From 010b47b62c4dd4e2ff52d5df80185f114c50bda8 Mon Sep 17 00:00:00 2001 From: paxcema Date: Wed, 15 May 2024 12:40:09 +0000 Subject: [PATCH] Rebuilt the docs --- .../custom_cleaner/custom_cleaner.ipynb.txt | 136 +- .../custom_encoder_rulebased.ipynb.txt | 178 +-- .../custom_explainer.ipynb.txt | 1384 ++++++++--------- .../custom_mixer/custom_mixer.ipynb.txt | 262 ++-- .../custom_splitter/custom_splitter.ipynb.txt | 228 +-- .../tutorial_data_analysis.ipynb.txt | 144 +- .../tutorial_time_series.ipynb.txt | 439 +++--- .../tutorial_update_models.ipynb.txt | 320 ++-- searchindex.js | 2 +- tutorials/custom_cleaner/custom_cleaner.html | 56 +- tutorials/custom_cleaner/custom_cleaner.ipynb | 136 +- .../custom_encoder_rulebased.html | 90 +- .../custom_encoder_rulebased.ipynb | 178 +-- .../custom_explainer/custom_explainer.html | 1304 ++++++++-------- .../custom_explainer/custom_explainer.ipynb | 1384 ++++++++--------- tutorials/custom_mixer/custom_mixer.html | 214 +-- tutorials/custom_mixer/custom_mixer.ipynb | 262 ++-- .../custom_splitter/custom_splitter.html | 148 +- .../custom_splitter/custom_splitter.ipynb | 228 +-- .../tutorial_data_analysis.html | 40 +- .../tutorial_data_analysis.ipynb | 144 +- .../tutorial_time_series.html | 264 ++-- .../tutorial_time_series.ipynb | 439 +++--- .../tutorial_update_models.html | 264 ++-- .../tutorial_update_models.ipynb | 320 ++-- 25 files changed, 4227 insertions(+), 4337 deletions(-) diff --git a/_sources/tutorials/custom_cleaner/custom_cleaner.ipynb.txt b/_sources/tutorials/custom_cleaner/custom_cleaner.ipynb.txt index 72ccb0439..e2d0321af 100644 --- a/_sources/tutorials/custom_cleaner/custom_cleaner.ipynb.txt +++ b/_sources/tutorials/custom_cleaner/custom_cleaner.ipynb.txt @@ -31,10 +31,10 @@ "id": "happy-wheat", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:38.314866Z", - "iopub.status.busy": "2024-05-15T12:31:38.314666Z", - "iopub.status.idle": "2024-05-15T12:31:41.066114Z", - "shell.execute_reply": "2024-05-15T12:31:41.065470Z" + "iopub.execute_input": "2024-05-15T12:38:44.614888Z", + "iopub.status.busy": "2024-05-15T12:38:44.614690Z", + "iopub.status.idle": "2024-05-15T12:38:47.421978Z", + "shell.execute_reply": "2024-05-15T12:38:47.421222Z" } }, "outputs": [ @@ -42,14 +42,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2845:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2730:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2845:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2730:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] } ], @@ -87,10 +87,10 @@ "id": "recognized-parish", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:41.069559Z", - "iopub.status.busy": "2024-05-15T12:31:41.068848Z", - "iopub.status.idle": "2024-05-15T12:31:42.003247Z", - "shell.execute_reply": "2024-05-15T12:31:42.002523Z" + "iopub.execute_input": "2024-05-15T12:38:47.425324Z", + "iopub.status.busy": "2024-05-15T12:38:47.424967Z", + "iopub.status.idle": "2024-05-15T12:38:48.351359Z", + "shell.execute_reply": "2024-05-15T12:38:48.350712Z" } }, "outputs": [ @@ -221,10 +221,10 @@ "id": "chicken-truth", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:42.006058Z", - "iopub.status.busy": "2024-05-15T12:31:42.005722Z", - "iopub.status.idle": "2024-05-15T12:31:57.532124Z", - "shell.execute_reply": "2024-05-15T12:31:57.531480Z" + "iopub.execute_input": "2024-05-15T12:38:48.353933Z", + "iopub.status.busy": "2024-05-15T12:38:48.353724Z", + "iopub.status.idle": "2024-05-15T12:39:03.836779Z", + "shell.execute_reply": "2024-05-15T12:39:03.836183Z" } }, "outputs": [ @@ -232,98 +232,98 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2845:Dropping features: ['url_legal', 'license', 'standard_error']\u001b[0m\n" + "\u001b[32mINFO:lightwood-2730:Dropping features: ['url_legal', 'license', 'standard_error']\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Analyzing a sample of 2478\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Analyzing a sample of 2478\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:from a total population of 2834, this is equivalent to 87.4% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:from a total population of 2834, this is equivalent to 87.4% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Infering type for: id\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Infering type for: id\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Doing text detection for column: id\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Doing text detection for column: id\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Column id has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Column id has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Infering type for: excerpt\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Infering type for: excerpt\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Doing text detection for column: excerpt\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Doing text detection for column: excerpt\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Infering type for: target\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Infering type for: target\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Column target has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Column target has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:type_infer-2845:Column id is an identifier of type \"Hash-like identifier\"\u001b[0m\n" + "\u001b[33mWARNING:type_infer-2730:Column id is an identifier of type \"Hash-like identifier\"\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Dropping features: ['id']\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Dropping features: ['id']\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Finished statistical analysis\u001b[0m\n" ] } ], @@ -360,10 +360,10 @@ "id": "designed-condition", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:57.535376Z", - "iopub.status.busy": "2024-05-15T12:31:57.534790Z", - "iopub.status.idle": "2024-05-15T12:31:57.539994Z", - "shell.execute_reply": "2024-05-15T12:31:57.539305Z" + "iopub.execute_input": "2024-05-15T12:39:03.839556Z", + "iopub.status.busy": "2024-05-15T12:39:03.839259Z", + "iopub.status.idle": "2024-05-15T12:39:03.843934Z", + "shell.execute_reply": "2024-05-15T12:39:03.843268Z" } }, "outputs": [ @@ -434,7 +434,7 @@ " \"unbias_target\": true,\n", " \"seconds_per_mixer\": 21384.0,\n", " \"seconds_per_encoder\": 85536.0,\n", - " \"expected_additional_time\": 15.485530853271484,\n", + " \"expected_additional_time\": 15.443372249603271,\n", " \"time_aim\": 259200,\n", " \"target_weights\": null,\n", " \"positive_domain\": false,\n", @@ -518,10 +518,10 @@ "id": "325d8f1b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:57.542555Z", - "iopub.status.busy": "2024-05-15T12:31:57.542241Z", - "iopub.status.idle": "2024-05-15T12:31:57.547712Z", - "shell.execute_reply": "2024-05-15T12:31:57.547064Z" + "iopub.execute_input": "2024-05-15T12:39:03.846644Z", + "iopub.status.busy": "2024-05-15T12:39:03.846253Z", + "iopub.status.idle": "2024-05-15T12:39:03.851463Z", + "shell.execute_reply": "2024-05-15T12:39:03.850848Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "id": "f030f8ca", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:57.550277Z", - "iopub.status.busy": "2024-05-15T12:31:57.549912Z", - "iopub.status.idle": "2024-05-15T12:31:57.553192Z", - "shell.execute_reply": "2024-05-15T12:31:57.552629Z" + "iopub.execute_input": "2024-05-15T12:39:03.853851Z", + "iopub.status.busy": "2024-05-15T12:39:03.853511Z", + "iopub.status.idle": "2024-05-15T12:39:03.856756Z", + "shell.execute_reply": "2024-05-15T12:39:03.856216Z" } }, "outputs": [], @@ -711,10 +711,10 @@ "id": "floating-patent", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:57.555666Z", - "iopub.status.busy": "2024-05-15T12:31:57.555289Z", - "iopub.status.idle": "2024-05-15T12:31:57.904645Z", - "shell.execute_reply": "2024-05-15T12:31:57.903931Z" + "iopub.execute_input": "2024-05-15T12:39:03.859167Z", + "iopub.status.busy": "2024-05-15T12:39:03.858968Z", + "iopub.status.idle": "2024-05-15T12:39:04.214810Z", + "shell.execute_reply": "2024-05-15T12:39:04.214113Z" } }, "outputs": [ @@ -795,7 +795,7 @@ " \"unbias_target\": True,\n", " \"seconds_per_mixer\": 21384.0,\n", " \"seconds_per_encoder\": 85536.0,\n", - " \"expected_additional_time\": 15.485530853271484,\n", + " \"expected_additional_time\": 15.443372249603271,\n", " \"time_aim\": 259200,\n", " \"target_weights\": None,\n", " \"positive_domain\": False,\n", @@ -1452,10 +1452,10 @@ "id": "violent-guard", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:57.907458Z", - "iopub.status.busy": "2024-05-15T12:31:57.907076Z", - "iopub.status.idle": "2024-05-15T12:31:57.915206Z", - "shell.execute_reply": "2024-05-15T12:31:57.914714Z" + "iopub.execute_input": "2024-05-15T12:39:04.217801Z", + "iopub.status.busy": "2024-05-15T12:39:04.217334Z", + "iopub.status.idle": "2024-05-15T12:39:04.225997Z", + "shell.execute_reply": "2024-05-15T12:39:04.225444Z" } }, "outputs": [], @@ -1470,10 +1470,10 @@ "id": "closing-episode", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:57.917761Z", - "iopub.status.busy": "2024-05-15T12:31:57.917396Z", - "iopub.status.idle": "2024-05-15T12:31:58.052073Z", - "shell.execute_reply": "2024-05-15T12:31:58.051450Z" + "iopub.execute_input": "2024-05-15T12:39:04.228433Z", + "iopub.status.busy": "2024-05-15T12:39:04.228041Z", + "iopub.status.idle": "2024-05-15T12:39:04.362314Z", + "shell.execute_reply": "2024-05-15T12:39:04.361709Z" }, "scrolled": false }, @@ -1482,70 +1482,70 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Dropping features: ['id']\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Dropping features: ['id']\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Finished statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2845: `analyze_data` runtime: 0.05 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2730: `analyze_data` runtime: 0.05 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Dropping features: ['id']\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Dropping features: ['id']\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2845:Cleaning column =excerpt\u001b[0m\n" + "\u001b[32mINFO:lightwood-2730:Cleaning column =excerpt\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2845:Cleaning column =target\u001b[0m\n" + "\u001b[32mINFO:lightwood-2730:Cleaning column =target\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2845:Converted target into strictly non-negative\u001b[0m\n" + "\u001b[32mINFO:lightwood-2730:Converted target into strictly non-negative\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2845: `preprocess` runtime: 0.08 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2730: `preprocess` runtime: 0.07 seconds\u001b[0m\n" ] }, { @@ -1635,10 +1635,10 @@ "id": "major-stake", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:58.054538Z", - "iopub.status.busy": "2024-05-15T12:31:58.054334Z", - "iopub.status.idle": "2024-05-15T12:31:58.059138Z", - "shell.execute_reply": "2024-05-15T12:31:58.058503Z" + "iopub.execute_input": "2024-05-15T12:39:04.364948Z", + "iopub.status.busy": "2024-05-15T12:39:04.364536Z", + "iopub.status.idle": "2024-05-15T12:39:04.369332Z", + "shell.execute_reply": "2024-05-15T12:39:04.368673Z" } }, "outputs": [ diff --git a/_sources/tutorials/custom_encoder_rulebased/custom_encoder_rulebased.ipynb.txt b/_sources/tutorials/custom_encoder_rulebased/custom_encoder_rulebased.ipynb.txt index b8c1aa4b9..8fb88c2df 100644 --- a/_sources/tutorials/custom_encoder_rulebased/custom_encoder_rulebased.ipynb.txt +++ b/_sources/tutorials/custom_encoder_rulebased/custom_encoder_rulebased.ipynb.txt @@ -43,10 +43,10 @@ "id": "raising-adventure", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:59.516740Z", - "iopub.status.busy": "2024-05-15T12:30:59.516542Z", - "iopub.status.idle": "2024-05-15T12:31:02.311138Z", - "shell.execute_reply": "2024-05-15T12:31:02.310397Z" + "iopub.execute_input": "2024-05-15T12:38:05.532387Z", + "iopub.status.busy": "2024-05-15T12:38:05.531820Z", + "iopub.status.idle": "2024-05-15T12:38:08.368195Z", + "shell.execute_reply": "2024-05-15T12:38:08.367522Z" } }, "outputs": [ @@ -54,14 +54,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2555:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2443:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2555:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2443:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] } ], @@ -93,10 +93,10 @@ "id": "technical-government", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:02.314599Z", - "iopub.status.busy": "2024-05-15T12:31:02.314113Z", - "iopub.status.idle": "2024-05-15T12:31:02.537991Z", - "shell.execute_reply": "2024-05-15T12:31:02.537249Z" + "iopub.execute_input": "2024-05-15T12:38:08.371594Z", + "iopub.status.busy": "2024-05-15T12:38:08.371079Z", + "iopub.status.idle": "2024-05-15T12:38:08.597223Z", + "shell.execute_reply": "2024-05-15T12:38:08.596542Z" } }, "outputs": [ @@ -243,10 +243,10 @@ "id": "absent-maker", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:02.540787Z", - "iopub.status.busy": "2024-05-15T12:31:02.540376Z", - "iopub.status.idle": "2024-05-15T12:31:13.435988Z", - "shell.execute_reply": "2024-05-15T12:31:13.435371Z" + "iopub.execute_input": "2024-05-15T12:38:08.600162Z", + "iopub.status.busy": "2024-05-15T12:38:08.599740Z", + "iopub.status.idle": "2024-05-15T12:38:19.532578Z", + "shell.execute_reply": "2024-05-15T12:38:19.531845Z" } }, "outputs": [ @@ -254,161 +254,161 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Analyzing a sample of 6920\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Analyzing a sample of 6920\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:from a total population of 10668, this is equivalent to 64.9% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:from a total population of 10668, this is equivalent to 64.9% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Using 3 processes to deduct types.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Using 3 processes to deduct types.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: year\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: year\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: price\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: price\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column year has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column year has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column price has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column price has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: transmission\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: transmission\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: mileage\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: mileage\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: model\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column mileage has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column mileage has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: fuelType\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: fuelType\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: model\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column transmission has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column fuelType has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: tax\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: tax\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column tax has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column tax has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: mpg\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: mpg\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column mpg has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column mpg has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: engineSize\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: engineSize\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column engineSize has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column engineSize has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column fuelType has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column transmission has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column model has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column model has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2555:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2443:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2555:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2443:Finished statistical analysis\u001b[0m\n" ] } ], @@ -437,10 +437,10 @@ "id": "coastal-paragraph", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:13.439193Z", - "iopub.status.busy": "2024-05-15T12:31:13.438672Z", - "iopub.status.idle": "2024-05-15T12:31:13.444013Z", - "shell.execute_reply": "2024-05-15T12:31:13.443379Z" + "iopub.execute_input": "2024-05-15T12:38:19.535763Z", + "iopub.status.busy": "2024-05-15T12:38:19.535442Z", + "iopub.status.idle": "2024-05-15T12:38:19.540827Z", + "shell.execute_reply": "2024-05-15T12:38:19.540187Z" } }, "outputs": [ @@ -545,7 +545,7 @@ " \"unbias_target\": true,\n", " \"seconds_per_mixer\": 21384.0,\n", " \"seconds_per_encoder\": 85536.0,\n", - " \"expected_additional_time\": 10.851930856704712,\n", + " \"expected_additional_time\": 10.889316082000732,\n", " \"time_aim\": 259200,\n", " \"target_weights\": null,\n", " \"positive_domain\": false,\n", @@ -643,10 +643,10 @@ "id": "e03db1b0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:13.446814Z", - "iopub.status.busy": "2024-05-15T12:31:13.446417Z", - "iopub.status.idle": "2024-05-15T12:31:13.451666Z", - "shell.execute_reply": "2024-05-15T12:31:13.451027Z" + "iopub.execute_input": "2024-05-15T12:38:19.543477Z", + "iopub.status.busy": "2024-05-15T12:38:19.543104Z", + "iopub.status.idle": "2024-05-15T12:38:19.548319Z", + "shell.execute_reply": "2024-05-15T12:38:19.547714Z" } }, "outputs": [ @@ -766,10 +766,10 @@ "id": "e30866c1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:13.454205Z", - "iopub.status.busy": "2024-05-15T12:31:13.453822Z", - "iopub.status.idle": "2024-05-15T12:31:13.457126Z", - "shell.execute_reply": "2024-05-15T12:31:13.456554Z" + "iopub.execute_input": "2024-05-15T12:38:19.550981Z", + "iopub.status.busy": "2024-05-15T12:38:19.550558Z", + "iopub.status.idle": "2024-05-15T12:38:19.553867Z", + "shell.execute_reply": "2024-05-15T12:38:19.553338Z" } }, "outputs": [], @@ -828,10 +828,10 @@ "id": "elementary-fusion", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:13.459498Z", - "iopub.status.busy": "2024-05-15T12:31:13.459299Z", - "iopub.status.idle": "2024-05-15T12:31:13.462500Z", - "shell.execute_reply": "2024-05-15T12:31:13.461960Z" + "iopub.execute_input": "2024-05-15T12:38:19.556355Z", + "iopub.status.busy": "2024-05-15T12:38:19.556042Z", + "iopub.status.idle": "2024-05-15T12:38:19.559139Z", + "shell.execute_reply": "2024-05-15T12:38:19.558517Z" } }, "outputs": [], @@ -857,10 +857,10 @@ "id": "inappropriate-james", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:13.464989Z", - "iopub.status.busy": "2024-05-15T12:31:13.464584Z", - "iopub.status.idle": "2024-05-15T12:31:13.820565Z", - "shell.execute_reply": "2024-05-15T12:31:13.819924Z" + "iopub.execute_input": "2024-05-15T12:38:19.561533Z", + "iopub.status.busy": "2024-05-15T12:38:19.561170Z", + "iopub.status.idle": "2024-05-15T12:38:19.929081Z", + "shell.execute_reply": "2024-05-15T12:38:19.928368Z" } }, "outputs": [], @@ -891,10 +891,10 @@ "id": "palestinian-harvey", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:13.823560Z", - "iopub.status.busy": "2024-05-15T12:31:13.823333Z", - "iopub.status.idle": "2024-05-15T12:31:14.973079Z", - "shell.execute_reply": "2024-05-15T12:31:14.972381Z" + "iopub.execute_input": "2024-05-15T12:38:19.932374Z", + "iopub.status.busy": "2024-05-15T12:38:19.932028Z", + "iopub.status.idle": "2024-05-15T12:38:21.057588Z", + "shell.execute_reply": "2024-05-15T12:38:21.056913Z" } }, "outputs": [ @@ -902,133 +902,133 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2555:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2443:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2555:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2443:Finished statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2555: `analyze_data` runtime: 0.43 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2443: `analyze_data` runtime: 0.42 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2555:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2443:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2555: `preprocess` runtime: 0.13 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2443: `preprocess` runtime: 0.13 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2555:Splitting the data into train/test\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2443:Splitting the data into train/test\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2555: `split` runtime: 0.0 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2443: `split` runtime: 0.0 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2555:Preparing sequentially...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2443:Preparing sequentially...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2555:Preparing encoder for year...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2443:Preparing encoder for year...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2555:Preparing encoder for mileage...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2443:Preparing encoder for mileage...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2555:Preparing encoder for tax...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2443:Preparing encoder for tax...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2555:Preparing encoder for mpg...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2443:Preparing encoder for mpg...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2555:Preparing encoder for engineSize...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2443:Preparing encoder for engineSize...