenAI的GPT模型的词汇表进行配置\n", + "gpt_tokenizer = GPTTokenizer.from_pretrained('openai-gpt')\n", + "\n", + "# add sepcial token: \n", + "special_tokens_dict = {\n", + " \"bos_token\": \"\", # (Begin of Sequence,序列开始)\n", + " \"eos_token\": \"\", # (End of Sequence,序列结束)\n", + " \"pad_token\": \"\", # 在需要将不同长度的序列填充到相同长度时使用的填充标记\n", + "}\n", + "num_added_toks = gpt_tokenizer.add_special_tokens(special_tokens_dict)\n", + "print(num_added_toks)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n",
+    "    调用add_special_tokens方法将定义的特殊标记special_tokens_dict添加到分词器gpt_tokenizer的词汇表中。该方法接受一个字典作为参数,字典的键是特殊标记的名称,值是特殊标记的文本。方法返回添加的标记数量,这可以用于确认操作是否成功。\n",
+    "    添加特殊标记后,这些标记就可以被分词器识别,并在需要时用于文本编码(tokenization)和解码(detokenization)过程。\n",
+    "
" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "17500 7500\n" + ] + } + ], + "source": [ + "# split train dataset into train and valid datasets\n", + "imdb_train, imdb_val = imdb_train.split([0.7, 0.3])\n", + "\n", + "print(imdb_train.get_dataset_size(), imdb_val.get_dataset_size())" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# 对训练集、验证集、测试集分别进行相同的数据处理;另外,训练集指定了打乱样本的顺序\n", + "dataset_train = process_dataset(imdb_train, gpt_tokenizer, shuffle=True)\n", + "dataset_val = process_dataset(imdb_val, gpt_tokenizer)\n", + "dataset_test = process_dataset(imdb_test, gpt_tokenizer)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[Tensor(shape=[4, 298], dtype=Int64, value=\n", + " [[ 249, 812, 20699 ... 282, 278, 5895],\n", + " [ 616, 544, 566 ... 40480, 40480, 40480],\n", + " [ 1782, 23129, 249 ... 40480, 40480, 40480],\n", + " [ 249, 759, 595 ... 40480, 40480, 40480]]),\n", + " Tensor(shape=[4, 298], dtype=Int64, value=\n", + " [[1, 1, 1 ... 1, 1, 1],\n", + " [1, 1, 1 ... 0, 0, 0],\n", + " [1, 1, 1 ... 0, 0, 0],\n", + " [1, 1, 1 ... 0, 0, 0]]),\n", + " Tensor(shape=[4], dtype=Int32, value= [0, 1, 0, 0])]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "next(dataset_train.create_tuple_iterator())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 至此,已加载并处理好了三个数据集:训练集dataset_train、验证集dataset_val、测试集dataset_test" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3.预训练模型加载与训练\n", + "使用加载并处理好的imdb数据集对gpt预训练模型进行继续训练" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "from mindnlp.transformers import GPTForSequenceClassification\n", + "from mindspore.experimental.optim import Adam\n", + "\n", + "from mindnlp._legacy.engine import Trainer, Evaluator\n", + "from mindnlp._legacy.engine.callbacks import CheckpointCallback, BestModelCallback\n", + "from mindnlp._legacy.metrics import Accuracy" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 457M/457M [00:24<00:00, 19.8MB/s] \n", + "100%|██████████| 74.0/74.0 [00:00<00:00, 301kB/s]\n", + "The following parameters in models are missing parameter:\n", + "['score.weight']\n" + ] + } + ], + "source": [ + "# set bert config and define parameters for training\n", + "model = GPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)\n", + "model.config.pad_token_id = gpt_tokenizer.pad_token_id\n", + "model.resize_token_embeddings(model.config.vocab_size + num_added_toks) # num_added_toks为上述数据处理中成功添加的特殊标记数量\n", + "\n", + "# 定义用于优化模型参数的优化器为Adam,初始学习率为 0.00002\n", + "optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)\n", + "\n", + "metric = Accuracy() # 定义评估标准为准确率\n", + "\n", + "# define callbacks to save checkpoints\n", + "ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune', epochs=1, keep_checkpoint_max=2)\n", + "best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune_best', auto_load=True)\n", + "\n", + "trainer = Trainer(network=model, train_dataset=dataset_train,\n", + " eval_dataset=dataset_train, metrics=metric,\n", + " epochs=3, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb],\n", + " jit=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "attachments": { + "a7e1763c-1ec0-4dd3-b8b8-c7766ec1daaf.