diff --git a/poetry.lock b/poetry.lock index 2a2160e05..c2095fd4f 100644 --- a/poetry.lock +++ b/poetry.lock @@ -4485,50 +4485,47 @@ files = [ [[package]] name = "sktime" -version = "0.35.0" +version = "0.30.0" description = "A unified framework for machine learning with time series" optional = false -python-versions = "<3.14,>=3.9" +python-versions = "<3.13,>=3.9" files = [ - {file = "sktime-0.35.0-py3-none-any.whl", hash = "sha256:7c0aef94e748ad5283caff46a42ec58ecd8fd1f5a5649af54ed1cd66e0b97db7"}, - {file = "sktime-0.35.0.tar.gz", hash = "sha256:eb9864295cdb3663b9bec9f602efb3a6f126f1f4bad25c1bc7839828ec4965ff"}, + {file = "sktime-0.30.0-py3-none-any.whl", hash = "sha256:e6499f50422374b4d43c5bb46d4591139e66c5c15da32e5b5ae955bef8ecd210"}, + {file = "sktime-0.30.0.tar.gz", hash = "sha256:66e532e847aa71345011a3230cc7bc0e0d95f8c61308e197295477347c21cd1b"}, ] [package.dependencies] joblib = ">=1.2.0,<1.5" -numpy = ">=1.21,<2.2" +numpy = ">=1.21,<1.27" packaging = "*" pandas = ">=1.1,<2.3.0" -scikit-base = ">=0.6.1,<0.13.0" +scikit-base = ">=0.6.1,<0.9.0" scikit-learn = ">=0.24,<1.6.0" scipy = ">=1.2,<2.0.0" [package.extras] -alignment = ["dtaidistance (<2.4)", "dtw-python (>=1.3,<1.6)", "numba (>=0.53,<0.61)"] -all-extras = ["arch (>=5.6,<7.1.0)", "autots (>=0.6.1,<0.7)", "cloudpickle", "dash (!=2.9.0)", "dask (<2024.8.1)", "dtaidistance (<2.4)", "dtw-python", "esig (==0.9.7)", "filterpy (>=1.4.5)", "gluonts (>=0.9)", "h5py", "hmmlearn (>=0.2.7)", "holidays", "keras-self-attention", "matplotlib (>=3.3.2,!=3.9.1)", "mne", "numba (>=0.53,<0.61)", "optuna (<4.2)", "pmdarima (>=1.8,!=1.8.1,<3.0.0)", "polars[pandas] (>=0.20,<2.0)", "prophet (>=1.1)", "pycatch22 (<0.4.6)", "pyod (>=0.8)", "pyts (<0.14.0)", "scikit-optimize", "scikit_posthocs (>=0.6.5)", "seaborn (>=0.11)", "seasonal", "skforecast (>=0.12.1,<0.14)", "skpro (>=2,<2.9.0)", "statsforecast (>=1.0.0,<1.8.0)", "statsmodels (>=0.12.1)", "stumpy (>=1.5.1)", "tbats (>=1.1)", "temporian (>=0.7.0,!=0.8.0,<0.9.0)", "tensorflow (>=2,<2.17)", "tsfresh (>=0.17)", "tslearn (>=0.5.2,!=0.6.0,<0.7.0)", "u8darts (>=0.29.0,<0.32.0)", "xarray"] -all-extras-pandas2 = ["arch (>=5.6,<7.1.0)", "autots (>=0.6.1,<0.7)", "cloudpickle", "dash (!=2.9.0)", "dask (<2024.11.3)", "dtaidistance (<2.4)", "dtw-python", "esig (==0.9.7)", "filterpy (>=1.4.5)", "gluonts (>=0.9)", "h5py", "hmmlearn (>=0.2.7)", "holidays", "keras-self-attention", "matplotlib (>=3.3.2,!=3.9.1)", "mne", "numba (>=0.53,<0.61)", "optuna (<4.2)", "pmdarima (>=1.8,!=1.8.1,<3.0.0)", "polars[pandas] (>=0.20,<2.0)", "prophet (>=1.1)", "pycatch22 (<0.4.6)", "pyod (>=0.8)", "scikit_posthocs (>=0.6.5)", "seaborn (>=0.11)", "seasonal", "skforecast (>=0.12.1,<0.14)", "skpro (>=2,<2.9.0)", "statsforecast (>=1.0.0,<1.8.0)", "statsmodels (>=0.12.1)", "stumpy (>=1.5.1)", "tbats (>=1.1)", "temporian (>=0.7.0,!=0.8.0,<0.9.0)", "tensorflow (>=2,<2.17)", "tsbootstrap (>=0.1.0,<0.2)", "tsfresh (>=0.17)", "tslearn (>=0.5.2,!