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2555:Categories Detected = 1\u001b[0m\n" + "\u001b[32mINFO:lightwood-2443:Categories Detected = 1\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2555:Categories Detected = 1\u001b[0m\n" + "\u001b[32mINFO:lightwood-2443:Categories Detected = 1\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2555:Categories Detected = 1\u001b[0m\n" + "\u001b[32mINFO:lightwood-2443:Categories Detected = 1\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2555: `prepare` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2443: `prepare` runtime: 0.02 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2555:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2443:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2555: `featurize` runtime: 0.57 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2443: `featurize` runtime: 0.55 seconds\u001b[0m\n" ] } ], @@ -1063,10 +1063,10 @@ "id": "silent-dealing", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:14.975668Z", - "iopub.status.busy": "2024-05-15T12:31:14.975462Z", - "iopub.status.idle": "2024-05-15T12:31:14.984083Z", - "shell.execute_reply": "2024-05-15T12:31:14.983497Z" + "iopub.execute_input": "2024-05-15T12:38:21.060331Z", + "iopub.status.busy": "2024-05-15T12:38:21.059995Z", + "iopub.status.idle": "2024-05-15T12:38:21.068779Z", + "shell.execute_reply": "2024-05-15T12:38:21.068148Z" } }, "outputs": [ @@ -1168,10 +1168,10 @@ "id": "superior-mobility", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:14.986569Z", - "iopub.status.busy": "2024-05-15T12:31:14.986205Z", - "iopub.status.idle": "2024-05-15T12:31:14.989579Z", - "shell.execute_reply": "2024-05-15T12:31:14.988928Z" + "iopub.execute_input": "2024-05-15T12:38:21.071345Z", + "iopub.status.busy": "2024-05-15T12:38:21.070979Z", + "iopub.status.idle": "2024-05-15T12:38:21.074376Z", + "shell.execute_reply": "2024-05-15T12:38:21.073715Z" } }, "outputs": [ diff --git a/_sources/tutorials/custom_explainer/custom_explainer.ipynb.txt b/_sources/tutorials/custom_explainer/custom_explainer.ipynb.txt index 2a591918b..51b9eca01 100644 --- a/_sources/tutorials/custom_explainer/custom_explainer.ipynb.txt +++ b/_sources/tutorials/custom_explainer/custom_explainer.ipynb.txt @@ -30,10 +30,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:18.040567Z", - "iopub.status.busy": "2024-05-15T12:31:18.040367Z", - "iopub.status.idle": "2024-05-15T12:31:20.849208Z", - "shell.execute_reply": "2024-05-15T12:31:20.848432Z" + "iopub.execute_input": "2024-05-15T12:38:24.174629Z", + "iopub.status.busy": "2024-05-15T12:38:24.174420Z", + "iopub.status.idle": "2024-05-15T12:38:27.049213Z", + "shell.execute_reply": "2024-05-15T12:38:27.048475Z" } }, "outputs": [ @@ -41,14 +41,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] }, { @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:20.852043Z", - "iopub.status.busy": "2024-05-15T12:31:20.851597Z", - "iopub.status.idle": "2024-05-15T12:31:20.862285Z", - "shell.execute_reply": "2024-05-15T12:31:20.861787Z" + "iopub.execute_input": "2024-05-15T12:38:27.052314Z", + "iopub.status.busy": "2024-05-15T12:38:27.051670Z", + "iopub.status.idle": "2024-05-15T12:38:27.062358Z", + "shell.execute_reply": "2024-05-15T12:38:27.061815Z" } }, "outputs": [], @@ -116,17 +116,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:20.864582Z", - "iopub.status.busy": "2024-05-15T12:31:20.864386Z", - "iopub.status.idle": "2024-05-15T12:31:20.868451Z", - "shell.execute_reply": "2024-05-15T12:31:20.867794Z" + "iopub.execute_input": "2024-05-15T12:38:27.064834Z", + "iopub.status.busy": "2024-05-15T12:38:27.064464Z", + "iopub.status.idle": "2024-05-15T12:38:27.068750Z", + "shell.execute_reply": "2024-05-15T12:38:27.068172Z" } }, "outputs": [ { "data": { "text/plain": [ - "<__main__.ModelCorrelationHeatmap at 0x7fc16da6f8e0>" + "<__main__.ModelCorrelationHeatmap at 0x7ff43c2f7fd0>" ] }, "execution_count": 3, @@ -152,10 +152,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:20.870934Z", - "iopub.status.busy": "2024-05-15T12:31:20.870625Z", - "iopub.status.idle": "2024-05-15T12:31:20.874327Z", - "shell.execute_reply": "2024-05-15T12:31:20.873715Z" + "iopub.execute_input": "2024-05-15T12:38:27.071262Z", + "iopub.status.busy": "2024-05-15T12:38:27.070912Z", + "iopub.status.idle": "2024-05-15T12:38:27.074715Z", + "shell.execute_reply": "2024-05-15T12:38:27.074047Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:20.876862Z", - "iopub.status.busy": "2024-05-15T12:31:20.876391Z", - "iopub.status.idle": "2024-05-15T12:31:20.880194Z", - "shell.execute_reply": "2024-05-15T12:31:20.879585Z" + "iopub.execute_input": "2024-05-15T12:38:27.077209Z", + "iopub.status.busy": "2024-05-15T12:38:27.076853Z", + "iopub.status.idle": "2024-05-15T12:38:27.080672Z", + "shell.execute_reply": "2024-05-15T12:38:27.080021Z" } }, "outputs": [], @@ -230,10 +230,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:20.882736Z", - "iopub.status.busy": "2024-05-15T12:31:20.882391Z", - "iopub.status.idle": "2024-05-15T12:31:20.886907Z", - "shell.execute_reply": "2024-05-15T12:31:20.886269Z" + "iopub.execute_input": "2024-05-15T12:38:27.083193Z", + "iopub.status.busy": "2024-05-15T12:38:27.082821Z", + "iopub.status.idle": "2024-05-15T12:38:27.087268Z", + "shell.execute_reply": "2024-05-15T12:38:27.086667Z" } }, "outputs": [ @@ -327,10 +327,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:20.889827Z", - "iopub.status.busy": "2024-05-15T12:31:20.889272Z", - "iopub.status.idle": "2024-05-15T12:31:21.057701Z", - "shell.execute_reply": "2024-05-15T12:31:21.057163Z" + "iopub.execute_input": "2024-05-15T12:38:27.089762Z", + "iopub.status.busy": "2024-05-15T12:38:27.089581Z", + "iopub.status.idle": "2024-05-15T12:38:27.268872Z", + "shell.execute_reply": "2024-05-15T12:38:27.268207Z" } }, "outputs": [ @@ -338,126 +338,126 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Analyzing a sample of 222\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Analyzing a sample of 222\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:from a total population of 225, this is equivalent to 98.7% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:from a total population of 225, this is equivalent to 98.7% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Infering type for: Population\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Infering type for: Population\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Column Population has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Column Population has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Infering type for: Area (sq. mi.)\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Infering type for: Area (sq. mi.)\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Column Area (sq. mi.) has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Column Area (sq. mi.) has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Infering type for: Pop. Density \u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Infering type for: Pop. Density \u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Column Pop. Density has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Column Pop. Density has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Infering type for: GDP ($ per capita)\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Infering type for: GDP ($ per capita)\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Column GDP ($ per capita) has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Column GDP ($ per capita) has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Infering type for: Literacy (%)\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Infering type for: Literacy (%)\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Column Literacy (%) has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Column Literacy (%) has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Infering type for: Infant mortality \u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Infering type for: Infant mortality \u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Column Infant mortality has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Column Infant mortality has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Infering type for: Development Index\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Infering type for: Development Index\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Column Development Index has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Column Development Index has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Finished statistical analysis\u001b[0m\n" ] } ], @@ -498,10 +498,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:21.060354Z", - "iopub.status.busy": "2024-05-15T12:31:21.059889Z", - "iopub.status.idle": "2024-05-15T12:31:21.064194Z", - "shell.execute_reply": "2024-05-15T12:31:21.063539Z" + "iopub.execute_input": "2024-05-15T12:38:27.271840Z", + "iopub.status.busy": "2024-05-15T12:38:27.271355Z", + "iopub.status.idle": "2024-05-15T12:38:27.275829Z", + "shell.execute_reply": "2024-05-15T12:38:27.275222Z" } }, "outputs": [ @@ -532,10 +532,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:21.066779Z", - "iopub.status.busy": "2024-05-15T12:31:21.066406Z", - "iopub.status.idle": "2024-05-15T12:31:26.612292Z", - "shell.execute_reply": "2024-05-15T12:31:26.611639Z" + "iopub.execute_input": "2024-05-15T12:38:27.278438Z", + "iopub.status.busy": "2024-05-15T12:38:27.277985Z", + "iopub.status.idle": "2024-05-15T12:38:32.815207Z", + "shell.execute_reply": "2024-05-15T12:38:32.814580Z" }, "scrolled": false }, @@ -544,182 +544,182 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Finished statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `analyze_data` runtime: 0.02 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `analyze_data` runtime: 0.02 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `preprocess` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `preprocess` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 3/8] - Data splitting\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 3/8] - Data splitting\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Splitting the data into train/test\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Splitting the data into train/test\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `split` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `split` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2634:Preparing sequentially...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2523:Preparing sequentially...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2634:Preparing encoder for Population...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2523:Preparing encoder for Population...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2634:Preparing encoder for Area (sq. mi.)...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2523:Preparing encoder for Area (sq. mi.)...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2634:Preparing encoder for Pop. Density ...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2523:Preparing encoder for Pop. Density ...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2634:Preparing encoder for GDP ($ per capita)...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2523:Preparing encoder for GDP ($ per capita)...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2634:Preparing encoder for Literacy (%)...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2523:Preparing encoder for Literacy (%)...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2634:Preparing encoder for Infant mortality ...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2523:Preparing encoder for Infant mortality ...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634:Encoding UNKNOWN categories as index 0\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523:Encoding UNKNOWN categories as index 0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `prepare` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `prepare` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 5/8] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 5/8] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `featurize` runtime: 0.05 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `featurize` runtime: 0.05 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 6/8] - Mixer training\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 6/8] - Mixer training\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Training the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Training the mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2634:XGBoost running on CPU\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2523:XGBoost running on CPU\u001b[0m\n" ] }, { @@ -734,7 +734,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[12:31:21] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n" + "[12:38:27] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n" ] }, { @@ -746,3969 +746,3969 @@ "Consider using one of the following signatures instead:\n", "\taddcmul_(Tensor tensor1, Tensor tensor2, *, Number value) (Triggered internally at ../torch/csrc/utils/python_arg_parser.cpp:1578.)\n", " exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)\n", - "\u001b[32mINFO:lightwood-2634:Loss of 18.69619858264923 with learning rate 0.0001\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 18.69619858264923 with learning rate 0.0001\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss of 16.93891429901123 with learning rate 0.0005\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 16.93891429901123 with learning rate 0.0005\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss of 16.197376608848572 with learning rate 0.001\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 16.197376608848572 with learning rate 0.001\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss of 16.06481909751892 with learning rate 0.002\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 16.06481909751892 with learning rate 0.002\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss of 16.472004413604736 with learning rate 0.003\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 16.472004413604736 with learning rate 0.003\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss of 18.28026556968689 with learning rate 0.005\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 18.28026556968689 with learning rate 0.005\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss of 26.746760368347168 with learning rate 0.01\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 26.746760368347168 with learning rate 0.01\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss of 101.83524441719055 with learning rate 0.05\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 101.83524441719055 with learning rate 0.05\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Found learning rate of: 0.002\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Found learning rate of: 0.002\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 1: 1.319209337234497\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 1: 1.319209337234497\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 2: 1.3220206499099731\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 2: 1.3220206499099731\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 3: 1.3063435554504395\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 3: 1.3063435554504395\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 4: 1.2932535409927368\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 4: 1.2932535409927368\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 5: 1.2823516130447388\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 5: 1.2823516130447388\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 6: 1.2705544233322144\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 6: 1.2705544233322144\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 7: 1.2418551445007324\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 7: 1.2418551445007324\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 8: 1.2208324670791626\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 8: 1.2208324670791626\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 9: 1.197828769683838\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 9: 1.197828769683838\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 10: 1.1781431436538696\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 10: 1.1781431436538696\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 11: 1.161504864692688\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 11: 1.161504864692688\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 12: 1.1442031860351562\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 12: 1.1442031860351562\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 13: 1.1058541536331177\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 13: 1.1058541536331177\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 14: 1.0935649871826172\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 14: 1.0935649871826172\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 15: 1.0802721977233887\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 15: 1.0802721977233887\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 16: 1.0696258544921875\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 16: 1.0696258544921875\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 17: 1.0607414245605469\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 17: 1.0607414245605469\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 18: 1.0493905544281006\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 18: 1.0493905544281006\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 19: 1.020617961883545\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 19: 1.020617961883545\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 20: 1.0081787109375\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 20: 1.0081787109375\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 21: 0.9943330883979797\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 21: 0.9943330883979797\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 22: 0.9842473268508911\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 22: 0.9842473268508911\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 23: 0.9762145280838013\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 23: 0.9762145280838013\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 24: 0.9653865098953247\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 24: 0.9653865098953247\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 25: 0.9380742311477661\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 25: 0.9380742311477661\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 26: 0.9271669387817383\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 26: 0.9271669387817383\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 27: 0.9147073030471802\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 27: 0.9147073030471802\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 28: 0.9064992070198059\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 28: 0.9064992070198059\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 29: 0.900122344493866\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 29: 0.900122344493866\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 30: 0.8903173208236694\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 30: 0.8903173208236694\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 31: 0.8648637533187866\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 31: 0.8648637533187866\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 32: 0.8549227118492126\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 32: 0.8549227118492126\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 33: 0.8434366583824158\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 33: 0.8434366583824158\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 34: 0.8365358114242554\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 34: 0.8365358114242554\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 35: 0.831310510635376\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 35: 0.831310510635376\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 36: 0.8222441673278809\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 36: 0.8222441673278809\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 37: 0.7981722950935364\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 37: 0.7981722950935364\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 38: 0.789170503616333\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 38: 0.789170503616333\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 39: 0.7787192463874817\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 39: 0.7787192463874817\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 40: 0.7730110287666321\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 40: 0.7730110287666321\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 41: 0.7687097787857056\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 41: 0.7687097787857056\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 42: 0.7602015137672424\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 42: 0.7602015137672424\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 43: 0.7373268604278564\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 43: 0.7373268604278564\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 44: 0.7292225956916809\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 44: 0.7292225956916809\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 45: 0.7197889685630798\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 45: 0.7197889685630798\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 46: 0.7151773571968079\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 46: 0.7151773571968079\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 47: 0.7117206454277039\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 47: 0.7117206454277039\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 48: 0.7038285136222839\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 48: 0.7038285136222839\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 49: 0.682073175907135\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 49: 0.682073175907135\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 50: 0.674643874168396\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 50: 0.674643874168396\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 51: 0.6659626364707947\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 51: 0.6659626364707947\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 52: 0.6620772480964661\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 52: 0.6620772480964661\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 53: 0.6590715646743774\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 53: 0.6590715646743774\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 54: 0.6515910625457764\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 54: 0.6515910625457764\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 55: 0.6308077573776245\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 55: 0.6308077573776245\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 56: 0.6241987347602844\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 56: 0.6241987347602844\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 57: 0.6163835525512695\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 57: 0.6163835525512695\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 58: 0.6131908297538757\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 58: 0.6131908297538757\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 59: 0.6106155514717102\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 59: 0.6106155514717102\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 60: 0.6036757826805115\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 60: 0.6036757826805115\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 61: 0.5848420262336731\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 61: 0.5848420262336731\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 62: 0.5793871879577637\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 62: 0.5793871879577637\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 63: 0.5726662278175354\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 63: 0.5726662278175354\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 64: 0.5703645348548889\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 64: 