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEmCAYAAAB8oNeFAAAgAElEQVR4Ae19zWsby5p+/xm9NWQxhizinQW/TQRZRHAWR5DFFWRhNHcRxIF70JjhIAKD0QSuEYEx4gwE4cUB+TIBmUu4MkxA3gRkGEN74IDMkEEeCIMGDKdhzNALw31+vN1dVW+3uluSbSX6eA1yt7qr6+Op1vvU+1FVVq/XQ9YH8icICAKCgCAwVwRIBv/2228L+7GySILuyZ8gIAgIAoLAfBEQopgvvpK7ICAICAJLj4AQxdJ3oTRAEBAEBIH5IiBEMV98JXdBQBAQBJYeASGKpe9CaYAgIAgIAvNFQIhivvhK7oKAICAILD0CQhRL34XSAEFAEBAE5ouAEMV88ZXcBQFBQBBYegSEKJa+C6UBgoAgIAjMFwEhivniK7kLAoKAILD0CAhRLH0XSgMEAUFAEJgvAkIU88VXchcEBAFBYOkREKJY+i6UBggCgoAgMF8EhCjmi6/kLggIAoLA0iMgRLH0XSgNEAQEAUFgvggIUcwXX8ldEBAEBIGlR0CIYum7UBogCAgCgsB8ERCimC++krsgIAgIAkuPgBDF0nehNEAQEAQEgfkicBei+NOf/oT//M//9LdP/dd//Vecn5/PbStV2Qp1vv0vuQsCgoAgMBGBWYniH//xH7Gzs4NqtYqff/7ZP6fvRBjz2HtbiGJiF0oCQUAQEATmi8CsRMHJgQhCfealVQhRzLf/JXdBQBAQBCYiMC1RkKmJtAZFDEQY9J00C7pG3+dBFkIUE7tQEggCgoAgMF8EpiUKThJEDsrMROSgyIOO6vpDHYUo5tv/krsgIAgIAhMRuCtRKGe2EMVEiCWBICAICALLjcC0REEaApGDMjWRU5v7K3gklEpL6RWh3FXDEI1iud8vqb0gIAisAAKzEAUJe04O3OQUj3pShEJpuKlqVsIQoliBl0yaIAgIAsuNwF2JgjQK7syOO7I5idzHdyFEsdzvl9ReEBAEVgCBWYmCNAJOCuqcNA36EHmouRacLOgepaUj3Z9WsxCiWIGXTJogCAgCy43AXYgiLuSJADgpTHMeN1XF81TfhSiW+/2S2gsCgsAKIPAQRMH9EZwk6HqSdkFppvVbCFGswEsmTRAEBIHlRuAhiIIinjhB0LkySZFmQJFP8ftkglJaQ9ZRiGK53y+pvSAgCKwAAg9BFCToOVkkkQDXLChtFjnwe0IUK/CSSRMEAUFguRF4KKIgn4PSGpKIgq6p+0IUy/3OSO0FAUFgzRB4CKKIO7OT/A+KJOhI96clC9Eo1uyFlOYKAoLA4iHwEETBSUCdKzLgJil1Tx25iSntXIhi8d4ZqZEgIAisGQIPQRTc7KRIYNJRNIo1e9GkuYKAILC8CDwEUVBUEzmrlRZBxzhR0DXyU9CRPmkaRPy6aBTL+25JzQUBQWBFEHgIoiDhzhf/SwqHVffVMU4Iad+FKFbkRZNmCAKCwPIi8FBEERf0ca0ifn/a70IUkXdrhO6PeeSf5ZH/sYtR5N6EL9cD9I9bqO7kUT1xExM7PxdRfFVD69jB8CYhye0Ivf0KGmdews27X/LOmqgfDfCwud61Pgbj6odkhAfvG2i8rqD4rIjWr3ctR54TBJYHgXkRBfkt1IdPvpuWIFS69SWKqw7K22V0rvjLNEL7hQXLsmC9aEeJ4rqH2vMy2pH07NmrNor0HH3sKnpxIrhoIKfvl8bz8Rw0n9vB809q6Ovn+6ir5yYc62esPuGpd1ZH3g7qtbHTxvAWGH5ooLE/6dPFEIB71kpJ28XwczflXjzvIK+gSgbj4lFIFNcD9E57+tN9UwhwsCzkX3f09SDNAMk0PN52uSIILAsC8yIKJejve1xPorjpohoKT2u7ht61ep2MEIsQxU0f9W1FAgU0L4L0zkGofZAG8iyPTZWnZcF+HL2XexQ+T8L+US7QWsLn8geOn6H3qYatkAzsl21fUAN3Jwr3Y82Qk7WB8nsS/UB/j9UllXzq6AMYHRW10PZJUKevo39WT7kXzz/IK0DNYKyJYup8KF+eV5Cj/BcElh0BIYoF7UEaaesR/nYdfX+YaoSYJoobB43vwpG+ZSG319cmnOkEblxoJnzfI5FMfx76r7e08C0fU6WG6E4c/Qcj+O7nMBt4GByWsaGFuiEJShEnON/UpkhLH5sg+sokivOmIbynm7AVycVIMv8syCuoncFYE4WvUXTR2q+g8DcWNl+1tBbR3Sei2kThVQOtE9I6RKNQvSzH1UFAiGKB+3J4VNLCzXragHNrhJhPFGQOSiEJapZ7acwl3HQy8/klM6bc9FHbzqN2kmy/nwZO76Rq2mXlUPkQaBLTPJuWxhBGyoj+ohFqQzaSTGCUr/fFQe+0g9qzgCx9s9L5CO6NC9cdovvjZkiSpLXRNTLHhcT6N1V0r+iaC3cxnC1pUMl1QWBmBIQoZobsaz7gob+Xg2WX0Lok6RMjCiKD0HzDNQlew8n2/lagrXihkPOlnHHoKrMTz9Oce4FgJOE45ce7padH6Ly0YdkFNC484KqN8vNqzB9jSpnmbBJROPuhJmSnEEmadvKijfZUpjCjiWlNRFX81sXgrAfnizCIgkSOy4WAEMXC95eL0QQfhTcaaXNTvDmTzU9FtL8wE47vJGeEFJqdxgiHtIAvzEGuzUhGYEZ9BsF1PZq/GWLot2uIlhqVWwW0fp2BfLRDndU/yUfg9VAL/TNb+4G/JY4TfTdkw9rwoo3eVM514yBvnTENDC66r5RpMIdG6D9KKl+uCQKLioAQxQL2zGThzgRZgoDmI1qd15MSatyX8EpF7kxHFDofVR4RyH2IwsfdDTSmMM/CuyEwi+OY6hBGJHVe50OzUBlNP0LJ+AqGh6qtAW4+PqMeOhGBTrYn0owGaH0fpns3gEsa1tTRUw1ESYIayYnQRu1UtIoF/MlJlSYgIEQxAaBvcXtMKCvhPOUxkSji4bRaIN+DKGBG/6MPVWyG9cvt9TAiU9T1EP1f2sZ277oITE+EamhWU216EUZR6Xplk6GvrRBRpKYPTUw3PRNBFpZlP9oIfCRP6uiPyW2jTWkcU8sYr6N+hr84V1009xtoHhvy4rflXBBYdASEKBaxh3zn6fR2f98/8GtLz5Pgwmoy6UxHFAFMLBQ2NEkF1x00VHiunmMxRPtFYHKxX3Vjcws89N/kmUPbgqXyuzXkY/weZpRvfd/CQPlDyPSUKsSJKDw4b3I6SkuZwor7DZRD0vC1mMg7kEUUNXRV2ZGjqR/HPpKtfBEElhgBIYol7rxI1ZkZiAur+RMFF8Y51Nmsbe+jim6yUflg7PaDg3HhrYki0ij1xQhvHRasboVH418wzmrv3IQY27tVVEJyKB4NoZ3bVkCUJjtTlsYxlYym1ChM5nImCCwlAkIUi9htTOirUfAsRy3g+OS1e5qeApjGNYrhezYf4rs6unoGcxftgyqKfxMKUzYb3DutBdrEds7MFVEaRWJ/GOE9NVFEJiGW0Pli6u7jc91FJXRw2z/1WDCAKUvjqImigAr38+jzGkpPgnbqZxLbIRcFgeVEQIhiEfttHkRxT2d2AJMRtr4GcNvX0UTTENnWazUZ0EFjpwGHhLnyUTwoUYTht0qD+IXmaZiylDB33irNpoCWngzIiOKXIUYXfQw/qBneQhSL+HOROs0fASGK+WM8ewneCI4emU85ae59DXklGNUaRVyjUAJ57Hg/H8XwXTSiiC//QQsM0ppNtZ0kgUywGOH9cKanGrqjAXpvy6BlSZKWGlFEAaVV2LRQYjiB8Mb4GwLyK6J9pIhi3NQUJ0idN+t176KJ8rM8irt8TSmWQE4FgQVHQIhiwTto6uoxLYQLK+2jeFZDh5PPz+XQyRsQhV5c77APl0/sYyP94XHFmIrUGlSh89lEMyXU+KaHxm4L/bHJ3PclCg+0kmvtVRH5x2qughLmdfSvh2wVXFMWx2fwqYeRPwkQcN6qmdcqDzoW0b4KHewfa2Fkl43aRxeDd2qdqdDJfdpC43TIIrsICweN0CxFpMJ9NQlIySVBYCEREKJYuG5x0NTrGUUX7kte8yhMw9Yy4oJQE0Xoo/DCcNDhL0rIhc5cPTPbhXvZRkktIBgSBc1FUGsl6VG0vYnSXjv0SzgYRiKBXIwu+3pNJL1sCF8OJFWjUJFPQWW9zyaiK+6j0O0b05SMUzvo4mSi4N0/el8yEVLUtt0Wupeu778YndZRUJiEYbVxB7r+/lqtjUW5M2e/Tb4SXqKcCwLLgYAQxcL1kxFoWiCPCUE+4h0/TycKF91X8fQVdCkg6bw+TgSWhcJhsA6TexxqIHYB9UMmNGesW3REzdrKNBffJKWEcix/O5KOZlOXkXtWROV1A82jLnpnA4wSF1syZXF8It1/3vAX92ufmZnuw5MaShFtxUR2UVRX0Ec2Np+a1XlL78dUJ3hEomNzNiKlyxdBYGEREKJYuK5xMeAmomnPJ/koQo3CeWtWf7UsG/l9J4j4cbs6fFQRlP20bvadoPt6zSla76KP9l4Z+Wc5tgpsnITi30NS0pgb4R31USQRmoVIfXQe056YslKJIikrHj31qIjGJxPmq30cnMxopV+2tEhSlnJNEFg2BIQolq3H0urr9tEKwzX5MhJ6BdnzYJQcrJDaQ/9yFCxPofMzBDV+jxJ5cK8fekhsyuxFTFKAd8XMVhdDf9HB+5Vuypp5cb6rHlpHfe3L0JD5sAQL/pFpzbkKzFSR+/JFEFgBBIQoVqATpQmCgCAgCMwTASGKeaIreQsCgoAgsAIICFGsQCdKEwQBQUAQmCcCQhTzRFfyFgQEAUFgBRAQoliBTpQmCAKCgCAwTwSEKOaJruQtCAgCgsAKICBEsQKdKE0QBAQBQWCeCAhRzBNdyVsQEAQEgRVAQIhiBTpRmiAICAKCwDwREKKYJ7qStyAgCAgCK4CAEMUKdKI0QRAQBASBeSIgRDFPdCVvQUAQEARWAAEhihXoRGmCICAICALzRECIYp7oSt6CgCAgCKwAAkIUK9CJ0gRBQBAQBOaJgBDFPNGVvAUBQUAQWAEEhChWoBOlCYKAICAIzBMBIYp5oit5CwKCgCCwAggIUaxAJ0oTBAFBQBCYJwJCFPNEV/IWBAQBQWAFEBCiWIFOlCYIAoKAIDBPBIQo5omu5C0ICAKCwAogIESxAp0oTRAEBAFBYJ4ICFHME13Je3UQGHVRfZZH/lkezfOEZnkj9I+aaOyWkd/rwUtIIpcEgWVFQIhiGXruZgjnpI3mfgMN/9NE+6SPwbURR94XB73T3vjnYgjXNel0c70RHJX+fJQo2CJ5Xrr60ZU6uR6gRwLex7WFzkUyFvjSRtGyYFkW6mdJCLjo7AT3LauA1uekNHJNEFhOBB6CKK6vr/Fv//Zv+Mtf/oJ/+Zd/8T90Ttfo3m+//Xbnj0UVzPosJ+xT1vpmgPZuARuhgCIhFfm8aGMUZjU6KkbvxdJuPK+ic8XKZYLPYvmwFIjkudfnt1bg3MPgsJyIrf20ii7HilrL8FJEMfygiDs41l5u6T7YelkLyUel6WK4AqhJE9YTgfsQxfn5OQ4ODvC3f/u32NnZSfzQPUpDae9CGOtLFNc91LZjxBAT/lzAR4R6PJ36blfQvQ5fdCb4eD78ZxDJc8WIwvtYha1xyaP8uoHa7/Pm2nYDDoFBGgdpXu9ryIfpyz+T5uagvTuhf1T+/rGOVaNa/q7I+WojcBei+K//+i9f+KeRQ9p1Igx6dhbCWFOiGKL1nAkhu4DaUR9DZULyXIwue2j93E3UKIpHSs/w4F60ULJNXvl34bh2rYnCRfeVwmQL9TNlmvPQ27VDrcBGnXwRZ3WtJUS0OauI6kGoLewWsalIYbuMGpmxfqqiuqe0CTqKRrHaonS1WzcrUZA56Q9/+EOi9pBGEPw6PUt5TEsWa0kU7nHZCCe7hHbcDJLwTvLRvyGKIOHwF2aWetWF7214CKK4dTE468H5ogRtQsUW8tII7ReKKGro3ZpKchx9E1MGUbS/0HMe+q+VySmH+nmAxeh9CbadR/VoEOBtipAzQWDpEJiFKEjAZ5mZOCFknVMe05LFGhJFVJuIC/20N4wLuPgz/J42M92bKGhUrkbfOTQu0mq2mNeHh4WQjLdQ+6SIjmkUdg09dRmA+6GiyVv5KKhl3qcatkJtoqC0tau21uLslx2t9S0mElIrQWAyAtMSBZmMlCaxu7uLT58++Y5qclZP+6Fn6FkiEcprGjPU+hGF20VFmTGsEjrKijShLzkZRImCj3gtbL31Le8R56wmj1gZPE9rzEfBCc1G7ZRJ1Vg+i/l1iPbLkOjswEdR/d1m4KOw88wcRbXnEU0Wyu/DCDBGCJaVR3mvgdqrInKPQm1lSm1wMfGRWgkCBoFpiYL8C0pLuLy8NBnMeEbPqnwoz0kmqPUjCj7St6Z3gHKhnn/dCcNkO2hyBy0P2+Tl3DXq6arrh+w2j5fUvHLtoPGdMkGpYw7Vkxg7f26hoMmb0tkovHXgvFNaiXqWH21UP3rAdR+d01h+M/5oJLkg8K0RmIYoyEykhDsdSYOgPxL6f/7zn6f6KHLhREF5TTJBCVFM+YZwoog6XZXwyqHygQVozkgU9ptQE5myPouezLtooKCc/I9yKO/WUHm+oc1LGzudMJzVQ39P+SAUlnS0Uf25hcqzPMq7DTT2yjoqShGJB6O1bPzeBB4sOjZSP0EgjsA0RMG1CU4URBKcQJLOlamJ0tJfnCgmaRXrRxSjDkp69FqcypFNwKYRhf2YTCJt9OODWk4UT8JQ0NjbwfOMmrNiCZftq9dH/Uko9O0qumwu4eBnoyWUj13gyky0UwSc284j/6ZvJim6pJkof42F3B7dc9H7KRcSj43KB1bIsuEl9V17BCYRBWkPcQe20ig4UbRaLe1/UITxxz/+0ceX0pN/gv7iREF50/00E9T6EQUcNJQQsyzklE9hwqs6u1Dvo6YJqRpx3KqinLdmJF16H2calWoJj+d1M18i7nvhxECO6DDqaWunnDgz2z1voqh8EqFJKkoSijiWECepsiAQIjCJKOJmpySNQpEACXxFEnRU5iYOdpwoKF2W+WkNiQIwETk06s2h9jFlNJoS1jnd6J+HiFoo/sLMUtRjN33UNGFtLV1UE3/pxs55yOtubF2mzy1jQiLfja95ldG5MJqFH/V0O0TnRzZBz8qhcjwEbodo7ySZsMZqIRcEgaVBYBJR0FIcXPjTeVyjUN+p0UrLUNpEHIgkoqAyRKPgSN30UY/Myrax+bsqWsfhWk7HLdReFbDBnNCzaxRAZL6GtYHiXhtdmoV83ET5qTGlWM9bictPeBdNlJ/lUdxdsslk1x2UtTZVRPPXkIhJyKtIKNLmDgYA+miSVsdMdTRBz3mjzEoWaMkPf3mUqw6qHLf/1wTlIH+CwLIjMIkoaO2mNKIggohrDXSN/BLqOn1X/gnCKokoqAwhivibdNVFJUIW3JEant+TKMCcrcr+PnZMDfGMmsiWzQY/PCoZ85MmDYbxdh39G9YpEaKg60Qqmyju9+HSxMOjCnIJ+eR+WDISZU2WU0FAIXAfolB50FERQ/ycfBdENMo8JUTBUZt0fjtC76CCgraBM0Fmb6L0tq9n/d5Fo/CLpzL2S9hUEUBa2G0gt9NAL9U1wUbVdgkdf5bypAYt1v3RaQOlx0xz8tu+gcJuGwNOElTtMaII2uL+2o5qEWSCOuqixTQT+7sGnHh+iwWF1EYQyERgElFkmZ54xkQI9OF/pE0obURpFUlEIaYnjlrKuee6cPVnPpPbeBke83+kVMm/7D8zn+pkFfuw924MtqlNiRMFRTq9ML4I0sS0CcqvXdSMlTap8WEbIrkJAvNBYBJRZDmzSUsgAlB+CTI5ETmoP6VNEFlkEYU4sxViclxcBOJEQWs87YV+ikeFlDWdQrJINd8tbnOlZoIAR2ASUZDgnyY8VmkOSqvg2kQWUUh4LO8NOV9cBNw+WuHGUV29KdEQ/RMHbpb2dTvCMNV8t7jNlZoJAhyBSURBTuZZJ9ypSXaKPLKIQibc8d6Qc0FAEBAEFhCBaYgibn5S5iXyNyjT06SjcnbHfRRZZiciqbWcR7GA74lUSRAQBNYYgWmIIq5VKKF/F9jIr6E0jUnahBDFXRCWZwQBQUAQeGAEpiWKpGXGiTBm/dBEPCIKWWb8gTtSshMEBAFBYF4ITEsUNLonM1Hcsa20g1mOlMckkxOVJxrFvHpd8hUEBAFBYAYEZiEKRRZqA6NZyEGlpWenJQkhihk6UpIKAoKAIDAvBGYlChLeZIaKR0IpIsg60jPT7GpHZaiPOLPn1fOSryAgCAgCUyJwF6JQQvz8/NwnjCxzFN0jgqC06rlZjkIUU3akJBMEBAFBYF4I3IcolMCncFkyJ9FSHLTAH33onK7RPZXuLkchinn1vOQrCAgCgsCUCDwEUdyFAKZ9Rohiyo6UZIKAICAIzAsBIYp5ISv5CgKCgCCwIggIUaxIR0ozBAFBQBCYFwJCFPNCVvIVBAQBQWBFEBCiWJGOlGYIAoKAIDAvBIQo5oWs5CsICAKCwIogIESxIh0pzRAEBAFBYF4ICFHMC1nJVxAQBASBFUFAiGJFOlKaIQgIAoLAvBAQopgXspKvICAICAIrgoAQxYp0pDRDEBAEBIF5ISBEMS9kJV9BQBAQBFYEASGKFelIaYYgIAgIAvNCQIhiXsjOKV/nII/8szzyP3YxukMZ7kkN+Z0qGgdtONd3yEAeEQQEgbVDQIhiybq8v2fBsixYL9qTieLGhevyzxDtnfB5q4LOF34v4/xmyUCatbq3LgZnHbT2G2jQ56CN7q/uhFxcDE576NHnfAQvK7VH+XfRPgjz32+gedRF72II75Y/6GF0Huap8g6P/csR3MxCeD5yLgg8LAJCFA+L59xzm4UodFoilvt89vpzb9e3KsA9b6L4KAGfCUTsfazCVpimpb0dobdfxIZKl3SMYDtC+0VCXfRzNvI/tjFYdeL+Vi+DlJuKgBBFKjTf7sboqPgggl2IIrsPvbM6ckwIbz4torJbQfFZDhtpwp+y9BzUt5lAT0rr9qNpdDnsObo2E1EEz9qvupik72S3XO4KArMhIEQxG15fJfVDEQW46elLF9W/CYXU8yaciEkqw+xE6VZxBOv1UX8S4mEX0DiPid6ISSja7c7bXJTIx4hiGNUMHhXROBlETUc3IwxO26j/4rDMuUZRRPuLuuVh+EvJaDBWCZ27OKhUdnIUBGZEQIhiRsC+RnJDFAVUlN3cP9ZQUsLteSWwp+v7FRTUqDUySg1qPHxXCIWbjdrHCcQQIZEEw7hv0+/B+ZJw72sA9ABluMdlLeyLRzNI3YtGoIXYthHcMaLgeVt2Ce2raSucRhQAbnuoqf61KujGeG3aEiSdIHAXBIgoFvmzlluhGqKoI+odGKL9fTgKHiODPupKkMTvfemgZIfPkVD70kZRpZ10jAlBwEX3lR0K2RwaF3d57b71M9SGEA+rip7Pd17o+M8gP21yslF63zZ4RzAaovVc5W2hfDyLRM8givM