=0.6.0,<0.7.0)", "u8darts (>=0.29.0,<0.32.0)", "xarray"] -annotation = ["hmmlearn (>=0.2.7,<0.4)", "numba (>=0.53,<0.61)", "pyod (>=0.8,<1.2)"] -binder = ["jupyter", "pandas (<2.0.0)", "skchange"] -classification = ["esig (>=0.9.7,<0.10)", "numba (>=0.53,<0.61)", "tensorflow (>=2,<2.17)", "tsfresh (>=0.17,<0.21)"] -clustering = ["numba (>=0.53,<0.61)", "tslearn (>=0.5.2,!=0.6.0,<0.7.0)"] -compatibility-tests = ["catboost"] -cython-extras = ["mrseql (<0.0.3)", "mrsqm", "numba (<0.61)"] -dataframe = ["dask (<2024.11.3)", "dask (<2024.8.1)"] +alignment = ["dtw-python (>=1.3,<1.6)", "numba (>=0.53,<0.60)"] +all-extras = ["arch (>=5.6,<7.1.0)", "cloudpickle", "dash (!=2.9.0)", "dask (<2024.5.3)", "dtw-python", "esig (==0.9.7)", "filterpy (>=1.4.5)", "gluonts (>=0.9)", "h5py", "hmmlearn (>=0.2.7)", "holidays", "keras-self-attention", "matplotlib (>=3.3.2)", "mne", "numba (>=0.53,<0.60)", "pmdarima (>=1.8,!=1.8.1,<3.0.0)", "prophet (>=1.1)", "pycatch22 (<0.4.6)", "pyod (>=0.8)", "pyts (<0.14.0)", "scikit-optimize", "scikit-posthocs (>=0.6.5)", "seaborn (>=0.11)", "seasonal", "skpro (>=2,<2.4.0)", "statsforecast (>=1.0.0,<1.8.0)", "statsmodels (>=0.12.1)", "stumpy (>=1.5.1)", "tbats (>=1.1)", "temporian (>=0.7.0,!=0.8.0,<0.9.0)", "tensorflow (>=2,<2.17)", "tsbootstrap (>=0.1.0,<0.2)", "tsfresh (>=0.17)", "tslearn (>=0.5.2,!=0.6.0,<0.7.0)", "xarray"] +all-extras-pandas2 = ["arch (>=5.6,<7.1.0)", "cloudpickle", "dash (!=2.9.0)", "dask (<2024.5.3)", "dtw-python", "esig (==0.9.7)", "filterpy (>=1.4.5)", "gluonts (>=0.9)", "h5py", "hmmlearn (>=0.2.7)", "holidays", "keras-self-attention", "matplotlib (>=3.3.2)", "mne", "numba (>=0.53,<0.60)", "pmdarima (>=1.8,!=1.8.1,<3.0.0)", "prophet (>=1.1)", "pycatch22 (<0.4.6)", "pyod (>=0.8)", "scikit-posthocs (>=0.6.5)", "seaborn (>=0.11)", "seasonal", "skpro (>=2,<2.4.0)", "statsforecast (>=1.0.0,<1.8.0)", "statsmodels (>=0.12.1)", "stumpy (>=1.5.1)", "tbats (>=1.1)", "temporian (>=0.7.0,!=0.8.0,<0.9.0)", "tensorflow (>=2,<2.17)", "tsbootstrap (>=0.1.0,<0.2)", "tsfresh (>=0.17)", "tslearn (>=0.5.2,!=0.6.0,<0.7.0)", "xarray"] +annotation = ["hmmlearn (>=0.2.7,<0.4)", "numba (>=0.53,<0.60)", "pyod (>=0.8,<1.2)"] +binder = ["jupyter", "pandas (<2.0.0)"] +classification = ["esig (>=0.9.7,<0.10)", "numba (>=0.53,<0.60)", "tensorflow (>=2,<2.17)", "tsfresh (>=0.17,<0.21)"] +clustering = ["numba (>=0.53,<0.60)", "tslearn (>=0.5.2,!=0.6.0,<0.7.0)"] +cython-extras = ["mrseql", "mrsqm", "numba (<0.60)"] +dataframe = ["dask (<2024.5.3)", "dask (<2024.5.3)"] datasets = ["rdata", "requests"] -detection = ["hmmlearn (>=0.2.7,<0.4)", "numba (>=0.53,<0.61)", "pyod (>=0.8,<1.2)"] -dev = ["backoff", "httpx", "pre-commit", "pytest", "pytest-randomly", "pytest-timeout", "pytest-xdist", "wheel"] -dl = ["FrEIA", "einops (>0.7.0)", "gluonts (>=0.14.3)", "huggingface-hub (>=0.23.0)", "hydra-core", "lightning (>=2.0)", "neuralforecast (>=1.6.4,<1.8.0)", "peft (>=0.10.0,<0.14.0)", "pykan (>=0.2.1,<0.2.7)", "pytorch-forecasting (>=1.0.0,<1.2.0)", "tensorflow (>=2,<2.17)", "torch", "transformers[torch] (<4.41.0)"] -docs = ["Sphinx (!