0.5703645348548889\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 65: 0.5684641003608704\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 65: 0.5684641003608704\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 66: 0.5622180104255676\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 66: 0.5622180104255676\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 67: 0.5449516773223877\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 67: 0.5449516773223877\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 68: 0.5401747226715088\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 68: 0.5401747226715088\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 69: 0.5341063141822815\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 69: 0.5341063141822815\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 70: 0.5322306752204895\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 70: 0.5322306752204895\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 71: 0.5305425524711609\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 71: 0.5305425524711609\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 72: 0.5246548056602478\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 72: 0.5246548056602478\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 73: 0.5083626508712769\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 73: 0.5083626508712769\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 74: 0.5040708184242249\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 74: 0.5040708184242249\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 75: 0.49863335490226746\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 75: 0.49863335490226746\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 76: 0.49717265367507935\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 76: 0.49717265367507935\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 77: 0.49564701318740845\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 77: 0.49564701318740845\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 78: 0.4900944232940674\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 78: 0.4900944232940674\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 79: 0.47473227977752686\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 79: 0.47473227977752686\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 80: 0.4708785116672516\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 80: 0.4708785116672516\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 81: 0.46578508615493774\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 81: 0.46578508615493774\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 82: 0.4644494950771332\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 82: 0.4644494950771332\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 83: 0.4629424810409546\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 83: 0.4629424810409546\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 84: 0.4576236307621002\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 84: 0.4576236307621002\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 85: 0.44295966625213623\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 85: 0.44295966625213623\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 86: 0.4393518269062042\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 86: 0.4393518269062042\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 87: 0.4346559941768646\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 87: 0.4346559941768646\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 88: 0.43358123302459717\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 88: 0.43358123302459717\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 89: 0.43231165409088135\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 89: 0.43231165409088135\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 90: 0.42753666639328003\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 90: 0.42753666639328003\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 91: 0.41425880789756775\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 91: 0.41425880789756775\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 92: 0.4113253951072693\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 92: 0.4113253951072693\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 93: 0.4074642062187195\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 93: 0.4074642062187195\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 94: 0.40698081254959106\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 94: 0.40698081254959106\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 95: 0.4062195420265198\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 95: 0.4062195420265198\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 96: 0.4020974636077881\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 96: 0.4020974636077881\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 97: 0.3904534876346588\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 97: 0.3904534876346588\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 98: 0.3879585564136505\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 98: 0.3879585564136505\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 99: 0.38447296619415283\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 99: 0.38447296619415283\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 100: 0.3841344118118286\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 100: 0.3841344118118286\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 101: 0.3833732604980469\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 101: 0.3833732604980469\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 102: 0.37956172227859497\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 102: 0.37956172227859497\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 103: 0.36883822083473206\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 103: 0.36883822083473206\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 104: 0.3664571940898895\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 104: 0.3664571940898895\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 105: 0.36335548758506775\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 105: 0.36335548758506775\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 106: 0.36316758394241333\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 106: 0.36316758394241333\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 107: 0.3625164330005646\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 107: 0.3625164330005646\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 108: 0.359012246131897\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 108: 0.359012246131897\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 109: 0.34912365674972534\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 109: 0.34912365674972534\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 110: 0.34696850180625916\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 110: 0.34696850180625916\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 111: 0.3441202938556671\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 111: 0.3441202938556671\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 112: 0.34398093819618225\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 112: 0.34398093819618225\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 113: 0.3432472050189972\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 113: 0.3432472050189972\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 114: 0.3399496376514435\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 114: 0.3399496376514435\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 115: 0.3308461308479309\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 115: 0.3308461308479309\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 116: 0.3289041221141815\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 116: 0.3289041221141815\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 117: 0.32627207040786743\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 117: 0.32627207040786743\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 118: 0.3261372447013855\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 118: 0.3261372447013855\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 119: 0.32546231150627136\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 119: 0.32546231150627136\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 120: 0.3224080502986908\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 120: 0.3224080502986908\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 121: 0.314008891582489\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 121: 0.314008891582489\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 122: 0.31220486760139465\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 122: 0.31220486760139465\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 123: 0.3098214566707611\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 123: 0.3098214566707611\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 124: 0.30979809165000916\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 124: 0.30979809165000916\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 125: 0.3090403079986572\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 125: 0.3090403079986572\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 126: 0.30612480640411377\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 126: 0.30612480640411377\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 127: 0.29819032549858093\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 127: 0.29819032549858093\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 128: 0.29648637771606445\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 128: 0.29648637771606445\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 129: 0.2943042516708374\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 129: 0.2943042516708374\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 130: 0.29420480132102966\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 130: 0.29420480132102966\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 131: 0.2934538424015045\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 131: 0.2934538424015045\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 132: 0.2907505929470062\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 132: 0.2907505929470062\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 133: 0.2835786044597626\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 133: 0.2835786044597626\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 134: 0.28203263878822327\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 134: 0.28203263878822327\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 135: 0.2801313102245331\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 135: 0.2801313102245331\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 136: 0.2801584303379059\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 136: 0.2801584303379059\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 137: 0.27946653962135315\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 137: 0.27946653962135315\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 138: 0.2770102620124817\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 138: 0.2770102620124817\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 139: 0.2705138921737671\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 139: 0.2705138921737671\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 140: 0.2689667046070099\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 140: 0.2689667046070099\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 141: 0.26713839173316956\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 141: 0.26713839173316956\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 142: 0.26722976565361023\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 142: 0.26722976565361023\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 143: 0.26659274101257324\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 143: 0.26659274101257324\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 144: 0.26436734199523926\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 144: 0.26436734199523926\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 145: 0.2585783302783966\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 145: 0.2585783302783966\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 146: 0.25718021392822266\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 146: 0.25718021392822266\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 147: 0.25569674372673035\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 147: 0.25569674372673035\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 148: 0.25572293996810913\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 148: 0.25572293996810913\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 149: 0.254925012588501\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 149: 0.254925012588501\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 150: 0.25273722410202026\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 150: 0.25273722410202026\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 151: 0.24740025401115417\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 151: 0.24740025401115417\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 152: 0.24594709277153015\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 152: 0.24594709277153015\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 153: 0.2445458471775055\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 153: 0.2445458471775055\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 154: 0.2445453554391861\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 154: 0.2445453554391861\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 155: 0.24368290603160858\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 155: 0.24368290603160858\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 156: 0.2416052669286728\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 156: 0.2416052669286728\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 157: 0.23683445155620575\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 157: 0.23683445155620575\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 158: 0.23561015725135803\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 158: 0.23561015725135803\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 159: 0.2342897355556488\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 159: 0.2342897355556488\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 160: 0.2342986762523651\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 160: 0.2342986762523651\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 161: 0.2334001511335373\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 161: 0.2334001511335373\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 162: 0.23141320049762726\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 162: 0.23141320049762726\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 163: 0.22705355286598206\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 163: 0.22705355286598206\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 164: 0.22583813965320587\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 164: 0.22583813965320587\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 165: 0.22455710172653198\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 165: 0.22455710172653198\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 166: 0.2245052307844162\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 166: 0.2245052307844162\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 167: 0.22359803318977356\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 167: 0.22359803318977356\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 168: 0.22173909842967987\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 168: 0.22173909842967987\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 169: 0.2178291231393814\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 169: 0.2178291231393814\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 170: 0.21670299768447876\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 170: 0.21670299768447876\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 171: 0.21559178829193115\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 171: 0.21559178829193115\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 172: 0.21557293832302094\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 172: 0.21557293832302094\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 173: 0.21463343501091003\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 173: 0.21463343501091003\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 174: 0.21291333436965942\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 174: 0.21291333436965942\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 175: 0.20953477919101715\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 175: 0.20953477919101715\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 176: 0.20840951800346375\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 176: 0.20840951800346375\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 177: 0.20733794569969177\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 177: 0.20733794569969177\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 178: 0.20730628073215485\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 178: 0.20730628073215485\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 179: 0.20635393261909485\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 179: 0.20635393261909485\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 180: 0.20470596849918365\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 180: 0.20470596849918365\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 181: 0.2016059160232544\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 181: 0.2016059160232544\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 182: 0.2004680186510086\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 182: 0.2004680186510086\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 183: 0.1995442509651184\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 183: 0.1995442509651184\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 184: 0.1995476931333542\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 184: 0.1995476931333542\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 185: 0.1985597461462021\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 185: 0.1985597461462021\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 186: 0.19704405963420868\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 186: 0.19704405963420868\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 187: 0.19429439306259155\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 187: 0.19429439306259155\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 188: 0.1931215077638626\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 188: 0.1931215077638626\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 189: 0.19224728643894196\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 189: 0.19224728643894196\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 190: 0.1922168731689453\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 190: 0.1922168731689453\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 191: 0.19120150804519653\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 191: 0.19120150804519653\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 192: 0.1897118091583252\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 192: 0.1897118091583252\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 193: 0.187192901968956\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 193: 0.187192901968956\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 194: 0.18604235351085663\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 194: 0.18604235351085663\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 195: 0.18525990843772888\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 195: 0.18525990843772888\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 196: 0.18517257273197174\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 196: 0.18517257273197174\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 197: 0.1841844767332077\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 197: 0.1841844767332077\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 198: 0.18275843560695648\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 198: 0.18275843560695648\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 199: 0.18052375316619873\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 199: 0.18052375316619873\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 200: 0.1795222908258438\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 200: 0.1795222908258438\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 201: 0.17878693342208862\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 201: 0.17878693342208862\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 202: 0.17881926894187927\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 202: 0.17881926894187927\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 203: 0.17786364257335663\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 203: 0.17786364257335663\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 204: 0.17654098570346832\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 204: 0.17654098570346832\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 205: 0.17458021640777588\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 205: 0.17458021640777588\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 206: 0.17358489334583282\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 206: 0.17358489334583282\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 207: 0.1728101521730423\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 207: 0.1728101521730423\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 208: 0.17278429865837097\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 208: 0.17278429865837097\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 209: 0.17180292308330536\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 209: 0.17180292308330536\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 210: 0.17050613462924957\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 210: 0.17050613462924957\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 211: 0.16873842477798462\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 211: 0.16873842477798462\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 212: 0.1677248477935791\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 212: 0.1677248477935791\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 213: 0.16707710921764374\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 213: 0.16707710921764374\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 214: 0.1671123504638672\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 214: 0.1671123504638672\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 215: 0.16612616181373596\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 215: 