6tsK+EtPTt35/pPxFQ0CIgvfIdQflUFiMj4LTiGKI9ksl2LcCwX4vouCC0EbtNEOw8rov1DnD6vsWnJhD235cRusy3i4P/b3A5GS/7GAElgcnCreLiibfmImImwKZ1mYinzhRbKH0Uxgl9bqMfEj0GzstcWYv1LsklVkEBIQoWC8Y85GFjRfkZ2A3ueDSGoURbkHUE7d782fVuYfBUVULJetRGa2kMNGrLpoU4nk8WE6n6qiDkhLmT7b0SD0SGWaX0NE+AmB4FPoI7Cp6vs8mhSgiJBzVCNOCC+pnCn9OFEYrUfXKvayhdTJcTsxVE+UoCMwBASEKBernlvFBKCEXccIywRUSxeg9d4CS4Mkgius+Gi82tB9jpcMwI8LcQm6vB5ec17cjdH8yjuqtt4Gj2URH5VA/U5oGw5trFJG870MUNjafhpMrKQpL9bllwX7ZxlC9F3IUBAQBCFHQS3DVNj4GK4f6URsVHZ65gfLhAF6CRjF8l9cOW61RXClbfNShPXinQnI3Uf5lgBEzjbirNtMrIsyVjyL8tV0x/w0RAPPvFA4cNoGxa5zL37cw8PHyAK6txIjZvTST6Zq/NxpDskYRI3V3gCabY1E4FKoQ+SgIKATWnCgqaHJTkGWjdBQKCIrTf6p8DxZyu1Xtv9Cx+Wd12NsVdH+phYRRRPuoHiMPI7CUiWPsyEfMqmeW+si0ASs66o9EF1G7z2bAy8dpiNYzg2nhXbJA52aoqYgCgAlyiM+/WOrOkMoLAvdGYM2Joo6e1iZsFN460aUibhw0vrNhbdfRJ+JQ5gnlo3CHGJIfQws7IYrgjXRZ1FMZHb7m1ecW8grH3R7I7DRGnOp+/BgS6vBQhSJboPDYccc4cBeicPa3TF1UH9/7JyYZCALLj8DaEwWFx3qXHbQ/RTzXpmdvRhj5txKIQqXSwi5mzlD3I6PV9DQquXfRRPlZHsXd7tLayr3Tmp4HsfWqgyG5Hq4dtHSE2KSILoZ3XOPSYbRKs9hAcbeFjlq/6biFCguhTdMoKJCA1uoaXfbRiSwFMqluqqfkKAisBwJCFFP3MxNc8dHmgxKFg4aa9GdZqHxIIbCp6/2tEvKwYSXQzXFjh0Jgs/4Y3nGioMeue6gx02CWVpJMFKYu8Wdze/2oZplVTbknCKwBAkIUGZ3scYfzZUtPolPROvrRKYhicKAc35M0Cg/OmzAyKBZCqstblpPbITq7hUhEkWVvorTfnyIEdQJREAa3I/SP6ig9Nr4kI/RtbH5XQTMS7poRHmtv+svDt06z6WtZoJd6CgIPiYAQRQaa/b0kAWSh+lGFcIYPJxJF1OlqBFhsklhK+T5JxYpJSbr4l29NJJiZ/PbA1Y5NtlsV6B4YJclOELgTAkIUGbC5HyrGuek7VmkZ6gS/QSJRAP3XcfOGjd40KYQAACAASURBVPwbMWtkQC63BAFBYAERWEui8L44wYY4pxNmPrORsL9BUdoqr5+74QKCLfSZS0GXc6bmTcg4dwF/A1IlQUAQmIDAWhLFBEzktiAgCAgCggBDQIiCgSGngoAgIAgIAuMICFGMYyJXBAFBQBAQBBgCQhQMDDkVBAQBQUAQGEdAiGIcE7kiCAgCgoAgwBAQomBgyKkgIAgIAoLAOAJCFOOYyBVBQBAQBAQBhoAQBQNDTgUBQUAQWFYEBoMB/vznP+Of//mfsb+/73/onK7Rvfv8CVHcBz15VhAQBASBb4jAX//6V/zlL3/B3/3d32FnZyfzQ2koLT0z658QxayISXpBQBAQBBYAgX//93/H3//932eSQxJ50DP07Cx/QhSzoCVpBQFBQBBYAAQ+fvw4M0HESYPymPZPiGJapCSdICAICAILgECv17s3SSjSoLym+ROimAYlSSMICAKCwAIg8B//8R8TSeKPf/wjrq+vcXl5CTpXpJB2pDwn/QlRTEJI7gsCgoAgsCAI1Ov1TMFP5BD/+/TpE3Z3d1Ofozwn/QlRTEJI7gsCgoAgsAAI9Pv9VGHfarUiNaTv9CHNQv3R9zStgvLO+hOiyEJH7gkCgoAgsCAI0NyIJEHPtYi49kCaBF1Tf5Q2SbugvLP+hCiy0JF7goAgIAgsAAL/+7//m0gSJPSV1kDHJBLgaagpSWmIgKiMtD8hijRk5LogIAgIAguCAM17SNIm6JpyXquq0kxsRQZ0rv6ISLKc21lzK4QoFIpyFAQEAUFgQRGYZt4EmZiUdkEmJnVOTaJ7aUSjrmfNqxCiWNAXQ6olCAgCgoBCgDQDJdD5kTQH+lO+h7h2QdfpGqWjc/pT2gbPh8659uEnZP+EKBgYcioICAKCwCIiQGs0xQU7fSehzzUHimyiayrqKU4AlDYpH7pGZaT9CVGkISPXBQFBQBBYEAQmmY7iZifSIuijtAhqxjR5pDVXiCINGbkuCAgCgsCCIHB1dZWoCZD2QARAGkTc7KSqrsxPlIbSppmeqIy0PyGKNGTk+mIj4Hnwpq6hB9d1w0/8KQ9e/NLU+UpCQeDrIfCHP/xhjCy46YkIgb6Tr0GZo+g8rlkkEQXlnfUnREHoeC4GZ120Dxpo7Aef5lEXvYshvFsOn4fReQ+90/GPc+XCTRA43hdHp3e+JCRANM+BmUjJC5ZzhoBzkIdtWbDsAlrjKxawlOHplzaKlJ4+L9oYqRQXTeRtum6jcHi/jV1Ulg96vOqi6b+PXQyzMvZGcE7aYdoWOhejTBKld7J71Aze9cMOkt/LrALl3rdA4E9/+tMYUZBvIa5JEDkQGSjSUHUl8qC0ST4Kyjvrb72J4naE3n4RG0qIJB33+NT2EdovQoGTlNbaQGG3gyEjl9FRMRBQloXikRZRrE+iedbP2C05TUAgilcyprHHUoiC902EQGKPf/Wv1w46e/y9rIO/hbw+3kUDBZ/sou+l/bSO/g1PSecenLeFgGQj76+N/Jt+JrnEc5LvXx+B//mf/0kU8krwcz8FkYLSKqimRB4qXdKR8s76W1+icPuob0d/XP6IM/IDsmDNRBRBfvarLtwQdS6MkoVaVPAJUWS9rsG94YeqrwnYT6vopptVTUYpRIGrLqpPbVh2HtUPmWN2k9c8zz53Uf3dZoIgTyGKLx2UNElsoPCqgtJjWw9M+HtI1R69L5m8HxVQeVXCpn7eRuWDemvn2UjJ+z4IdDqdTIEf1y6UfyKJHNQ1ynPS35oSxTCqGTwqonEyiJqObkYYnLZR/8VhGHKhXkT7S3jLc+G8Yz9CK4/W5+CeEAWD71udphHFt6pPWrlndS3kLds2Qt1KIgoPvZ8UKdioflRmTQcNPQAy7yG8HmqKFOwqekrbuGggpwZHz1rZJq60esv1r4pA2ppPSvDTkYfH8uvx80lrPKmGrSVRuMdl9oMsoT3NqNRHLIUo/HtDtL83GooanT0IUZAN+rSPZfJfeNp57AYmjdvQD3TYRvdsAJeZ5yJp2fXgJU1wRN8ox7Qb8yEFT7iXfd8G3zruwSFrXxpR3LK8leAMsgBuPYwu++iR7f+gje6pg5GSxSrNhOPM7Tqrw35cQOWgiyFpvEqAJxEFF/xPGuDDmeG7vH6/i78EmpJ3WtPEs7UfSY3WM/XeFmf4LUxovNyeGwK0JtM//MM/ZGoWcUJI+k55ZK3vxBuwhkQxROu5+mFYKB/Pom5nEQW/Z/wR9ycKNkK0K+guhbObY1FE+1MXFT3KDbHfVjZ0PjIe7w/vY1ULPTs0A/b3TP9FTHU3DpovNnT6wJS4gfJ+PdmZzUfwzMQ4+lBO8VvlUJnaRDV7u/gPE5hAFBcNbCki2e1F/Qu8Xa8D74bzdkvjYrSPoESOZ80sNBqtjnxbKAT+7//+D//0T/90Z7KgZymPaf/WjyjcLirqB2aV0OH+ZTZSNeGUfNQaE4DK9ERo3/RRe6IE2BYaF0EX3Jso+MjRKmiT1rQd/G3ScZy2sPXEgv04j/zTqP196204sqWRtOoT5t8h52tvdxxTLtgMUYzQealMMfTMBnLP8sg9Us+HRx71xAUqJwo/AGEDuZ1qEBn0uhxGR1EezOQ4CdwZ2xXNbgJRpNTdz+NzC3mFZ9jeZMyCEiMaSGLARbRm8m1xEKD1mX744YepCYPSZq3plNay9SMKboaIqfT8x8Qd21wYmainPGrvwzDZ4ybK5BRVP87nxtZ7b6IA4J63fYHVOuWsltali3CdE4WFrdc949w/rhhS0ELbQUOTbBU9beLpo67s6sx+zvtJ9w0fYT+poacUxdsh2pxAdJkAUoSt+3kwZmbyTiq6f0vvp+2H2doV7blsouDvVTTgIsnUFu0PjVlYIM8rOeAiWjP5tlgI3N7egva+Jn9DuVweIw26RvcoDaW9y58QBUONCyAt9C0L5ocV/cHxNPp8uxKJxJn8I+R52qifswot7Slvk9Gu/OZ4PVQVoTKiNqYR2+DNhH/h0EQl8X5SfWOeN2Y/DR/LJxIGm0IU6jnPHWFw1kPvuIXGTyVt6rHfGBv/8IOZe6Pm4DSYecrUa3K7VLnB8RsThdtHK5xTpNu130JfEXC0svJtQRD461//iv/+7/8G7YNNHzqna/f9Wz+iGHVQ0oIqakZwL81EuubvjclCCSOAC0BznyZsbT4to37UxyhG2JwotKkl0ms8z2h9IsmW6ktWm1IEIDOXKF+EEbJRXJKIIumahoxrkdNoFOfNSJipHgSo94aZqXi5Oh27jxnapevrn6TgpBJ9qmkNZ0yj4MQYmvL6r837at7nIDODs2VCZDlmqt2zmN1UPeW4EgisH1FgyKI8LBTemZEq71EuAMwPK0sA8qfZOf9Bx52OfjJunoj5TFg2y3WahVOaAGRBBn4UD+unnY42XREOSX2TdE1jdpUyMztJo2ACkuZptE568GfdX7aMQ5wRwSSNAvS+qeCJCe3S9fVP0nAKUyWQgXqeBwCowUkiGfgPJPuBIBqFglOOANaQKIDhYcGMxuwSWpfaKK5fimTBkyUA9aPREyZ4fEdoLBTX+1TTJg0rFuYYzWiZvmXhlC4ATb/k0fpohHtWlI4iceeN8RFxMxWhFgmHnqBRGA2QzUGgTLhjmhHFNL0ybbuieaXj5KfjJjy7xvw6RKQKC2Pu4uRh/8SjpJgfyE6arxGtlXxbTwTWkijgObFZ2Rso7rbQUWs4HbdQUaPAVB9F1ByS/vq46OwYtd96VESd1pE67aFzwKNpLMQFnMqTZiIXn+VRPnCiYZAqwcId70YUfL5D8UW49ElMCFJTk0iczxOwiPwvAmO6e9Fis5djaz0laBSGKGxUT0KDvDtAizvEZySKadsV7cYJREERYXrCnYXcXs+fm+L+2jSazzabXxGJnsuhfkptczH42Swxk1NRaNGKyDdBYD01Cr/fr3uo8UglbYdlQj28pkatUR/FtEQB4KodFVYJZdkv28mzYiPhvDHH8MK+wHckCsRI1bIQnRwWNDiJKMjEE4luYhjb2zmjtU3QKMBNOml5zEoUU7Yr2p2TiIKim/gSHvH3Nof6WVRTjizhwdrm+1b0vJZoLeSbIEAIrKdGofr+doT+UT3FcWlj87sKmidDZh/PEoAq05TjqIdG0jo+j3Io7/fGnOAmFzY/YLsOJ/rbN8kW6iwLp2wBGDETWcnEmEwUNJfFQTOCsY3N37cwuDRmrMlRTx6cA74gn4WNnVgeMxNFzPyV0q5oF2bjpNNedVB9Hp1kaD8uoXmeHJ40PK6iEJlbYmPzd004ycl1MXKy3gisN1Hwvo9NtpubPObLRiStS87rpM+DpSaiS57rm3ISR0D1ZXxZjni6rO9euEzIffLIyv+h76k2T/lO6eVFlqV9D42X5DcTAkIUM8EliQUBQUAQWD8EhCjWr8+lxYKAICAIzISAEMVMcEliQUAQEATWDwEhivXrc2mxICAICAIzISBEMRNcklgQEAQEgfVDQIhi/fpcWiwICAKCwEwICFHMBJckFgQEAUFg/RAQoli/Pl/+FnvekixlsvxQSwsEAUJAiELeg6VCwDnIBxsf2QW0Lpeq6lJZQWBpERCiWNquW8eK86VBEjYoWkdIpM2CwFdAQIjiK4AsRTwcArSSbt62QHtFdGNLtj9cKZKTICAIcASEKDgaci4ICAKCgCAwhoAQxRgkcuEhENCLzrlu4Hi+dTE466J9QPt+OBhlrbp4M4RD+3UcNtA67qF3MYReEFEvfueaa7zCfjn0bBNt2p3uS1ZB/EE5FwQEgTQEhCjSkJHr90CA+xKKaH/qorId2y/BLqBxERPit0N0fgyd1bH9EtSeIKlLjNM2PB9rvllK713t52Ej/2M3ea+Pe7RQHhUEHhKBXq+HRf4IUTxkb0teIQKcKGzYtgXL3kT+WR6bdK5IILJ73fjGQxvbeeSf5bDBdhlMIwrvrI5cmK/9tIzafgO13xvSkd3b5OVcZASIJH777beF/QhRLPLbs7R140Rhwd+97zZszO0ATbbNbOVDsGNOZCvT7Qo63FF9O8LoOng+mSgcNJTG8qSGvt5jwUNvN9w/OkJKSwusVHxFERCiWNGOlWZlIcCJYnyXOvdDxWgV/m5xJNCVpmGjdhozSbGiEomCbV+6SXtHu+GmQ66LwTu1J3Qerc9BRsMPDTT2Y58PQ1aKnAoCXxcBIYqvi7eUthAIcKJI2Fv8rB4jignpWZsSiYLnp8xaCcckP4c2g91he1NWLTkVBO6FgBDFveCTh5cTgWzB732szo0o7Mfk10j+NM8DNEWjWM63apVrLUSxyr0rbUtBgBPFuOnJ2d/SRFE8GlG8ErqvlOnJQvk48FskZZ6oUTDTk7Xbk3WgkoCTawuNgBDFQnePVG4+CHCisGBt19D15zN4GJ3UdHSSZRW034C0DFuZi+wC6qfh3IlbD8OzFrq/BjVNJAo4aDxRRJND7YTIx/y5l110TqPXzF05EwS+PQJCFN++D6QGXx0BThRheKwiAXaMhqyO0NnZ0JqG9h2E6ZP8C+oaNY+Hx8afpe+B5vLVgZACBYGpEBCimAomSbRaCHCiCCbcVZ+GYaok+O1NlA6cBBORC+ewPD5pzt5EI/QvJGsUAXrueQtlXk5IMhvbZTTjk/tWC3BpzZIjIESx5B0o1b8LAjGi+BLkoZb10MtxpGbtsRDX9FDZ1MfZMh/uHR5PzVduCAJzQkCIYk7A3j/bEbo/BtExKhrmznmeN8NImyacSCYj9A6CeP3WWbqDNvLISnxJJoqVaJo0QhCYAwJCFHMA9X5ZqtHqAK3vAwdo7cRM0KLJWjTidc9a45Oy1CSt+OQsHcdfR59X7nMLBd/8kT2JjD+yGudCFKvRj9KKr4WAEMXXQnracr60UQxt10lOT7pGTtLRkZrRq6Jp2DE+OSuRKDz091QYqI3Np8mx/flncS1k2oYscjohikXuHanb4iEgRLFofTLqokoTsp5uhuGYSogHi8+NEcWzGjqnPfROO6g9C8lCEYWyhZ/UwmidGrr+8hEeoLUJRjCJBBXTQhYNrzvVx5j18s+q6Epk6p1QlIfWBwEhikXt6yulWVTRI4en1jSCNYG0RvGijUDOsVFySBQ8AieinXxfQ+1FSBDbwUqm8bWFai+VtrGKRLGonS71EgQWEwEhisXsF7jH5UAL+L4d7FWgiSJYm+heRKE1h5y/54KXEHmj87cSiCLcfEc23VnQl0eqJQg8MAJCFA8M6MNkZ5alzr8LVw3VGkaMKL5vYeCbk4zz21KmJ78yHno/qTkCgdB3PwV7IxQob98EtYHiXhtOuFQ2PZZOFC66r1R+RDQP02LJRRAQBBYXASGKhesbcjLnAm3CLqAaRjLVdsJrVmCKMoI8wcfAicLroaY349lA+SggHvfcwRCMRLbrcJhmYfKPaxRDtPR+DesWLTW/l0XN4fCj2uZXjOQsCNwJASGKO8E2v4dGRyXtxC4dDTGMRTfZ4aJyow/V1FVI8wdmtoQ2YWlzk43C23DW8XUHZf+6jerJCIOjKkpv+v6M5HSiAHDVRXO/gebxAEs9+4L2vj5p+23xfTSHHfQvM1oUS9886mHAtLC7vxXMv2QlLHs+MWMXAz+ggfbgZolj9W1Map9H+4Z30FJh1oedKff09uBe9tE9apqQ7YM2uqcOhnqTpqBe3hcHvbCukePZAKOx2Ycuhp8oUKOH/hUbxbAmTjp1L4Pn72Mmdc/bQbsO+8v9vk8CK+O+EEUGON/mlgfnbRFFLcwH5od14aD3LtzQZqqX1piwAme2WtdoA+X3Ax0ea7/sYKijoAJzUiZRfBtgHrbUUQclTZ5RrWxjpxPbwzqIktKLAkae20AxcbmPWap7P6IYvisEGuh2w0yonKl9Hpyfi/6WrpGgh3AQkbWn9+i0geKjKH7RPKIaqXmvkp+xn1bRvjSk4H2qYYvqYZfQ5rsKTgnv8JcgjLz0fvbQNu9LD022Xa2lA0emLHyFkglRLFpn3qoJd9FJdsGuaMwPoX0TSelc0OBM/UhsW/kU6uie1VF9N4CriUGtkMq25XzRRl9pMk+Y8Fk0rO5TnzA4gPa9Lu9WUdbhyIEAiy4I2Ec9JAe1n0QuIhzva4K7B1HoftxC/cwIWBUlN137WPmPcoGm+li9MwEehcP4DnuuMZFGiDNOALMRhU8ydgVdram52idGA5rpxD1pRgO4t4DaW8RfoJGCMH4dJazhFX2R3LMmKs8TFoAUopA9s6Ovyjf8pifHxX9ws32n1UiD8NgtNPbVPIrwR3vTR13t4bzT1BpLZy8cmVo2Cs/zwSh1VX8c7hADf2lx09fuCVtKPNLuPurf1dGLpHfRVftdk6B81b2HWYIJ6plMT0aIWjudaPkztW+E9g8VtC+iZrfBz+p9sGDFBgxqEBJoDxso7ncxuGZEdethdNlDm4IkDMQsSCK6Yq73uY2S9qVZiGgAmgynJGRlUn1UQOWHIjatPCo/lrDp5x+Gm7M6xU8jWo9tm+XlI+9E/KnV/i4axaL1r16Xic+UNpPtomp9sNJp0o5p1Q8jjN6