=7.2.0,<9.0.0)", "jupyter", "myst-parser", "nbsphinx (>=0.8.6)", "numpydoc", "pydata-sphinx-theme", "sphinx-copybutton", "sphinx-design (<0.7.0)", "sphinx-gallery (<0.19.0)", "sphinx-issues (<6.0.0)", "tabulate"] -forecasting = ["arch (>=5.6,<7.1)", "autots (>=0.6.1,<0.7)", "pmdarima (>=1.8,!=1.8.1,<2.1)", "prophet (>=1.1,<1.2)", "skforecast (>=0.12.1,<0.14)", "skpro (>=2,<2.9.0)", "statsforecast (>=1.0.0,<1.8.0)", "statsmodels (>=0.12.1,<0.15)", "tbats (>=1.1,<1.2)"] +dev = ["backoff", "httpx", "pre-commit", "pytest", "pytest-cov", "pytest-randomly", "pytest-timeout", "pytest-xdist", "wheel"] +dl = ["FrEIA", "neuralforecast (>=1.6.4,<1.8.0)", "pykan", "tensorflow (>=2,<2.17)", "torch", "transformers[torch] (<4.41.0)"] +docs = ["Sphinx (!=7.2.0,<8.0.0)", "jupyter", "myst-parser", "nbsphinx (>=0.8.6)", "numpydoc", "pydata-sphinx-theme", "sphinx-copybutton", "sphinx-design (<0.7.0)", "sphinx-gallery (<0.17.0)", "sphinx-issues (<5.0.0)", "tabulate"] +forecasting = ["arch (>=5.6,<7.1)", "pmdarima (>=1.8,!=1.8.1,<2.1)", "prophet (>=1.1,<1.2)", "skpro (>=2,<2.4.0)", "statsforecast (>=1.0.0,<1.8.0)", "statsmodels (>=0.12.1,<0.15)", "tbats (>=1.1,<1.2)"] mlflow = ["mlflow"] mlflow-tests = ["boto3", "botocore", "mlflow", "moto"] networks = ["keras-self-attention (>=0.51,<0.52)", "tensorflow (>=2,<2.17)"] -numpy1 = ["numpy (<2.0.0)"] pandas1 = ["pandas (<2.0.0)"] param-est = ["seasonal (>=0.3.1,<0.4)", "statsmodels (>=0.12.1,<0.15)"] -regression = ["numba (>=0.53,<0.61)", "tensorflow (>=2,<2.17)"] -tests = ["pytest (>=7.4,<8.4)", "pytest-randomly (>=3.15,<3.17)", "pytest-timeout (>=2.1,<2.4)", "pytest-xdist (>=3.3,<3.7)"] -transformations = ["esig (>=0.9.7,<0.10)", "filterpy (>=1.4.5,<1.5)", "holidays (>=0.29,<0.59)", "mne (>=1.5,<1.9)", "numba (>=0.53,<0.61)", "pycatch22 (>=0.4,<0.4.6)", "statsmodels (>=0.12.1,<0.15)", "stumpy (>=1.5.1,<1.13)", "temporian (>=0.7.0,!=0.8.0,<0.9.0)", "tsfresh (>=0.17,<0.21)"] +regression = ["numba (>=0.53,<0.60)", "tensorflow (>=2,<2.17)"] +tests = ["pytest (>=7.4,<8.3)", "pytest-cov (>=4.1,<5.1)", "pytest-randomly (>=3.15,<3.16)", "pytest-timeout (>=2.1,<2.4)", "pytest-xdist (>=3.3,<3.7)"] +transformations = ["esig (>=0.9.7,<0.10)", "filterpy (>=1.4.5,<1.5)", "holidays (>=0.29,<0.51)", "mne (>=1.5,<1.8)", "numba (>=0.53,<0.60)", "pycatch22 (>=0.4,<0.4.6)", "statsmodels (>=0.12.1,<0.15)", "stumpy (>=1.5.1,<1.13)", "temporian (>=0.7.0,!=0.8.0,<0.9.0)", "tsbootstrap (>=0.1.0,<0.2)", "tsfresh (>=0.17,<0.21)"] [[package]] name = "slicer" @@ -5717,4 +5714,4 @@ xai = ["pyod", "shap", "suod"] [metadata] lock-version = "2.0" python-versions = ">=3.9,<3.12" -content-hash = "f4b24e5c915a6df01ec248d4d600a82aa7583f69f828428097a6ca635c8d49fb" +content-hash = "917f58e35cf0f2680c77ba64a7eebd040059d5f8f654f3ee3393ce7611631caf" diff --git a/pyproject.toml b/pyproject.toml index 5726301df..17ac63bcf 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -27,7 +27,7 @@ psutil = ">=5.7.0" scikit-learn = "==1.5.2" dataclasses_json = ">=0.5.4" dill = "==0.3.6" -sktime = "==0.35.0" +sktime = "==0.30.0" statsforecast = "~=1.6.0" torch_optimizer = "==0.1.0" black = "==24.3.0"