0.16612616181373596\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 216: 0.16487975418567657\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 216: 0.16487975418567657\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 217: 0.16339382529258728\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 217: 0.16339382529258728\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 218: 0.1624278575181961\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 218: 0.1624278575181961\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 219: 0.16172048449516296\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 219: 0.16172048449516296\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 220: 0.16165515780448914\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 220: 0.16165515780448914\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 221: 0.16061937808990479\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 221: 0.16061937808990479\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 222: 0.1594206690788269\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 222: 0.1594206690788269\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 223: 0.15802235901355743\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 223: 0.15802235901355743\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 224: 0.15704363584518433\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 224: 0.15704363584518433\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 225: 0.15640243887901306\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 225: 0.15640243887901306\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 226: 0.15635541081428528\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 226: 0.15635541081428528\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 227: 0.15536457300186157\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 227: 0.15536457300186157\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 228: 0.154209703207016\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 228: 0.154209703207016\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 229: 0.15291643142700195\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 229: 0.15291643142700195\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 230: 0.15191468596458435\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 230: 0.15191468596458435\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 231: 0.15118129551410675\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 231: 0.15118129551410675\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 232: 0.151133194565773\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 232: 0.151133194565773\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 233: 0.1501670926809311\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 233: 0.1501670926809311\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 234: 0.14912192523479462\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 234: 0.14912192523479462\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 235: 0.1481197327375412\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 235: 0.1481197327375412\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 236: 0.14712536334991455\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 236: 0.14712536334991455\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 237: 0.14660944044589996\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 237: 0.14660944044589996\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 238: 0.14649781584739685\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 238: 0.14649781584739685\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 239: 0.145524799823761\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 239: 0.145524799823761\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 240: 0.14443959295749664\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 240: 0.14443959295749664\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 241: 0.14341002702713013\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 241: 0.14341002702713013\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 242: 0.14249812066555023\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 242: 0.14249812066555023\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 243: 0.14185366034507751\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 243: 0.14185366034507751\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 244: 0.1419423222541809\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 244: 0.1419423222541809\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 245: 0.1409326195716858\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 245: 0.1409326195716858\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 246: 0.1399424970149994\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 246: 0.1399424970149994\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 247: 0.13920661807060242\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 247: 0.13920661807060242\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 248: 0.13832959532737732\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 248: 0.13832959532737732\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 249: 0.13784818351268768\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 249: 0.13784818351268768\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 250: 0.13769637048244476\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 250: 0.13769637048244476\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 251: 0.1367887407541275\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 251: 0.1367887407541275\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 252: 0.13588252663612366\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 252: 0.13588252663612366\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 253: 0.13521170616149902\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 253: 0.13521170616149902\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 254: 0.13428467512130737\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 254: 0.13428467512130737\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 255: 0.13384407758712769\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 255: 0.13384407758712769\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 256: 0.13372991979122162\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 256: 0.13372991979122162\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 257: 0.13274942338466644\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 257: 0.13274942338466644\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 258: 0.13186557590961456\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 258: 0.13186557590961456\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 259: 0.13135230541229248\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 259: 0.13135230541229248\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 260: 0.13046588003635406\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 260: 0.13046588003635406\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 261: 0.12980172038078308\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 261: 0.12980172038078308\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 262: 0.12982229888439178\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 262: 0.12982229888439178\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 263: 0.12882845103740692\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 263: 0.12882845103740692\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 264: 0.12798714637756348\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 264: 0.12798714637756348\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 265: 0.12758088111877441\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 265: 0.12758088111877441\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 266: 0.12660843133926392\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 266: 0.12660843133926392\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 267: 0.1261577606201172\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 267: 0.1261577606201172\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 268: 0.1260918229818344\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 268: 0.1260918229818344\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 269: 0.12515920400619507\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 269: 0.12515920400619507\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 270: 0.12436933070421219\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 270: 0.12436933070421219\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 271: 0.12405422329902649\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 271: 0.12405422329902649\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 272: 0.12305409461259842\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 272: 0.12305409461259842\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 273: 0.12272939085960388\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 273: 0.12272939085960388\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 274: 0.12267134338617325\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 274: 0.12267134338617325\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 275: 0.12182944267988205\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 275: 0.12182944267988205\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 276: 0.12103450298309326\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 276: 0.12103450298309326\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 277: 0.12083345651626587\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 277: 0.12083345651626587\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 278: 0.11998103559017181\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 278: 0.11998103559017181\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 279: 0.11937755346298218\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 279: 0.11937755346298218\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 280: 0.1195112019777298\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 280: 0.1195112019777298\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 281: 0.1185888797044754\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 281: 0.1185888797044754\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 282: 0.11789504438638687\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 282: 0.11789504438638687\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 283: 0.11783000081777573\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 283: 0.11783000081777573\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 284: 0.11681754887104034\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 284: 0.11681754887104034\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 285: 0.11649196594953537\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 285: 0.11649196594953537\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 286: 0.11648327857255936\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 286: 0.11648327857255936\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 287: 0.11562418192625046\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 287: 0.11562418192625046\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 288: 0.11489420384168625\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 288: 0.11489420384168625\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 289: 0.11485717445611954\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 289: 0.11485717445611954\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 290: 0.11407709866762161\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 290: 0.11407709866762161\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 291: 0.11348505318164825\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 291: 0.11348505318164825\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 292: 0.11358898878097534\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 292: 0.11358898878097534\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 293: 0.11268813163042068\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 293: 0.11268813163042068\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 294: 0.11207651346921921\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 294: 0.11207651346921921\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 295: 0.11220688372850418\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 295: 0.11220688372850418\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 296: 0.11118005961179733\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 296: 0.11118005961179733\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 297: 0.11089354008436203\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 297: 0.11089354008436203\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 298: 0.11088859289884567\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 298: 0.11088859289884567\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 299: 0.1100316271185875\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 299: 0.1100316271185875\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 300: 0.1093800961971283\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 300: 0.1093800961971283\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 301: 0.10955681651830673\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 301: 0.10955681651830673\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 302: 0.10869839787483215\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 302: 0.10869839787483215\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 303: 0.10815789550542831\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 303: 0.10815789550542831\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 304: 0.10832306742668152\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 304: 0.10832306742668152\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 305: 0.10742544382810593\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 305: 0.10742544382810593\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 306: 0.10682710260152817\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 306: 0.10682710260152817\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 307: 0.10698221623897552\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 307: 0.10698221623897552\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 308: 0.10616409033536911\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 308: 0.10616409033536911\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 309: 0.10568025708198547\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 309: 0.10568025708198547\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 310: 0.10574078559875488\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 310: 0.10574078559875488\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 311: 0.10493995994329453\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 311: 0.10493995994329453\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 312: 0.10438455641269684\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 312: 0.10438455641269684\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 313: 0.10449497401714325\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 313: 0.10449497401714325\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 314: 0.10372297465801239\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 314: 0.10372297465801239\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 315: 0.10320515185594559\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 315: 0.10320515185594559\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 316: 0.10330332815647125\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 316: 0.10330332815647125\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 317: 0.10239537805318832\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 317: 0.10239537805318832\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 318: 0.10185065120458603\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 318: 0.10185065120458603\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 319: 0.10217708349227905\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 319: 0.10217708349227905\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 320: 0.10135672241449356\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 320: 0.10135672241449356\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 321: 0.10087659955024719\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 321: 0.10087659955024719\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 322: 0.10087589174509048\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 322: 0.10087589174509048\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 323: 0.10005565732717514\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 323: 0.10005565732717514\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 324: 0.09949999302625656\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 324: 0.09949999302625656\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 325: 0.09970266371965408\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 325: 0.09970266371965408\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 326: 0.09918338060379028\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 326: 0.09918338060379028\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 327: 0.09840800613164902\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 327: 0.09840800613164902\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 328: 0.09882311522960663\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 328: 0.09882311522960663\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 329: 0.09775345772504807\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 329: 0.09775345772504807\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 330: 0.09729817509651184\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 330: 0.09729817509651184\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 331: 0.09763044863939285\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 331: 0.09763044863939285\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 332: 0.0967596173286438\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 332: 0.0967596173286438\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 333: 0.09642492234706879\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 333: 0.09642492234706879\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 334: 0.09656761586666107\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 334: 0.09656761586666107\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 335: 0.09573261439800262\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 335: 0.09573261439800262\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 336: 0.09523642063140869\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 336: 0.09523642063140869\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 337: 0.09568659961223602\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 337: 0.09568659961223602\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 338: 0.09509280323982239\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 338: 0.09509280323982239\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 339: 0.09460369497537613\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 339: 0.09460369497537613\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 340: 0.09476538747549057\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 340: 0.09476538747549057\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 341: 0.09388881921768188\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 341: 0.09388881921768188\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 342: 0.09349637478590012\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 342: 0.09349637478590012\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 343: 0.09398090839385986\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 343: 0.09398090839385986\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 344: 0.09314301609992981\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 344: 0.09314301609992981\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 345: 0.09281699359416962\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 345: 0.09281699359416962\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 346: 0.09290202707052231\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 346: 0.09290202707052231\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 347: 0.09209518879652023\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 347: 0.09209518879652023\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 348: 0.09171803295612335\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 348: 0.09171803295612335\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 349: 0.09221566468477249\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 349: 0.09221566468477249\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 350: 0.09150414168834686\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 350: 0.09150414168834686\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 351: 0.0910501629114151\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 351: 0.0910501629114151\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 352: 0.09118885546922684\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 352: 0.09118885546922684\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 353: 0.09043896198272705\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 353: 0.09043896198272705\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 354: 0.09006913751363754\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 354: 0.09006913751363754\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 355: 0.09049264341592789\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 355: 0.09049264341592789\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 356: 0.0898597463965416\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 356: 0.0898597463965416\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 357: 0.08943390846252441\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 357: 0.08943390846252441\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 358: 0.0896739661693573\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 358: 0.0896739661693573\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 359: 0.08882326632738113\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 359: 0.08882326632738113\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 360: 0.08850156515836716\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 360: 0.08850156515836716\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 361: 0.08897048979997635\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 361: 0.08897048979997635\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 362: 0.08849596232175827\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 362: 0.08849596232175827\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 363: 0.08790712803602219\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 363: 0.08790712803602219\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 364: 0.08821234852075577\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 364: 0.08821234852075577\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 365: 0.08732891082763672\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 365: 