Skip to content

Releases: mindsdb/lightwood

Release 1.6.0

01 Nov 23:26
79bf5cc
Compare
Choose a tag to compare

Lightwood 1.6.0 changelog:

Many thanks to our community contributors for this release!
@MichaelLantz @mrandri19 @ongspxm @vaithak

Features:

  • SHAP analysis block (#679, @mrandri19)
  • Disable GlobalFeatureImportance when we have too many columns (#681, @ongspxm; #698)
  • Added cleaner support for file path data types (image, audio, video) (#675)
  • Add partial_fit() to sktime mixer (#689)
  • Add ModeEnsemble (#692, @mrandri19)
  • Add weighted MeanEnsembler (#680, @vaithak)

Bug fixes:

  • Normalized column importance range (#690)
  • Fix ensemble supports_proba in calibrate.py (#694, @mrandri19)
  • Remove self-referential import (#696)
  • Make a integration test for time_aim (#685, @MichaelLantz)
  • Fix for various datasets (#700)

Other

  • Improve logging for analysis blocks (#677; @MichaelLantz)
  • Custom block example: LabelEncoder (#663)
  • Implement ShapleyValues analysis (#679)
  • Move array/TS normalizers to generic helpers (#702)

Release 1.5.0

22 Oct 19:56
5d1c50f
Compare
Choose a tag to compare

Lightwood 1.5.0 changelog:

Many thanks to this month's community contributors!
@alteregoprofile, @LyndonFan, @MichaelLantz, @mrandri19, @ongspxm

Features:

Bug fixes:

Other

  • Rename fit_on_validation to fit_on_all (#626)
  • Smaller test datasets (#631)
  • Docs: add a time series forecasting tutorial (#635)
  • Improved documentation coverage (#654, #660)
  • Docs: doc_build automatically runs jupyter notebooks (#657)

Release 1.4.0

11 Oct 23:18
369cf1f
Compare
Choose a tag to compare

Lightwood 1.4.0 changelog:

Features:

Bug fixes:

  • JsonAI blocks are now Modules (#569)
  • Ignore column drop error if column is not in the dataframe (#579)
  • LightGBM dependency issue (#609)

Other

  • Introduction to statistical analyzer tutorial (#577)
  • Custom cleaner tutorial (#581)
  • Custom mixer tutorial (#575)
  • Custom analysis block tutorial (#576)
  • Docstring for BaseEncoder (#587)
  • Native Jupyter notebook support inside docs (#586)
  • Automated docs deployment (#610)
  • Updated CLA bot (#612)
  • Improved README.md and CONTRIBUTING.md (#613)

Note: benchmarks will not run on the latest commit for this release, they were instead successfully ran for commit 79f27325a0877bb95709373007a97161fc9bb2eb .

Release 1.3.0

07 Oct 19:24
96b5849
Compare
Choose a tag to compare

Lightwood 1.3.0 changelog:

Features:

  • Modular Cleaner (#538 and #568)
  • Modular Analysis (#539)
  • Better Imports (#540)
  • Improved Json AI default arguments (#543)
  • Add seed to splitter (#553)
  • Stratification and 3-way splitting (#542, #571)
  • Use MASE metric for TS model selection (#499)

Bug fixes:

  • Allow quantity as target (#546)
  • Fix for LightGBM device check (#544)
  • Select OneHotEncoder at Json AI build time and fix pd.None bugs (#549)
  • Miscellaneous fixes (#570)

Other

  • Improved CONTRIBUTING.md (#550)

Release v1.2.0

23 Sep 18:35
f0c4859
Compare
Choose a tag to compare

Features:

  • Better defaults for Neural model in time series tasks (#461)
  • Seed keyword passed (#482)
  • Handle ' and " in dataset column names (#503)
  • Helper function to split grouped time series (#501)
  • Enhanced date-time + tag histograms (#502)
  • Nonconformist speed optimizations (#497)
  • Add dtype.tsarray (#530)

Bug fixes:

  • Fix analysis memory usage (#485)
  • Fix incorrect return value for order column in time series tasks (#488)
  • Fix time series encoding issue (#495)
  • Remove deprecated logic (#518)
  • Make explainer work with categorical targets not present in the training data (#500)
  • Fix sktime dependency (#524)
  • Better detection, cleaning and encoding of arrays (#512)
  • Use correct accuracy score for binary data (#532)
  • allow_incomplete_history for time series predictors (#525)

Other

  • Automated documentation (NOTE: still in beta; #519, #528)
  • Rename model to mixer; folds to subsets (#534)