XYD1vYajJJySKs7p5+TNHgxbWSt3WIchTtvuTIuCU9N4IzmkHLbLXX4QjWTUJMlyKJXj9EojCD0Huon3QQufUwYjJYP3KzipAZ22fjrSjQQrTDJQg9t8dG+RLm/aPC+H40uq9n8xgqPKBk5aLzk54L06ISQVfD9A5bKCxq8iBfid5lF83QH6aSX4lqiOt6Fs/6mPEMRCiEI0i6X1biGu3I3Rf57WD21ajLj3S2UD5MMWpfNFCg8wRcaJQG+mEZobybrgw4HEPvROyORdQUBpHwo/Du2ii/CyP4m43ZstfCMTuXAm+OdHWPh8HJ2fJhV5coxhSsIHqq5CM7ZdttF8bYWj2q4gRxacuKgp/ReR2PmpaAjB8F2p9YSRcci3N1VnbR++N9sswjWJ4yDSNaQS3qUKqRoFbB3W1uVPE9BQ8bLAuo6PNUizjhFO1B0humyIGc2P4JTwyfmlWch3PYSWuiEaxwN3o/tqG2Schh9pHB201o5r8CB8qejc23wkYMx3opo0RBYBbfTfxpK8E2hhR8N3aLERHfolZLe5Ft68jfGqvCtqZa3/XgBOL1hlrBDffWdHtUb3zYJ6K0v58v0bMB0L3kokiDDiwN31fQWAuCcnFrgWz9P3KjNB5GV5Ps93fp30Yov3S+CkMcbqRbWEjJqI0/xrD0gh8C1sva2GUVM3s0/GojBZzZmvcP7eQD0mz+jFJvdIp/RMiCZ+oycHv9lAl0r6LQ1yIwsdTiCL6fi3EN/eig/oL5kx7VETznFRxNvIMBbj7sRYZuW48r6B5HAtLTCIK1lL3s4PByDjFh2dNbS+2+ZwM/xkPzhs1z6OEDg/HZHkuxSkXAr4QyqN00B0L6Rxry42DxndGiPrmPZ2ImUlo5zrmBFYjXEUgyURhgTSPoSLyGCEZYnZQVxrLWB+Flblr+zBE9wc1b4cEbBU9LezZOxghOzDN1WhNfltZ/ThRKBz0cbuE2rsuhtzqpHHtoxYShZ6Equ8lnLgDtH/IQ5EKhZ3nf2xjoNuR8EzSJY7h2KAp6YHVvCZEsWD9OjouG3XfsoOXW/9w2I+Uv7SjHhqcWCxb/0D85k0iig+VwHGtzBz6GIukYVj5E8QmD+zYEwt4qhZgfJZHJIopwcyjau9dtiNmIftpHX3dPwDcLioKP5vZ9f0MoqPxZKLYGpvtHhGuSuh6PVTDcuK2flVX3KF9uCbHPSPBR+VYWCp7B+9JFCqCjHxsUfyTQmFN5Fl05QHd2vmcCFH4uApRzOf1ukeuwcznjRd1dH7lEoiyZD9SThRhaaPTZqDCkwOb12ACUdAyHkqt16M7K/B9LDsXcBgmnbunzGQUMfMETw6ZqY9wyv3QMSN/lfkEwcIXakwmioQJd7r/LGghycpJJQpVp/A4qX3eRQMFpaVYFnwTXPwVBDN5xff6vmZzfn4O1yojMlPkFlkaJhr1BLgY/MyWzo+/wxCiiHXnV/0qRPFV4Z6yMGV2GEvuok/RHDRzNmPCnRdXr/UPOMXpjfG5G5O3Ax2r3ApcoLkkxmxiBDngfqgwTS+HynGEik3bmQBPihi7C1GouQA+iSuhO41GYWoVnqW3DxcN7e+yKDz6rRMNt2V5GSe6FUTVsXv6NIncMomCr5BMfRDXxoQoNLbf4ESI4huALkUuKgJR/4ImipvQGeqbeiZEz/AZ0WNaSTQQQOfPNUVr3PTk7Ksl3/ko/C6CM6V9iK7fNTHcVYflkkC3UXo3GJ/EdheiuGgEs7B9nMeJYiYfxUO9YhOI/6GKWfR8hCgWvYekfnNBoL9fROOErS90M4LzTq2zRQ7cCrqh2cWfjxL6A6wnJdTUWkj8qDU8LnQt5H7qBnMgvBG6PzEHccS+z0yKVM52DV1/cp+H0UmNjfTVLHqChJmAEqKeZmkfzlkYrFVAhbdLn/NQaBbQEOKy8aKKFoVXh5totV6xEFqlBcU1ClohgFY+Hg3QP44uBWL/1IuSDzOPKgf1XF6MeKZCFD4iQhTxF0O+rwUC3ARk/DLK7BSdRJadNnyG+Yzi0U0m/xxybH5Eskah1uNSdTHH3JtwMcewh4wJaHy2cXado+2LOMsVIY4d4yN8Fz09v8fU0bSVXUshisS0PlHW0Y+ZT00dE3w483xjhSh8dIUo5vmSSd4Li8DwFzZrlwlFCi9u+aHIpurZQjcUiIwo6En3Yx0Fvh7UowLqH2l9JCVAuYmJaxRFtD912fwZ0m42UTpI8BkwE1B8lD1L+4wQVnVLOsaJIsBndNZG/Xdq297oc/bjAioUbswc4ull0Za/ZVQPexiN+egYPjNO8DO9eMczIQofOCGKO74/8thqIMD3gRhb5freTTRBAkH02BAtta+5VUJnwgp3qm7pgQWuXjAvyXFO1Vd5+CaeeYawxSfbPWRZ2tE+5VpP9+43ySCOgBBFHBH5LgjcF4FbL2pfD/NzT8Mls0mDiWkgdy5SaxVbqH16SOl85xo98IOGDO17Lbz4wNVas+yEKNasw6W5XwEBWiPpcQlVf/MeWj+rjQbf14DWHTp/OKE+VJtdbY/b9r9Ca+dahA5LjswOn2uRknkCAkIUCaDIJUHgXgjw0FDm//Cdt3YetY/MaH+vgszD2sT0cPxjMv+GZ6varm8I6Z2KFqK4E2zykCCQgcDNEN3DBqo7Zqn44qsamrRs9YoJ8gwU5NYKISBEsUKdKU0RBAQBQWAeCAhRzANVyVMQEAQEgRVCQIhihTpTmiIICAKCwDwQEKKYB6qSpyAgCAgCK4SAEMUKdaY0Zc4I0Cq8R81wV7YWOmof7Kxir2kdo1b4TAPNo+7EPZuzsoO/l3ZH78zXoBDcseXo4zl4GJ6pdZjSVhCOPyPfBQGDgBCFwULOBIEUBDwMDst6q1S+RhFtQdu9SnrMhXNQTHxm2v0j4rm6500U+bIgKvR20uQ9PSmPlthIXoojXpZ8FwQ4AkIUHA05FwQSEKD9IGwllO08yq8bqPEJdLQvc+Q5D/09tlIs7X/9ooLqqyLy2xu4C1FEFxqkdZGKqOxWUHyWw0YmUdAqs2zHOiGKSE/Jl+kQEKKYDidJtbYI0BISNBKnD98aljYBUgLYRv3cAERCfSsklsRd4sYWvTPPJp55fdSfhHWwC2jEFi1ERn56ZrMiOiGKRIjlYjYCQhTZ+MjdFURAz/alvRBiy1nDc4M9EvQ9tnKpVUOPCWW+EqpZMpxvDvQwS2K7x2Zb0Zm0kesuKv7WpnzpcjE9reArPfcmCVHMHWIpYNEQiJiSntTR17OlOSmYneyGh2oTHr7wHtMo+E52bhcVNXrfDTffUeQTJ6WpgOEajdp3Qq1KqyuekJMxOeXedNB6obQiIYoEsOTSBASEKCYAJLdXEQESvspsZLYX9U5r2hcR3SRoiLay84c+YW2crQAAE8VJREFUiqrag8HOo37GBDZb56l46MQc2jY2f9/CYCbCYFueft+CE3No24/LaF2y8sPu4gsFOh4nQCGKVXyj590mIYp5Iyz5LyYC2ixjwSKt4oZtYbpdhxOXvdcOGt+pUbk65lA9iW4qwbdN3Xpi9rqOREolbF2aChLfg/vJlvZ98Pwsu4TOF5ODcXyrrVOFKAw6cnYXBIQo7oKaPLMSCJBQV9FMxZfqPIfGRbR53kUDBd/Wb8F6lEN5t4bK843QwW1hY6eDYfgI91tYtJz4qdp4u4ua3gaV724XLWvsG99hzbKQ2+vBJT/JbXQP7q23YdzVVRul0C9ROtK1QltMT2PQyoXpERCimB4rSblyCAyZAA20hK39aKArIhFHVXTZCuGDn5XvwkL5OLgRIQrlowhxG/5S1OQytVM6QhTKRxFmeNVGUflDKETWc1APyWjzR9qCVDnmB2h9r7SgGrr+9bjKtHKdKw16QASEKB4QzAfN6nM3nM3b1aPVu+Y/+lBF/hkted2MxfsD+NxG+Vke5d0GmqdRM8pdy1ua5276WrBqU058TsR5XWsd1l4/2jQuqJU5ifkoxtKf1mYnCjAfRTy09baHGieKCKkoYkg7iq8i2pnyLQsBIYosdL7lPS1w2A96SkEQH62aUS7Ly2+ba5y6dgXd62/Z4K9dtof+a+VDKKDyg9EOCu+UyQaA7gcLVkxDwOcW8lxQUxN41NNOB0wBwfBdXhNF9eO0I3rqIyXsy+jwPuLlU92mfD8CUoy/C18bfylvmRAQoljU3tICiv2gpxQE0xJFJExUCbz4MXPW76KCN7le3iezf7VNQpabmKwi2mpZjusOyhqTIppqXaVbFglFvoODQVioh95PKqJqC5X3Q3//bPeiFfoOLFg8nHZyVcGjsbZedTAkjrl20FKRWJaN2mkW8YgzewqYJUkGAkIUGeB8i1vaTLStnKUbyPlmoyq658YmXf5ZLfKmjh3UngUjT0UU7mVwr/NajWTLaJ720DsfwdNOTzVaTTmuIlHc9FBVzmkihTBiKDKL+UVbm/x0qKkmjBhW8b2qM7HdQPl4VhNflJS0mSysDznTs3MUovgWv+VVKlOIYsF605iJYsKIBNqZIQqaCeyehauSviU/hhEGiij6e/E8wu/PSijpCBwLhQPHzEZ2XQyPzEzg6HyCBQPrTtVhE+UsC1HntYOGxsVG6b0Rv6PTBkqPlaagcN1AYbedPC/iqoMqi4wi4W4/LqHxiRujZmjA7RCd3UJ0kUF7E6X9fsS8lZyjeTdkUcBkhORqNgJCFNn4fPW7Wvi/UjbzAir7DTT2W+hfRIlCk4o/6jfCYCJRjI2MzSzkSCho0nwCQsRf6roH50uWueOrQ/d1CrxRkUSub1KaWKhO/0BY3apZ2S48tpzIxHpIAkHgHggIUdwDvLk+OsFHQRqF8zZ0xqYQRVA/lzlDQ3+HbxrJoXbSNzOOLZofUEZOkch2JXX5bDOreXzOwVwxkcwFAUHgmyAgRPFNYM8oVI1AT1QopYp7d32/goqbJ6LQpqUsoog4Y2vQAZ5eOMK97qL6N8qUoo6lxGUhglqzGcwTnagZ7ZRbgoAgsDQICFEsWFdp4a9G9uxYP4qannRaP2xz3PRETTML2gUkYH9XR+e0g9brCoraYa4IInZ8lEN+p4rGCQsXpUyvumjuN9A8lt3S7vX6qEGBnhhnzFquTIq7F7Ty8MMiIETxsHjeOzct/BlBqCiXKFEYYrDf0Gxi8135KCKzihPyU/luPK+geTKAe+PCOa6jHCOQ6WP+7938tcogq6/9vlnFiLO16uHVaawQxaL1ZTjKHLwLl3ugmPtwxEkhrcb05KARbmYTEMM4UfAlIwJSyCG3bSH3oozCdyXU3/XgXI0iEU/BSNbF6LKPztsaSt+VIwvOLRpcUh9BQBCYPwJCFPPH+E4laEc1LWOtQirZhDuuXWxs55E/6Oh1i5RG0X9NpqQtlHfUGkO0Sqrrh1PqiKkMTYPIReV1p0bIQ4KAILASCAhRLGQ30qYz3F+QC8jC7aPlh8o20Nozcx18bWGvh9F5MMFOha36ZPCijf4RI4qwvUIUC9nxUilBYCEREKJYxG7xeqiGI/2NR2qGtpnrgJs+amoPZaURhAvWOT/T7OtREON/1vSXzDakYJYDMddMVJUyO7luVy82l6RReBdNfyHB4u79FyxcRPilToKAIBBFQIgiisdCfDN7JNO+BWr5hhxqH13gZsDW+CmguhtqCz5R0KzjUBNhK50aUkgiCnPNNN6sWDpOFMY3QppM5cMdZxqbwuRMEBAEFhwBIYpF6yCuLTxpBMuC3zjofhrB/bWN6lO1jIQN2phmqMxKr2mGxBCt2HpP1LxsolBrSdEy5OqT00tFjBOFB+dNLlgFNbaz2qJBKfURBASBh0FAiOJhcHywXIbv1NIdFgqHav6Ch/5e3uyL4O901vfNS4YEuE8juoOaSWO0B3ONPzd+Pk4UQVM9isR6oFUpHgw8yUgQEATmgoAQxVxgvU+mQ3R/yAX7OHNBrFck3UD5cGDWGdLXjZC3n0Y3KDKkkEQUai0pWk9KfSoohL6PNKK4TwvlWUFAEFguBIQoFrK/hhhccpYIKulddNEzC5qamrOF4sghHX9SLzS4b5zP3hcHPVpy/DRpdrWLgX9vTRf+M8jKmSAgCAAQopDXQBAQBAQBQSATASGKTHjkpiAgCAgCgoAQhbwDgoAgIAgIApkICFFkwiM3BQFBQBAQBIQo5B0QBAQBQUAQyERAiCITHrkpCHxdBPz5KWq14DsVbbZKdZdyosuy1/9OnbbwDwlRLHwXSQXXBwGzVLxlFdH+coeWsxWGrWXcz2LZ63+HLluYR8INyRosjF7VTYhCISFHQeCbI7CcROFdj8/duTOUQhR3hu7OD1476OwV9bI9lmUm5qo8hSgUEnIUBL45AstEFEN0XhWRe2ThQTUXIYqv9xZ+7qL6u83I0kDBBmdCFF+vE6QkQWBmBJaJKMwKw0IUM3f0YjxwVg8W96TlemybEYYQxWJ0kNTimyMw7jT2MLroon3QQuds6O8CqCrpXvbRO26hddyDk7SESpjQux6gf0p5NNE+6aF/OWEJdkp/0kbzsIPeBWU8BVH4ZXTQOmije+pgFF+vJXNE7sG9oqVbOmjtt9A57WNwrVrJjuF2vP5yMLcAbl0MznronQf7nATYmT1LrO9bGCQ54MPnukdNNI+66J06GN6wcpJOk+ofwyneZMTrC4D6rHNI/eBgRG0I//yla07aaB110f88oX/UQ+rojeAQdoT9RbjnS0LZlHzs/fKxCN+vpH7jy/DEMfJcs13xWONV5fxCTbp4Hkl1OqvDflxA5aCLocuIX0xPDFQ5XWMEYgL5vIeaXr49WFzRftqAcxMu0Kg2h/KPOVRPYwLmZoD2j9HVfQMV3oL9tIrOVRxqD84BtwkHZW7sNFB/oRZ3jDuzXfReJ5Rh51H9oFYZBpAkaKn48wY2bZU3P9oovHUi64P198z9+kkfdYWN7xzn2Jl0QXtNnd2PNeSTypvkYI/Vv/+hglwEf8KUtvQ1mEbrO0BrR232FdbvEe377sF5W2CjZrpno3A4MBllnA0/VMfaY79so+1vNxyUUz9TGXCMimh/6qKyHcPKLqBxwaQ+H92zvWQoR7OoZ/bWxN5pzbRvpxMZ7IBthmbZ4xoDIEShek+OgkCIAP8hb2HriQX7cR757aiACXYXDPbriAhZtU+In5vaWCoUBPamv6+Hb7tXAi62b8fofcn8oC0L/p7nsbKjUU+0zHy4B4hlI//7Ghr7NZSVALdy/k6GfnViglYrQL4gsrH5XQU1f5XgKorkX/DruIX6mRFaXPAWnptl7wMTE8dOPa+OIVFcd1DWbc+j/DpYlbi6k8PGLEQRmkP8vnkataXbP/U0ufH6bj3ZgvUoh3w8/aMN2JaNzaf5wK+i6meV0UnSqthvxTuvR8gqqT6EYzJR2LCJMMP3IvIe2TX0FOwPQBS+sNfkXEGXjWe8j1VtZtrad1jr1KkQhUJCjoJAiEBU2G29Dvb2oJvOmy39g7Isvv1sD1X9IyyiHWoJZjdCCzTCHGozh8uEuwVbjxL5DoFbqDHtZPgLJxAzOsdFQwsqXlfcmDppwZlGFF8GcOIC8bKJfCgw7TdGeHDBSxjUToa+SWP0hUc3McESF/5M6Jk9VULoNT4pLyOvv2Wj9IvRlrwzLrCNIIzU90Ub6onRe76vfLDRV1DqEK3nitws1D6l1MW/7KKzY9IW9R4xQLQ+aUQRey9uB2iysvUOkQwzS78rQb2m1SgotbNv3t/qR8VCQH9PbXiWR+tzUntZf4rpKQkgubZ+CHCiiG7yBP6D/d4IHYBtM6tHjy66r5QQieVDoEZG1vVgt8KLBrbUaDYuYMFJxBCF81b9+DdRP2X2aneA1vdh+c9agYDkgnYsf4Ds+cOLHnrkG9k3+45YLztQ2gcXvMmjT2ocEyzxcs7rRmMi09hhf7JvQr2EvP4RzY0S8H4zgpnXVwteSs7zsmqgPSDV3/BdXg8IMvdccbuoqP4aM9nw/jf1idZz/L1wP1R02ZoU+Ht3D6KgQYV6vxIHJ8/D90QBoY+sP4UoNCpystYIcIFjBLIPScYPlgukwMyQkY+fWcKPLyP/qIAx9eLlKt/H+DG0O3PhyAX4VQfV51HTWiQPlpaXlz7aZm1jzwavVcwc5wtaMpk10Y9rNfH3MK3+YTpeN2XqSbrmJ8/Ia+pRekYeVEZy2RPei6R3IOla2Oap6+qnN9sha18EI490UmT9KUQRIi+HNUcg44ec8YMdFwoZ+fgIJ/z4MvKnPc/bSkNgM7NNuYGN3extrvY4p2O4q2GSYPP6qD8JNY9HRTSOKSJrBNftoaZGy0zYm/L4KDn+yrC2sWdNKheD4zpKj5XJIyx/uw7HWERMcnWWVH91L1GrSxPWMY0iVsephW9mfdLKzn4vuL/gwTUKAMND5VcKtBmjPWX5Y1h/ClHoN05O1hqBjB9yhiAfF6DcHGWjdhqTgJ9b2geg5xpws0zcDMBNVYwojOnJArc7J3ZhkmBjbYo8n5Q2dZQcL40JFmX2iicJv3tfeqhru7yN+nlKQrrM6zRmeko2zY33S5g/z+uuRDHqoKTIlDuf/SJ4fTip8vdr3PTE/Qh6hM/6yHrVjUQsJabPgBCfW3or4/y7Htoqkm7XBACMP876U4hiHB65so4I8B+yMfH4SPAfbMxWnCSQIiGJ2zV0rwKy8K4dtF6a0XT5OAxB8Xqoaae4jdI7By45eGPpI1FPzHRgURnKmUAVpvj8k47ZIjdJOLI2FX4Ow0FvR+j+pCKporOrk9o5/pZwwVJE67MHeF4QifS5j25sDokJEjBEQSGnhUc2Nn/XhKPCXXn9LQu5n7rBXBEvVl9Gsqn15XlNRRQUtlzCpr2Bwq7aNjjq+E6tj/ZbEVL8/bLg99kXei88jE5qOjDBsgrGscwJiYIowiAH96KFkn5feHhsUl1VL7HyXxRRDE1/YwMZldw/8v4cD5+VJTwiYMmX9UCA/ZDYyN1vOxOq2iwQgpIskHjoamheUSPQ8OhHQzFgh0c8uok9Y+eQUyaiSL0mlcHILkk4RjQVVt52zggtJkiT28ka4J9Go4ECf0dYD4Uhhak+yyPPzU/bjcCpz53hloXS+5D9eP0js4VZvUmQnhvtLbW+PC/WPqp+oumJp7cMocWjm4xvJ4ccmx+hfCZRogjDY2PvBOWRe2sizYAkPKnNNgrPExzvKXVVvcSj8fz6jmlnKqU6ClEoJOQoCIQIPCRRUJYuBkc0OubCjGLn8ygf9CNmhKACajRo0tuPy2hdDoyZIEIUQRnOYXls0pdlbSC30zR2fy5AmHCMTxizn9bQu2bCgaVNFbwhevpw1UVVz+WgtoREkTi5j0bpbQx0bP8IHaVx2aSRhLnG6t+PTXSzH5fQPNeZ+A+l1jeWF1fEEonCc1BXgv9RDT2l5VAPf6xH+/dRAfWPFAKt+pCbmGLv16cYTvYmSgfRSY5+Q65jEz8pYux4iOFRUUdJaVNVRl2DvNhcFstCevRaiHuEuEWjUKjIURCYCwJm6QYz4k0tSC/bMEValokpg89rYAnSTu9YXlp26rquDxOsdE9fd114ifMnwr0nJjV/TvVW9Y8cw7Iy60vt8R9iEUZWCR3NRDGiCJeLV3gk521qMW06ZNbV5PcQZ2J6eggU55bHEN3DDpzQ7h0txsXgtIcefT5F1yaKpgNGNCojE4CKjOEJPrdRfpZHebeB5ql+03kKORcE1huB29D3EkPBPa3pOQs6WMFPk0wUsceX6qsQxSJ3F3Ni5t+p+aZBhYe/GHWUXtLo3WijjJodVylddF+FDle7gu6kGPdotvJNEFgPBPzF80qo+gsxBpMVG7/n625FfSZRHwXzHy0xWkIUC9x5JiyORUdQfa/aYSSDso/y5QnGG5RGFBTPbSc42YyzLhoNM56zXBEE1gAB5ZxP+q3YedQ+Rn0mQhS/4bffvu7HIibL+qzsa8rDKPlKkDd943CzK6jtqhBHti5RCIp7GZimOq9V1EQZTTJV0XLRV+1I2F2EHPgPgjk5VxZraZggkIUArSJ82EB1x0xwLL6qoXnUH1/m3c9nhO6PKm01Gs6cVc4C3xONYkE7x4S38YlcfGkEOwgpjBBHSS9WR80yERlK8wiPz0ooqegOy0LhwDHr2LsuhkdmMbXcm4TojAXFTKolCAgC80Fg0Yni/wNgP2BVp41HTAAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 注: 如果想要运行的更快一些,可以在训练时需要V100的算力\n", + "这里用GPU V100为例\n", + "![image.png](attachment:a7e1763c-1ec0-4dd3-b8b8-c7766ec1daaf.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The train will start from the checkpoint saved in 'checkpoint'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Epoch 0: 100%|██████████| 4375/4375 [26:34<00:00, 2.74it/s, loss=0.25768444]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Checkpoint: 'gpt_imdb_finetune_epoch_0.ckpt' has been saved in epoch: 0.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Evaluate: 100%|██████████| 4375/4375 [07:36<00:00, 9.59it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Evaluate Score: {'Accuracy': 0.9557142857142857}\n", + "---------------Best Model: 'gpt_imdb_finetune_best.ckpt' has been saved in epoch: 0.---------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Epoch 1: 100%|██████████| 4375/4375 [26:22<00:00, 2.76it/s, loss=0.16339678]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Checkpoint: 'gpt_imdb_finetune_epoch_1.ckpt' has been saved in epoch: 1.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Evaluate: 100%|██████████| 4375/4375 [07:17<00:00, 9.99it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Evaluate Score: {'Accuracy': 0.9760571428571428}\n", + "---------------Best Model: 'gpt_imdb_finetune_best.ckpt' has been saved in epoch: 1.---------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Epoch 2: 100%|██████████| 4375/4375 [26:16<00:00, 2.78it/s, loss=0.10065899] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The maximum number of stored checkpoints has been reached.\n", + "Checkpoint: 'gpt_imdb_finetune_epoch_2.ckpt' has been saved in epoch: 2.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Evaluate: 100%|██████████| 4375/4375 [07:14<00:00, 10.07it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Evaluate Score: {'Accuracy': 0.9842857142857143}\n", + "---------------Best Model: 'gpt_imdb_finetune_best.ckpt' has been saved in epoch: 2.---------------\n", + "Loading best model from 'checkpoint' with '['Accuracy']': [0.9842857142857143]...\n", + "---------------The model is already load the best model from 'gpt_imdb_finetune_best.ckpt'.---------------\n" + ] + } + ], + "source": [ + "trainer.run(tgt_columns=\"labels\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Evaluate: 100%|██████████| 6250/6250 [10:06<00:00, 10.31it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Evaluate Score: {'Accuracy': 0.9274}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "# 微调了GPT预训练模型后,最后看看其在此次文本情感识别(文本分类任务)数据集中的测试集上效果\n", + "evaluator = Evaluator(network=model, eval_dataset=dataset_test, metrics=metric)\n", + "evaluator.run(tgt_columns=\"labels\")" + ] + } + ], + "metadata": { + "AIGalleryInfo": { + "item_id": "1325b719-fc78-46c4-8f47-9f3623e9b0f4" + }, + "flavorInfo": { + "architecture": "X86_64", + "category": "GPU" + }, + "imageInfo": { + "id": "e1a07296-22a8-4f05-8bc8-e936c8e54202", + "name": "mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04" + }, + "kernelspec": { + "display_name": "python-3.9.0", + "language": "python", + "name": "python-3.9.0" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.0" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}