0.08732891082763672\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 366: 0.08704856038093567\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 366: 0.08704856038093567\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 367: 0.08765564113855362\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 367: 0.08765564113855362\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 368: 0.08696923404932022\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 368: 0.08696923404932022\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 369: 0.08649873733520508\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 369: 0.08649873733520508\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 370: 0.08676613122224808\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 370: 0.08676613122224808\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 371: 0.08599219471216202\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 371: 0.08599219471216202\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 372: 0.08565033972263336\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 372: 0.08565033972263336\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 373: 0.08618329465389252\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 373: 0.08618329465389252\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 374: 0.08559156954288483\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 374: 0.08559156954288483\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 375: 0.08509930223226547\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 375: 0.08509930223226547\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 376: 0.08543801307678223\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 376: 0.08543801307678223\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 377: 0.084554523229599\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 377: 0.084554523229599\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 378: 0.08425222337245941\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 378: 0.08425222337245941\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 379: 0.08496475219726562\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 379: 0.08496475219726562\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 380: 0.08428442478179932\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 380: 0.08428442478179932\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 381: 0.08389458060264587\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 381: 0.08389458060264587\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 382: 0.08416417241096497\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 382: 0.08416417241096497\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 383: 0.08331726491451263\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 383: 0.08331726491451263\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 384: 0.08304726332426071\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 384: 0.08304726332426071\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 385: 0.0837259590625763\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 385: 0.0837259590625763\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 386: 0.08301664143800735\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 386: 0.08301664143800735\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 387: 0.08279375731945038\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 387: 0.08279375731945038\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 388: 0.08285657316446304\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 388: 0.08285657316446304\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 389: 0.0822003185749054\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 389: 0.0822003185749054\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 390: 0.08189017325639725\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 390: 0.08189017325639725\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 391: 0.08244460821151733\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 391: 0.08244460821151733\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 392: 0.08176209777593613\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 392: 0.08176209777593613\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 393: 0.08143384009599686\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 393: 0.08143384009599686\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 394: 0.08153267949819565\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 394: 0.08153267949819565\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 395: 0.08074252307415009\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 395: 0.08074252307415009\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 396: 0.0804641842842102\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 396: 0.0804641842842102\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 397: 0.08112648874521255\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 397: 0.08112648874521255\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 398: 0.0804068073630333\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 398: 0.0804068073630333\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 399: 0.08000007271766663\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 399: 0.08000007271766663\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 400: 0.08030638843774796\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 400: 0.08030638843774796\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 401: 0.07946185022592545\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 401: 0.07946185022592545\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 402: 0.07926557213068008\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 402: 0.07926557213068008\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 403: 0.07995376735925674\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 403: 0.07995376735925674\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 404: 0.07914069294929504\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 404: 0.07914069294929504\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 405: 0.07901032269001007\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 405: 0.07901032269001007\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 406: 0.07910943776369095\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 406: 0.07910943776369095\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 407: 0.07840055227279663\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 407: 0.07840055227279663\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 408: 0.07814037799835205\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 408: 0.07814037799835205\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 409: 0.07874786853790283\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 409: 0.07874786853790283\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 410: 0.07819069921970367\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 410: 0.07819069921970367\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 411: 0.07780887931585312\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 411: 0.07780887931585312\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 412: 0.07802116870880127\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 412: 0.07802116870880127\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 413: 0.0772867277264595\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 413: 0.0772867277264595\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 414: 0.07709880918264389\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 414: 0.07709880918264389\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 415: 0.0776868537068367\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 415: 0.0776868537068367\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 416: 0.07716330885887146\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 416: 0.07716330885887146\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 417: 0.07688125967979431\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 417: 0.07688125967979431\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 418: 0.07698465138673782\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 418: 0.07698465138673782\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 419: 0.0762372612953186\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 419: 0.0762372612953186\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 420: 0.07603802531957626\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 420: 0.07603802531957626\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 421: 0.07675285637378693\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 421: 0.07675285637378693\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 422: 0.07623977214097977\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 422: 0.07623977214097977\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 423: 0.07567108422517776\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 423: 0.07567108422517776\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 424: 0.07615751028060913\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 424: 0.07615751028060913\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 425: 0.07526733726263046\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 425: 0.07526733726263046\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 426: 0.07509555667638779\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 426: 0.07509555667638779\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 427: 0.07569493353366852\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 427: 0.07569493353366852\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 428: 0.07537294924259186\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 428: 0.07537294924259186\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 429: 0.07467805594205856\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 429: 0.07467805594205856\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 430: 0.07528648525476456\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 430: 0.07528648525476456\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 431: 0.07435967028141022\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 431: 0.07435967028141022\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 432: 0.07422596961259842\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 432: 0.07422596961259842\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 433: 0.07503972947597504\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 433: 0.07503972947597504\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 434: 0.07434249669313431\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 434: 0.07434249669313431\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 435: 0.07409335672855377\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 435: 0.07409335672855377\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 436: 0.07420685887336731\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 436: 0.07420685887336731\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 437: 0.0735834538936615\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 437: 0.0735834538936615\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 438: 0.07333341240882874\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 438: 0.07333341240882874\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 439: 0.07391082495450974\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 439: 0.07391082495450974\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 440: 0.07348911464214325\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 440: 0.07348911464214325\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 441: 0.07308389991521835\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 441: 0.07308389991521835\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 442: 0.07328886538743973\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 442: 0.07328886538743973\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 443: 0.0725550651550293\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 443: 0.0725550651550293\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 444: 0.07240220904350281\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 444: 0.07240220904350281\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 445: 0.07308465242385864\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 445: 0.07308465242385864\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 446: 0.07288312911987305\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 446: 0.07288312911987305\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 447: 0.0722663402557373\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 447: 0.0722663402557373\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 448: 0.07264856994152069\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 448: 0.07264856994152069\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 449: 0.07182618230581284\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 449: 0.07182618230581284\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 450: 0.07167533785104752\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 450: 0.07167533785104752\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 451: 0.07241341471672058\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 451: 0.07241341471672058\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 452: 0.07208056002855301\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 452: 0.07208056002855301\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 453: 0.07154601812362671\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 453: 0.07154601812362671\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 454: 0.07190731167793274\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 454: 0.07190731167793274\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 455: 0.0710812360048294\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 455: 0.0710812360048294\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 456: 0.07096673548221588\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 456: 0.07096673548221588\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 457: 0.0718337818980217\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 457: 0.0718337818980217\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 458: 0.07134897261857986\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 458: 0.07134897261857986\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 459: 0.07083813846111298\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 459: 0.07083813846111298\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 460: 0.07124733179807663\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 460: 0.07124733179807663\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 461: 0.0705094262957573\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 461: 0.0705094262957573\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 462: 0.07036501169204712\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 462: 0.07036501169204712\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 463: 0.07111788541078568\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 463: 0.07111788541078568\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 464: 0.07069509476423264\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 464: 0.07069509476423264\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 465: 0.07026039808988571\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 465: 0.07026039808988571\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 466: 0.07056906819343567\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 466: 0.07056906819343567\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 467: 0.06981150805950165\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 467: 0.06981150805950165\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 468: 0.06967213749885559\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 468: 0.06967213749885559\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 469: 0.0704450011253357\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 469: 0.0704450011253357\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 470: 0.07002224773168564\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 470: 0.07002224773168564\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 471: 0.06954890489578247\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 471: 0.06954890489578247\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 472: 0.07001929730176926\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 472: 0.07001929730176926\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 473: 0.06918215751647949\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 473: 0.06918215751647949\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 474: 0.06905678659677505\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 474: 0.06905678659677505\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 475: 0.06994140148162842\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 475: 0.06994140148162842\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 476: 0.06957031041383743\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 476: 0.06957031041383743\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 477: 0.06890591233968735\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 477: 0.06890591233968735\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 478: 0.06942413747310638\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 478: 0.06942413747310638\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 479: 0.068662129342556\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 479: 0.068662129342556\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 480: 0.0685315951704979\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 480: 0.0685315951704979\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 481: 0.06919320672750473\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 481: 0.06919320672750473\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 482: 0.06884051114320755\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 482: 0.06884051114320755\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 483: 0.06852498650550842\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 483: 0.06852498650550842\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 484: 0.06881336867809296\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 484: 0.06881336867809296\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 485: 0.0681278333067894\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 485: 0.0681278333067894\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 486: 0.06801153719425201\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 486: 0.06801153719425201\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 487: 0.0688665509223938\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 487: 0.0688665509223938\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 488: 0.06848578155040741\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 488: 0.06848578155040741\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 489: 0.0680362805724144\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 489: 0.0680362805724144\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 490: 0.0685308426618576\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 490: 0.0685308426618576\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 491: 0.06770123541355133\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 491: 0.06770123541355133\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 492: 0.06760372221469879\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 492: 0.06760372221469879\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 493: 0.06856502592563629\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 493: 0.06856502592563629\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 494: 0.0679614394903183\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 494: 0.0679614394903183\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 495: 0.0675961971282959\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 495: 0.0675961971282959\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 496: 0.06795072555541992\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 496: 0.06795072555541992\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 497: 0.06731095910072327\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 497: 0.06731095910072327\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 498: 0.06714644283056259\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 498: 0.06714644283056259\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 499: 0.06786693632602692\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 499: 0.06786693632602692\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 500: 0.06758256256580353\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 500: 0.06758256256580353\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 501: 0.06698315590620041\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 501: 0.06698315590620041\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 502: 0.06747950613498688\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 502: 0.06747950613498688\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 503: 0.06655343621969223\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 503: 0.06655343621969223\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 504: 0.06652842462062836\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 504: 0.06652842462062836\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 505: 0.06745205074548721\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 505: 0.06745205074548721\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 506: 0.0668550580739975\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 506: 0.0668550580739975\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 507: 0.06666403263807297\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 507: 0.06666403263807297\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 508: 0.06683854013681412\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 508: 0.06683854013681412\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 509: 0.06626935303211212\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 509: 0.06626935303211212\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 510: 0.06613652408123016\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 510: 0.06613652408123016\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 511: 0.06672576069831848\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 511: 0.06672576069831848\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 512: 0.0666651502251625\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 512: 0.0666651502251625\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 513: 0.06582488119602203\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 513: 0.06582488119602203\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 514: 0.06652247160673141\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 514: 0.06652247160673141\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 515: 0.06558185815811157\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 515: 0.06558185815811157\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 516: 0.0655498206615448\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 516: 0.0655498206615448\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 517: 0.06624851375818253\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 517: 0.06624851375818253\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 518: 0.06601088494062424\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 518: 0.06601088494062424\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 519: 0.06545697897672653\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 519: 0.06545697897672653\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 520: 0.0659414529800415\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 520: 0.0659414529800415\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 521: 0.06516807526350021\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 521: 0.06516807526350021\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 522: 0.06501934677362442\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 522: 0.06501934677362442\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 523: 0.06574487686157227\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 523: 0.06574487686157227\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 524: 0.06553597748279572\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 524: 0.06553597748279572\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 525: 0.06504649668931961\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 525: 0.06504649668931961\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 526: 0.06540416181087494\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 526: 0.06540416181087494\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 527: 0.06479271501302719\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 527: 0.06479271501302719\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 528: 0.06469936668872833\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 528: 0.06469936668872833\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 529: 0.0654490739107132\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 529: 0.0654490739107132\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 530: 0.06509881466627121\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 530: 0.06509881466627121\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 531: 0.06460769474506378\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 531: 0.06460769474506378\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 532: 0.06506450474262238\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 532: 0.06506450474262238\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 533: 0.06425388902425766\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 533: 0.06425388902425766\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 534: 0.06419297307729721\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 534: 0.06419297307729721\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 535: 0.06507144123315811\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 535: 0.06507144123315811\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 536: 0.06475593149662018\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 536: 0.06475593149662018\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 537: 0.0640476867556572\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 537: 0.0640476867556572\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 538: 0.06452148407697678\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 538: 0.06452148407697678\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 539: 0.063988097012043\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 539: 0.063988097012043\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 540: 0.06390102207660675\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 540: 0.06390102207660675\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 541: 0.06427431106567383\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 541: 0.06427431106567383\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 542: 0.06461699306964874\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 542: 0.06461699306964874\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 543: 0.06366197764873505\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 543: 0.06366197764873505\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 544: 0.06439769268035889\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 544: 0.06439769268035889\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 545: 0.06354749947786331\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 545: 0.06354749947786331\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 546: 0.06346575170755386\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 546: 0.06346575170755386\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 547: 0.06415951251983643\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 547: 0.06415951251983643\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 548: 0.06416907906532288\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 548: 0.06416907906532288\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 549: 0.06350232660770416\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 549: 0.06350232660770416\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 1: 0.03389815576374531\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 1: 0.03389815576374531\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 2: 0.033698095567524435\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 2: 0.033698095567524435\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 3: 0.0372611828148365\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 3: 0.0372611828148365\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 4: 0.0382374182343483\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 4: 0.0382374182343483\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 5: 0.03677316829562187\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 5: 0.03677316829562187\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 6: 0.04194173291325569\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 6: 0.04194173291325569\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 7: 0.04046095162630081\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 7: 0.04046095162630081\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `fit_mixer` runtime: 4.6 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `fit_mixer` runtime: 4.59 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Started fitting XGBoost model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Started fitting XGBoost model\u001b[0m\n" ] }, { @@ -4722,14 +4722,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:A single GBM iteration takes 0.1 seconds\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:A single GBM iteration takes 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Training XGBoost with 131 iterations given 16.483366186618806 seconds constraint\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Training XGBoost with 131 iterations given 16.483406192064287 seconds constraint\u001b[0m\n" ] }, { @@ -4960,112 +4960,112 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `fit_mixer` runtime: 0.05 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `fit_mixer` runtime: 0.05 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:dataprep_ml-2634:Exception: Unspported categorical type for regression when training mixer: \u001b[0m\n" + "\u001b[33mWARNING:dataprep_ml-2523:Exception: Unspported categorical type for regression when training mixer: \u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Started fitting RandomForest model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Started fitting RandomForest model\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:RandomForest based correlation of (train data): 1.0\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:RandomForest based correlation of (train data): 1.0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:RandomForest based correlation of (dev data): 1.0\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:RandomForest based correlation of (dev data): 1.0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `fit_mixer` runtime: 0.14 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `fit_mixer` runtime: 0.13 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Ensembling the mixer\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Ensembling the mixer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Mixer: Neural got accuracy: 0.922\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Mixer: Neural got accuracy: 0.922\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Mixer: XGBoostMixer got accuracy: 1.0\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Mixer: XGBoostMixer got accuracy: 1.0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Mixer: RandomForest got accuracy: 1.0\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Mixer: RandomForest got accuracy: 1.0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Picked best mixer: RandomForest\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Picked best mixer: RandomForest\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `fit` runtime: 4.83 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `fit` runtime: 4.81 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Analyzing the ensemble of mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Analyzing the ensemble of mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:The block ICP is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:The block ICP is now running its analyze() method\u001b[0m\n" ] }, { @@ -5074,63 +5074,63 @@ "text": [ "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/sklearn/preprocessing/_encoders.py:975: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.\n", " warnings.warn(\n", - "\u001b[32mINFO:lightwood-2634:The block ConfStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:The block ConfStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:The block AccStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:The block AccStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:[PFI] Using a random sample (1000 rows out of 22).\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:[PFI] Using a random sample (1000 rows out of 22).\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:[PFI] Set to consider first 10 columns out of 6: ['Population', 'Area (sq. mi.)', 'Pop. Density ', 'GDP ($ per capita)', 'Literacy (%)', 'Infant mortality '].\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:[PFI] Set to consider first 10 columns out of 6: ['Population', 'Area (sq. mi.)', 'Pop. Density ', 'GDP ($ per capita)', 'Literacy (%)', 'Infant mortality '].\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:The block ModelCorrelationHeatmap is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:The block ModelCorrelationHeatmap is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `analyze_ensemble` runtime: 0.2 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `analyze_ensemble` runtime: 0.21 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Updating the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Updating the mixers\u001b[0m\n" ] }, { @@ -5145,70 +5145,70 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 1: 0.033697554686417185\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 1: 0.033697554686417185\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 2: 0.033981192080924906\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 2: 0.033981192080924906\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 3: 0.037426896315688886\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 3: 0.037426896315688886\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 4: 0.04428015494098266\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 4: 0.04428015494098266\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 5: 0.061086510928968586\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 5: 0.061086510928968586\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 6: 0.03466159128583968\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 6: 0.03466159128583968\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 7: 0.03769115870818496\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 7: 0.03769115870818496\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `adjust` runtime: 0.06 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `adjust` runtime: 0.06 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `learn` runtime: 5.2 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `learn` runtime: 5.19 seconds\u001b[0m\n" ] } ], @@ -5233,10 +5233,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:26.615040Z", - "iopub.status.busy": "2024-05-15T12:31:26.614829Z", - "iopub.status.idle": "2024-05-15T12:31:27.123113Z", - "shell.execute_reply": "2024-05-15T12:31:27.122477Z" + "iopub.execute_input": "2024-05-15T12:38:32.818054Z", + "iopub.status.busy": "2024-05-15T12:38:32.817644Z", + "iopub.status.idle": "2024-05-15T12:38:33.321743Z", + "shell.execute_reply": "2024-05-15T12:38:33.321104Z" } }, "outputs": [ diff --git a/_sources/tutorials/custom_mixer/custom_mixer.ipynb.txt b/_sources/tutorials/custom_mixer/custom_mixer.ipynb.txt index 83bb2e0e1..c3dacff27 100644 --- a/_sources/tutorials/custom_mixer/custom_mixer.ipynb.txt +++ b/_sources/tutorials/custom_mixer/custom_mixer.ipynb.txt @@ -46,10 +46,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:52.389121Z", - "iopub.status.busy": "2024-05-15T12:30:52.388896Z", - "iopub.status.idle": "2024-05-15T12:30:52.397395Z", - "shell.execute_reply": "2024-05-15T12:30:52.396710Z" + "iopub.execute_input": "2024-05-15T12:37:58.233387Z", + "iopub.status.busy": "2024-05-15T12:37:58.232873Z", + "iopub.status.idle": "2024-05-15T12:37:58.241919Z", + "shell.execute_reply": "2024-05-15T12:37:58.241302Z" } }, "outputs": [ @@ -133,10 +133,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:52.433000Z", - "iopub.status.busy": "2024-05-15T12:30:52.432734Z", - "iopub.status.idle": "2024-05-15T12:30:55.473584Z", - "shell.execute_reply": "2024-05-15T12:30:55.472895Z" + "iopub.execute_input": "2024-05-15T12:37:58.280767Z", + "iopub.status.busy": "2024-05-15T12:37:58.280464Z", + "iopub.status.idle": "2024-05-15T12:38:01.332205Z", + "shell.execute_reply": "2024-05-15T12:38:01.331516Z" } }, "outputs": [ @@ -144,238 +144,238 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Analyzing a sample of 298\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Analyzing a sample of 298\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:from a total population of 303, this is equivalent to 98.3% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:from a total population of 303, this is equivalent to 98.3% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: age\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: age\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column age has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column age has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: sex\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: sex\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column sex has data type binary\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column sex has data type binary\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: cp\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: cp\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column cp has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column cp has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: trestbps\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: trestbps\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column trestbps has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column trestbps has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: chol\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: chol\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column chol has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column chol has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: fbs\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: fbs\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column fbs has data type binary\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column fbs has data type binary\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: restecg\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: restecg\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column restecg has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column restecg has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: thalach\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: thalach\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column thalach has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column thalach has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: exang\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: exang\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column exang has data type binary\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column exang has data type binary\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: oldpeak\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: oldpeak\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column oldpeak has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column oldpeak has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: slope\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: slope\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column slope has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column slope has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: ca\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: ca\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column ca has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column ca has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: thal\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: thal\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column thal has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column thal has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: target\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: target\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column target has data type binary\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column target has data type binary\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Finished statistical analysis\u001b[0m\n" ] }, { @@ -502,7 +502,7 @@ " \"unbias_target\": true,\n", " \"seconds_per_mixer\": 42768.0,\n", " \"seconds_per_encoder\": null,\n", - " \"expected_additional_time\": 0.07092165946960449,\n", + " \"expected_additional_time\": 0.07208943367004395,\n", " \"time_aim\": 259200,\n", " \"target_weights\": null,\n", " \"positive_domain\": false,\n", @@ -571,10 +571,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:55.476427Z", - "iopub.status.busy": "2024-05-15T12:30:55.475939Z", - "iopub.status.idle": "2024-05-15T12:30:55.479383Z", - "shell.execute_reply": "2024-05-15T12:30:55.478798Z" + "iopub.execute_input": "2024-05-15T12:38:01.334897Z", + "iopub.status.busy": "2024-05-15T12:38:01.334489Z", + "iopub.status.idle": "2024-05-15T12:38:01.337884Z", + "shell.execute_reply": "2024-05-15T12:38:01.337281Z" } }, "outputs": [], @@ -603,10 +603,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:55.481884Z", - "iopub.status.busy": "2024-05-15T12:30:55.481529Z", - "iopub.status.idle": "2024-05-15T12:30:55.818438Z", - "shell.execute_reply": "2024-05-15T12:30:55.817741Z" + "iopub.execute_input": "2024-05-15T12:38:01.340400Z", + "iopub.status.busy": "2024-05-15T12:38:01.339924Z", + "iopub.status.idle": "2024-05-15T12:38:01.687957Z", + "shell.execute_reply": "2024-05-15T12:38:01.687306Z" } }, "outputs": [], @@ -622,10 +622,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:55.821486Z", - "iopub.status.busy": "2024-05-15T12:30:55.821229Z", - "iopub.status.idle": "2024-05-15T12:30:56.441907Z", - "shell.execute_reply": "2024-05-15T12:30:56.441224Z" + "iopub.execute_input": "2024-05-15T12:38:01.691070Z", + "iopub.status.busy": "2024-05-15T12:38:01.690625Z", + "iopub.status.idle": "2024-05-15T12:38:02.309441Z", + "shell.execute_reply": "2024-05-15T12:38:02.308885Z" } }, "outputs": [ @@ -633,308 +633,308 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Finished statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `analyze_data` runtime: 0.03 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `analyze_data` runtime: 0.03 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `preprocess` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `preprocess` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 3/8] - Data splitting\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 3/8] - Data splitting\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Splitting the data into train/test\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Splitting the data into train/test\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `split` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `split` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing sequentially...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing sequentially...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for age...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for age...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for sex...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for sex...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for cp...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for cp...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for trestbps...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for trestbps...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for chol...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for chol...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for fbs...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for fbs...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for restecg...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for restecg...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for thalach...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for thalach...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for exang...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for exang...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for oldpeak...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for oldpeak...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for slope...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for slope...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for ca...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for ca...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for thal...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for thal...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `prepare` runtime: 0.02 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `prepare` runtime: 0.02 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 5/8] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 5/8] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `featurize` runtime: 0.1 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `featurize` runtime: 0.09 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 6/8] - Mixer training\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 6/8] - Mixer training\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Training the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Training the mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `fit_mixer` runtime: 0.12 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `fit_mixer` runtime: 0.12 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Ensembling the mixer\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Ensembling the mixer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:Mixer: RandomForestMixer got accuracy: 0.798\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:Mixer: RandomForestMixer got accuracy: 0.798\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:Picked best mixer: RandomForestMixer\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:Picked best mixer: RandomForestMixer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `fit` runtime: 0.13 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `fit` runtime: 0.13 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Analyzing the ensemble of mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Analyzing the ensemble of mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:The block ICP is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block ICP is now running its analyze() method\u001b[0m\n" ] }, { @@ -943,35 +943,35 @@ "text": [ "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/sklearn/preprocessing/_encoders.py:975: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.\n", " warnings.warn(\n", - "\u001b[32mINFO:lightwood-2525:The block ConfStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block ConfStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:The block AccStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block AccStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:[PFI] Using a random sample (1000 rows out of 31).\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:[PFI] Using a random sample (1000 rows out of 31).\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:[PFI] Set to consider first 10 columns out of 10: ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak'].\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:[PFI] Set to consider first 10 columns out of 10: ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak'].\u001b[0m\n" ] }, { @@ -994,35 +994,35 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `analyze_ensemble` runtime: 0.27 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `analyze_ensemble` runtime: 0.27 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Updating the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Updating the mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `adjust` runtime: 0.04 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `adjust` runtime: 0.04 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `learn` runtime: 0.62 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `learn` runtime: 0.61 seconds\u001b[0m\n" ] } ], @@ -1042,10 +1042,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:56.444798Z", - "iopub.status.busy": "2024-05-15T12:30:56.444349Z", - "iopub.status.idle": "2024-05-15T12:30:56.568845Z", - "shell.execute_reply": "2024-05-15T12:30:56.568168Z" + "iopub.execute_input": "2024-05-15T12:38:02.312200Z", + "iopub.status.busy": "2024-05-15T12:38:02.311838Z", + "iopub.status.idle": "2024-05-15T12:38:02.432975Z", + "shell.execute_reply": "2024-05-15T12:38:02.432362Z" } }, "outputs": [ @@ -1053,35 +1053,35 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `preprocess` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `preprocess` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Predict phase 2/4] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Predict phase 2/4] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Featurizing the data\u001b[0m\n" ] }, { @@ -1104,91 +1104,91 @@ " outputs = ufunc(*inputs)\n", "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/numpy/lib/function_base.py:2455: RuntimeWarning: invalid value encountered in _none_fn (vectorized)\n", " outputs = ufunc(*inputs)\n", - "\u001b[37mDEBUG:lightwood-2525: `featurize` runtime: 0.02 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `featurize` runtime: 0.02 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `_timed_call` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `_timed_call` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Predict phase 4/4] - Analyzing output\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Predict phase 4/4] - Analyzing output\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:The block ICP is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block ICP is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:The block ConfStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block ConfStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:The block AccStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block AccStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `explain` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `explain` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `predict` runtime: 0.06 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `predict` runtime: 0.05 seconds\u001b[0m\n" ] }, { diff --git a/_sources/tutorials/custom_splitter/custom_splitter.ipynb.txt b/_sources/tutorials/custom_splitter/custom_splitter.ipynb.txt index 4c9029b63..cbbf9a8d5 100644 --- a/_sources/tutorials/custom_splitter/custom_splitter.ipynb.txt +++ b/_sources/tutorials/custom_splitter/custom_splitter.ipynb.txt @@ -28,10 +28,10 @@ "id": "interim-discussion", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:29:04.352246Z", - "iopub.status.busy": "2024-05-15T12:29:04.351721Z", - "iopub.status.idle": "2024-05-15T12:29:13.307917Z", - "shell.execute_reply": "2024-05-15T12:29:13.307226Z" + "iopub.execute_input": "2024-05-15T12:36:11.731772Z", + "iopub.status.busy": "2024-05-15T12:36:11.731340Z", + "iopub.status.idle": "2024-05-15T12:36:18.394584Z", + "shell.execute_reply": "2024-05-15T12:36:18.393802Z" } }, "outputs": [ @@ -39,14 +39,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2259:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2197:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2259:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2197:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] } ], @@ -87,10 +87,10 @@ "id": "foreign-orchestra", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:29:13.311274Z", - "iopub.status.busy": "2024-05-15T12:29:13.310750Z", - "iopub.status.idle": "2024-05-15T12:29:18.428236Z", - "shell.execute_reply": "2024-05-15T12:29:18.427494Z" + "iopub.execute_input": "2024-05-15T12:36:18.397974Z", + "iopub.status.busy": "2024-05-15T12:36:18.397631Z", + "iopub.status.idle": "2024-05-15T12:36:23.491475Z", + "shell.execute_reply": "2024-05-15T12:36:23.490796Z" } }, "outputs": [ @@ -316,10 +316,10 @@ "id": "cathedral-mills", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:29:18.431216Z", - "iopub.status.busy": "2024-05-15T12:29:18.430796Z", - "iopub.status.idle": "2024-05-15T12:29:18.786310Z", - "shell.execute_reply": "2024-05-15T12:29:18.785723Z" + "iopub.execute_input": "2024-05-15T12:36:23.494300Z", + "iopub.status.busy": "2024-05-15T12:36:23.494042Z", + "iopub.status.idle": "2024-05-15T12:36:23.854824Z", + "shell.execute_reply": "2024-05-15T12:36:23.854148Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "medieval-zambia", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:29:18.789121Z", - "iopub.status.busy": "2024-05-15T12:29:18.788667Z", - "iopub.status.idle": "2024-05-15T12:30:27.330359Z", - "shell.execute_reply": "2024-05-15T12:30:27.329696Z" + "iopub.execute_input": "2024-05-15T12:36:23.857705Z", + "iopub.status.busy": "2024-05-15T12:36:23.857253Z", + "iopub.status.idle": "2024-05-15T12:37:32.751150Z", + "shell.execute_reply": "2024-05-15T12:37:32.750449Z" } }, "outputs": [ @@ -385,469 +385,469 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Analyzing a sample of 18424\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Analyzing a sample of 18424\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:from a total population of 284807, this is equivalent to 6.5% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:from a total population of 284807, this is equivalent to 6.5% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Using 3 processes to deduct types.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Using 3 processes to deduct types.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: Time\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: Time\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V3\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V3\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V6\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V6\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column Time has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column Time has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V1\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V1\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V3 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V3 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V4\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V4\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V6 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V6 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V4 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V7\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V7\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V1 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V5\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V2\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V1 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V4 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V2\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V5\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V5 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V7 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V9\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V8\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V7 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V2 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V8\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V9\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V9 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V5 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V10\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V12\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V2 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V8 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V12\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V15\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V8 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V9 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V15\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V10\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V10 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V15 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V11\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V16\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V12 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V12 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V13\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V13\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V13 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V13 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V14\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V14\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V15 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V10 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V11 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V11\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V16\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V16 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V18\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V17\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V14 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V14 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V21\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V18\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V16 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V11 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V17\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V21\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V18 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V17 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V19\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V18 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V21 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V19\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V22\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V24\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V17 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V19 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V24\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V20\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V19 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V21 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V20\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V22\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V22 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V24 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V23\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V25\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V24 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V20 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V25\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V27\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V23 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V22 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V27\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V23\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V20 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V27 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: Class\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V28\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V25 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V25 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V26\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V26\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column Class has data type binary\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V28 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V27 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: Amount\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V28\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V23 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V26 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: Class\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V28 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V26 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: Amount\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column Amount has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column Amount has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column Class has data type binary\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2259:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2197:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2259:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2197:Finished statistical analysis\u001b[0m\n" ] } ], @@ -901,10 +901,10 @@ "id": "4411ee53", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:27.333499Z", - "iopub.status.busy": "2024-05-15T12:30:27.333282Z", - "iopub.status.idle": "2024-05-15T12:30:27.338468Z", - "shell.execute_reply": "2024-05-15T12:30:27.337924Z" + "iopub.execute_input": "2024-05-15T12:37:32.754539Z", + "iopub.status.busy": "2024-05-15T12:37:32.754103Z", + "iopub.status.idle": "2024-05-15T12:37:32.759217Z", + "shell.execute_reply": "2024-05-15T12:37:32.758527Z" } }, "outputs": [ @@ -996,10 +996,10 @@ "id": "34092d12", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:27.340823Z", - "iopub.status.busy": "2024-05-15T12:30:27.340587Z", - "iopub.status.idle": "2024-05-15T12:30:27.343872Z", - "shell.execute_reply": "2024-05-15T12:30:27.343379Z" + "iopub.execute_input": "2024-05-15T12:37:32.761863Z", + "iopub.status.busy": "2024-05-15T12:37:32.761475Z", + "iopub.status.idle": "2024-05-15T12:37:32.764800Z", + "shell.execute_reply": "2024-05-15T12:37:32.764192Z" } }, "outputs": [], @@ -1055,10 +1055,10 @@ "id": "alleged-concentrate", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:27.346334Z", - "iopub.status.busy": "2024-05-15T12:30:27.346133Z", - "iopub.status.idle": "2024-05-15T12:30:27.581484Z", - "shell.execute_reply": "2024-05-15T12:30:27.580794Z" + "iopub.execute_input": "2024-05-15T12:37:32.767542Z", + "iopub.status.busy": "2024-05-15T12:37:32.767181Z", + "iopub.status.idle": "2024-05-15T12:37:33.006726Z", + "shell.execute_reply": "2024-05-15T12:37:33.005918Z" } }, "outputs": [ @@ -1139,7 +1139,7 @@ " \"unbias_target\": True,\n", " \"seconds_per_mixer\": 42768.0,\n", " \"seconds_per_encoder\": None,\n", - " \"expected_additional_time\": 68.51064419746399,\n", + " \"expected_additional_time\": 68.86109614372253,\n", " \"time_aim\": 259200,\n", " \"target_weights\": None,\n", " \"positive_domain\": False,\n", @@ -1905,10 +1905,10 @@ "id": "organic-london", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:27.583960Z", - "iopub.status.busy": "2024-05-15T12:30:27.583758Z", - "iopub.status.idle": "2024-05-15T12:30:27.591554Z", - "shell.execute_reply": "2024-05-15T12:30:27.591054Z" + "iopub.execute_input": "2024-05-15T12:37:33.009564Z", + "iopub.status.busy": "2024-05-15T12:37:33.009352Z", + "iopub.status.idle": "2024-05-15T12:37:33.017259Z", + "shell.execute_reply": "2024-05-15T12:37:33.016750Z" } }, "outputs": [], @@ -1923,10 +1923,10 @@ "id": "fabulous-prime", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:27.594015Z", - "iopub.status.busy": "2024-05-15T12:30:27.593641Z", - "iopub.status.idle": "2024-05-15T12:30:47.763538Z", - "shell.execute_reply": "2024-05-15T12:30:47.762831Z" + "iopub.execute_input": "2024-05-15T12:37:33.020087Z", + "iopub.status.busy": "2024-05-15T12:37:33.019578Z", + "iopub.status.idle": "2024-05-15T12:37:53.359194Z", + "shell.execute_reply": "2024-05-15T12:37:53.358511Z" } }, "outputs": [ @@ -1934,28 +1934,28 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2259:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2197:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2259: `preprocess` runtime: 18.54 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2197: `preprocess` runtime: 18.56 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2259:Splitting the data into train/test\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2197:Splitting the data into train/test\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2259: `split` runtime: 1.62 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2197: `split` runtime: 1.77 seconds\u001b[0m\n" ] } ], @@ -1971,10 +1971,10 @@ "id": "suspended-biography", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:47.766563Z", - "iopub.status.busy": "2024-05-15T12:30:47.766019Z", - "iopub.status.idle": "2024-05-15T12:30:49.244243Z", - "shell.execute_reply": "2024-05-15T12:30:49.243541Z" + "iopub.execute_input": "2024-05-15T12:37:53.362317Z", + "iopub.status.busy": "2024-05-15T12:37:53.361876Z", + "iopub.status.idle": "2024-05-15T12:37:54.934620Z", + "shell.execute_reply": "2024-05-15T12:37:54.933895Z" } }, "outputs": [ diff --git a/_sources/tutorials/tutorial_data_analysis/tutorial_data_analysis.ipynb.txt b/_sources/tutorials/tutorial_data_analysis/tutorial_data_analysis.ipynb.txt index d0872ea95..e2897726b 100644 --- a/_sources/tutorials/tutorial_data_analysis/tutorial_data_analysis.ipynb.txt +++ b/_sources/tutorials/tutorial_data_analysis/tutorial_data_analysis.ipynb.txt @@ -35,10 +35,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:14.309394Z", - "iopub.status.busy": "2024-05-15T12:32:14.309198Z", - "iopub.status.idle": "2024-05-15T12:32:14.629441Z", - "shell.execute_reply": "2024-05-15T12:32:14.628730Z" + "iopub.execute_input": "2024-05-15T12:39:20.516178Z", + "iopub.status.busy": "2024-05-15T12:39:20.515976Z", + "iopub.status.idle": "2024-05-15T12:39:20.842577Z", + "shell.execute_reply": "2024-05-15T12:39:20.841884Z" } }, "outputs": [ @@ -175,10 +175,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:14.667078Z", - "iopub.status.busy": "2024-05-15T12:32:14.666676Z", - "iopub.status.idle": "2024-05-15T12:32:17.186059Z", - "shell.execute_reply": "2024-05-15T12:32:17.185340Z" + "iopub.execute_input": "2024-05-15T12:39:20.882091Z", + "iopub.status.busy": "2024-05-15T12:39:20.881616Z", + "iopub.status.idle": "2024-05-15T12:39:23.423280Z", + "shell.execute_reply": "2024-05-15T12:39:23.422573Z" } }, "outputs": [ @@ -186,14 +186,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2916:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2866:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2916:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2866:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] } ], @@ -215,10 +215,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.189281Z", - "iopub.status.busy": "2024-05-15T12:32:17.188770Z", - "iopub.status.idle": "2024-05-15T12:32:17.193969Z", - "shell.execute_reply": "2024-05-15T12:32:17.193389Z" + "iopub.execute_input": "2024-05-15T12:39:23.426512Z", + "iopub.status.busy": "2024-05-15T12:39:23.426163Z", + "iopub.status.idle": "2024-05-15T12:39:23.431505Z", + "shell.execute_reply": "2024-05-15T12:39:23.430893Z" } }, "outputs": [ @@ -270,10 +270,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.196483Z", - "iopub.status.busy": "2024-05-15T12:32:17.196106Z", - "iopub.status.idle": "2024-05-15T12:32:17.219249Z", - "shell.execute_reply": "2024-05-15T12:32:17.218661Z" + "iopub.execute_input": "2024-05-15T12:39:23.434201Z", + "iopub.status.busy": "2024-05-15T12:39:23.433737Z", + "iopub.status.idle": "2024-05-15T12:39:23.459713Z", + "shell.execute_reply": "2024-05-15T12:39:23.459082Z" } }, "outputs": [ @@ -281,112 +281,112 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Analyzing a sample of 222\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Analyzing a sample of 222\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:from a total population of 225, this is equivalent to 98.7% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:from a total population of 225, this is equivalent to 98.7% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Infering type for: Population\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Infering type for: Population\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Column Population has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Column Population has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Infering type for: Area (sq. mi.)\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Infering type for: Area (sq. mi.)\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Column Area (sq. mi.) has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Column Area (sq. mi.) has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Infering type for: Pop. Density \u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Infering type for: Pop. Density \u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Column Pop. Density has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Column Pop. Density has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Infering type for: GDP ($ per capita)\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Infering type for: GDP ($ per capita)\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Column GDP ($ per capita) has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Column GDP ($ per capita) has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Infering type for: Literacy (%)\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Infering type for: Literacy (%)\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Column Literacy (%) has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Column Literacy (%) has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Infering type for: Infant mortality \u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Infering type for: Infant mortality \u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Column Infant mortality has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Column Infant mortality has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Infering type for: Development Index\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Infering type for: Development Index\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Column Development Index has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Column Development Index has data type categorical\u001b[0m\n" ] }, { @@ -421,10 +421,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.221782Z", - "iopub.status.busy": "2024-05-15T12:32:17.221448Z", - "iopub.status.idle": "2024-05-15T12:32:17.225621Z", - "shell.execute_reply": "2024-05-15T12:32:17.224989Z" + "iopub.execute_input": "2024-05-15T12:39:23.462354Z", + "iopub.status.busy": "2024-05-15T12:39:23.461965Z", + "iopub.status.idle": "2024-05-15T12:39:23.466294Z", + "shell.execute_reply": "2024-05-15T12:39:23.465608Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.228143Z", - "iopub.status.busy": "2024-05-15T12:32:17.227783Z", - "iopub.status.idle": "2024-05-15T12:32:17.253950Z", - "shell.execute_reply": "2024-05-15T12:32:17.253307Z" + "iopub.execute_input": "2024-05-15T12:39:23.468886Z", + "iopub.status.busy": "2024-05-15T12:39:23.468511Z", + "iopub.status.idle": "2024-05-15T12:39:23.495336Z", + "shell.execute_reply": "2024-05-15T12:39:23.494690Z" } }, "outputs": [ @@ -485,14 +485,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2916:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2866:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2916:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2866:Finished statistical analysis\u001b[0m\n" ] } ], @@ -520,10 +520,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.256430Z", - "iopub.status.busy": "2024-05-15T12:32:17.256226Z", - "iopub.status.idle": "2024-05-15T12:32:17.260696Z", - "shell.execute_reply": "2024-05-15T12:32:17.260064Z" + "iopub.execute_input": "2024-05-15T12:39:23.497946Z", + "iopub.status.busy": "2024-05-15T12:39:23.497565Z", + "iopub.status.idle": "2024-05-15T12:39:23.502155Z", + "shell.execute_reply": "2024-05-15T12:39:23.501523Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.263203Z", - "iopub.status.busy": "2024-05-15T12:32:17.262837Z", - "iopub.status.idle": "2024-05-15T12:32:17.266857Z", - "shell.execute_reply": "2024-05-15T12:32:17.266234Z" + "iopub.execute_input": "2024-05-15T12:39:23.504893Z", + "iopub.status.busy": "2024-05-15T12:39:23.504449Z", + "iopub.status.idle": "2024-05-15T12:39:23.509018Z", + "shell.execute_reply": "2024-05-15T12:39:23.508474Z" } }, "outputs": [ @@ -612,10 +612,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.269479Z", - "iopub.status.busy": "2024-05-15T12:32:17.269087Z", - "iopub.status.idle": "2024-05-15T12:32:17.273721Z", - "shell.execute_reply": "2024-05-15T12:32:17.273107Z" + "iopub.execute_input": "2024-05-15T12:39:23.511601Z", + "iopub.status.busy": "2024-05-15T12:39:23.511209Z", + "iopub.status.idle": "2024-05-15T12:39:23.515862Z", + "shell.execute_reply": "2024-05-15T12:39:23.515270Z" }, "scrolled": false }, @@ -673,10 +673,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.276269Z", - "iopub.status.busy": "2024-05-15T12:32:17.275813Z", - "iopub.status.idle": "2024-05-15T12:32:17.279893Z", - "shell.execute_reply": "2024-05-15T12:32:17.279315Z" + "iopub.execute_input": "2024-05-15T12:39:23.518414Z", + "iopub.status.busy": "2024-05-15T12:39:23.517941Z", + "iopub.status.idle": "2024-05-15T12:39:23.522169Z", + "shell.execute_reply": "2024-05-15T12:39:23.521501Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.282178Z", - "iopub.status.busy": "2024-05-15T12:32:17.281977Z", - "iopub.status.idle": "2024-05-15T12:32:17.286732Z", - "shell.execute_reply": "2024-05-15T12:32:17.286148Z" + "iopub.execute_input": "2024-05-15T12:39:23.524471Z", + "iopub.status.busy": "2024-05-15T12:39:23.524270Z", + "iopub.status.idle": "2024-05-15T12:39:23.529133Z", + "shell.execute_reply": "2024-05-15T12:39:23.528566Z" }, "scrolled": false }, @@ -786,10 +786,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.289214Z", - "iopub.status.busy": "2024-05-15T12:32:17.288834Z", - "iopub.status.idle": "2024-05-15T12:32:17.292779Z", - "shell.execute_reply": "2024-05-15T12:32:17.292139Z" + "iopub.execute_input": "2024-05-15T12:39:23.531603Z", + "iopub.status.busy": "2024-05-15T12:39:23.531233Z", + "iopub.status.idle": "2024-05-15T12:39:23.535243Z", + "shell.execute_reply": "2024-05-15T12:39:23.534589Z" } }, "outputs": [ @@ -841,10 +841,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.295205Z", - "iopub.status.busy": "2024-05-15T12:32:17.294842Z", - "iopub.status.idle": "2024-05-15T12:32:19.947038Z", - "shell.execute_reply": "2024-05-15T12:32:19.946304Z" + "iopub.execute_input": "2024-05-15T12:39:23.537775Z", + "iopub.status.busy": "2024-05-15T12:39:23.537413Z", + "iopub.status.idle": "2024-05-15T12:39:26.181488Z", + "shell.execute_reply": "2024-05-15T12:39:26.180780Z" }, "scrolled": false }, diff --git a/_sources/tutorials/tutorial_time_series/tutorial_time_series.ipynb.txt b/_sources/tutorials/tutorial_time_series/tutorial_time_series.ipynb.txt index 64fb603ac..51f683c34 100644 --- a/_sources/tutorials/tutorial_time_series/tutorial_time_series.ipynb.txt +++ b/_sources/tutorials/tutorial_time_series/tutorial_time_series.ipynb.txt @@ -24,10 +24,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:01.117399Z", - "iopub.status.busy": "2024-05-15T12:32:01.117200Z", - "iopub.status.idle": "2024-05-15T12:32:01.618443Z", - "shell.execute_reply": "2024-05-15T12:32:01.617772Z" + "iopub.execute_input": "2024-05-15T12:39:07.466078Z", + "iopub.status.busy": "2024-05-15T12:39:07.465874Z", + "iopub.status.idle": "2024-05-15T12:39:07.852195Z", + "shell.execute_reply": "2024-05-15T12:39:07.851479Z" } }, "outputs": [ @@ -162,10 +162,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:01.654728Z", - "iopub.status.busy": "2024-05-15T12:32:01.654340Z", - "iopub.status.idle": "2024-05-15T12:32:04.161035Z", - "shell.execute_reply": "2024-05-15T12:32:04.160343Z" + "iopub.execute_input": "2024-05-15T12:39:07.892100Z", + "iopub.status.busy": "2024-05-15T12:39:07.891629Z", + "iopub.status.idle": "2024-05-15T12:39:10.416172Z", + "shell.execute_reply": "2024-05-15T12:39:10.415460Z" } }, "outputs": [ @@ -173,14 +173,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] } ], @@ -193,10 +193,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:04.164053Z", - "iopub.status.busy": "2024-05-15T12:32:04.163790Z", - "iopub.status.idle": "2024-05-15T12:32:04.167552Z", - "shell.execute_reply": "2024-05-15T12:32:04.167026Z" + "iopub.execute_input": "2024-05-15T12:39:10.419295Z", + "iopub.status.busy": "2024-05-15T12:39:10.418970Z", + "iopub.status.idle": "2024-05-15T12:39:10.422725Z", + "shell.execute_reply": "2024-05-15T12:39:10.422113Z" } }, "outputs": [], @@ -223,10 +223,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:04.170051Z", - "iopub.status.busy": "2024-05-15T12:32:04.169696Z", - "iopub.status.idle": "2024-05-15T12:32:04.173649Z", - "shell.execute_reply": "2024-05-15T12:32:04.173022Z" + "iopub.execute_input": "2024-05-15T12:39:10.425265Z", + "iopub.status.busy": "2024-05-15T12:39:10.424889Z", + "iopub.status.idle": "2024-05-15T12:39:10.428910Z", + "shell.execute_reply": "2024-05-15T12:39:10.428271Z" } }, "outputs": [ @@ -261,10 +261,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:04.176107Z", - "iopub.status.busy": "2024-05-15T12:32:04.175746Z", - "iopub.status.idle": "2024-05-15T12:32:08.372518Z", - "shell.execute_reply": "2024-05-15T12:32:08.371822Z" + "iopub.execute_input": "2024-05-15T12:39:10.431459Z", + "iopub.status.busy": "2024-05-15T12:39:10.431088Z", + "iopub.status.idle": "2024-05-15T12:39:14.560206Z", + "shell.execute_reply": "2024-05-15T12:39:14.559482Z" } }, "outputs": [ @@ -272,49 +272,49 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2872:Analyzing a sample of 2467\u001b[0m\n" + "\u001b[32mINFO:type_infer-2821:Analyzing a sample of 2467\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2872:from a total population of 2820, this is equivalent to 87.5% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2821:from a total population of 2820, this is equivalent to 87.5% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2872:Infering type for: Month\u001b[0m\n" + "\u001b[32mINFO:type_infer-2821:Infering type for: Month\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2872:Column Month has data type date\u001b[0m\n" + "\u001b[32mINFO:type_infer-2821:Column Month has data type date\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2872:Infering type for: Sunspots\u001b[0m\n" + "\u001b[32mINFO:type_infer-2821:Infering type for: Sunspots\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2872:Column Sunspots has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2821:Column Sunspots has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Starting statistical analysis\u001b[0m\n" ] }, { @@ -323,7 +323,7 @@ "text": [ "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/dataprep_ml/cleaners.py:163: UserWarning: The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", " result = pd.to_datetime(element,\n", - "\u001b[32mINFO:dataprep_ml-2872:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Finished statistical analysis\u001b[0m\n" ] } ], @@ -360,10 +360,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:08.375604Z", - "iopub.status.busy": "2024-05-15T12:32:08.375181Z", - "iopub.status.idle": "2024-05-15T12:32:10.298183Z", - "shell.execute_reply": "2024-05-15T12:32:10.297500Z" + "iopub.execute_input": "2024-05-15T12:39:14.563441Z", + "iopub.status.busy": "2024-05-15T12:39:14.563060Z", + "iopub.status.idle": "2024-05-15T12:39:16.481390Z", + "shell.execute_reply": "2024-05-15T12:39:16.480840Z" } }, "outputs": [ @@ -371,14 +371,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Starting statistical analysis\u001b[0m\n" ] }, { @@ -387,28 +387,28 @@ "text": [ "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/dataprep_ml/cleaners.py:163: UserWarning: The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", " result = pd.to_datetime(element,\n", - "\u001b[32mINFO:dataprep_ml-2872:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Finished statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `analyze_data` runtime: 0.06 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `analyze_data` runtime: 0.06 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Cleaning the data\u001b[0m\n" ] }, { @@ -417,133 +417,133 @@ "text": [ "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/dataprep_ml/cleaners.py:163: UserWarning: The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", " result = pd.to_datetime(element,\n", - "\u001b[32mINFO:dataprep_ml-2872:Transforming timeseries data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Transforming timeseries data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `preprocess` runtime: 0.09 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `preprocess` runtime: 0.09 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 3/8] - Data splitting\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 3/8] - Data splitting\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Splitting the data into train/test\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Splitting the data into train/test\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `split` runtime: 0.0 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `split` runtime: 0.0 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2872:Preparing sequentially...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2821:Preparing sequentially...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `prepare` runtime: 0.05 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `prepare` runtime: 0.05 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 5/8] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 5/8] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `featurize` runtime: 0.05 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `featurize` runtime: 0.04 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 6/8] - Mixer training\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 6/8] - Mixer training\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Training the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Training the mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:XGBoost running on CPU\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:XGBoost running on CPU\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:XGBoost running on CPU\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:XGBoost running on CPU\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:XGBoost running on CPU\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:XGBoost running on CPU\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:XGBoost running on CPU\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:XGBoost running on CPU\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:XGBoost running on CPU\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:XGBoost running on CPU\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:XGBoost running on CPU\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:XGBoost running on CPU\u001b[0m\n" ] }, { @@ -558,12 +558,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", - "[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", - "[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", - "[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", - "[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", - "[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n" + "[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", + "[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", + "[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", + "[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", + "[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", + "[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n" ] }, { @@ -575,168 +575,168 @@ "Consider using one of the following signatures instead:\n", "\taddcmul_(Tensor tensor1, Tensor tensor2, *, Number value) (Triggered internally at ../torch/csrc/utils/python_arg_parser.cpp:1578.)\n", " exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)\n", - "\u001b[32mINFO:lightwood-2872:Loss of 9.051180630922318 with learning rate 0.0001\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 9.051180630922318 with learning rate 0.0001\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss of 9.014871209859848 with learning rate 0.0005\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 9.014871209859848 with learning rate 0.0005\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss of 8.969509482383728 with learning rate 0.001\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 8.969509482383728 with learning rate 0.001\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss of 8.879052013158798 with learning rate 0.002\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 8.879052013158798 with learning rate 0.002\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss of 8.788950502872467 with learning rate 0.003\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 8.788950502872467 with learning rate 0.003\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss of 8.611965209245682 with learning rate 0.005\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 8.611965209245682 with learning rate 0.005\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss of 8.195775926113129 with learning rate 0.01\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 8.195775926113129 with learning rate 0.01\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss of 6.255893141031265 with learning rate 0.05\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 6.255893141031265 with learning rate 0.05\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Found learning rate of: 0.05\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Found learning rate of: 0.05\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 1: 0.5818348675966263\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 1: 0.5818348675966263\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 2: 0.4797109067440033\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 2: 0.4797109067440033\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 3: 0.48386093974113464\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 3: 0.48386093974113464\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 4: 0.49511992931365967\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 4: 0.49511992931365967\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 5: 0.39475560188293457\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 5: 0.39475560188293457\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 6: 0.39592696726322174\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 6: 0.39592696726322174\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 7: 0.3622782379388809\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 7: 0.3622782379388809\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 8: 0.38170479238033295\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 8: 0.38170479238033295\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 9: 0.5138543993234634\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 9: 0.5138543993234634\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 10: 0.6360723078250885\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 10: 0.6360723078250885\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 1: 0.29868809472430835\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 1: 0.29868809472430835\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 2: 0.30318967591632495\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 2: 0.30318967591632495\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `fit_mixer` runtime: 0.87 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `fit_mixer` runtime: 0.86 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Started fitting LGBM models for array prediction\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Started fitting LGBM models for array prediction\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Started fitting XGBoost model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Started fitting XGBoost model\u001b[0m\n" ] }, { @@ -750,14 +750,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:A single GBM iteration takes 0.1 seconds\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:A single GBM iteration takes 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.987446546555 seconds constraint\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.987055063248 seconds constraint\u001b[0m\n" ] }, { @@ -858,11 +858,18 @@ "[13]\tvalidation_0-rmse:15.87505\n" ] }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[14]\tvalidation_0-rmse:16.06330\n" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Started fitting XGBoost model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Started fitting XGBoost model\u001b[0m\n" ] }, { @@ -876,14 +883,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:A single GBM iteration takes 0.1 seconds\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:A single GBM iteration takes 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.988590955734 seconds constraint\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.986838340759 seconds constraint\u001b[0m\n" ] }, { @@ -984,11 +991,18 @@ "[13]\tvalidation_0-rmse:17.75939\n" ] }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[14]\tvalidation_0-rmse:17.84796\n" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Started fitting XGBoost model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Started fitting XGBoost model\u001b[0m\n" ] }, { @@ -1002,14 +1016,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:A single GBM iteration takes 0.1 seconds\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:A single GBM iteration takes 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.988853693008 seconds constraint\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.9879677295685 seconds constraint\u001b[0m\n" ] }, { @@ -1107,7 +1121,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Started fitting XGBoost model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Started fitting XGBoost model\u001b[0m\n" ] }, { @@ -1121,14 +1135,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:A single GBM iteration takes 0.1 seconds\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:A single GBM iteration takes 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.988720655441 seconds constraint\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.9887981414795 seconds constraint\u001b[0m\n" ] }, { @@ -1142,14 +1156,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[1]\tvalidation_0-rmse:34.13289" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" + "[1]\tvalidation_0-rmse:34.13289\n" ] }, { @@ -1240,7 +1247,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Started fitting XGBoost model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Started fitting XGBoost model\u001b[0m\n" ] }, { @@ -1254,14 +1261,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:A single GBM iteration takes 0.1 seconds\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:A single GBM iteration takes 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.9883551597595 seconds constraint\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.988205194473 seconds constraint\u001b[0m\n" ] }, { @@ -1289,14 +1296,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[3]\tvalidation_0-rmse:24.63817" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" + "[3]\tvalidation_0-rmse:24.63817\n" ] }, { @@ -1338,28 +1338,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "[9]\tvalidation_0-rmse:22.10747" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" + "[9]\tvalidation_0-rmse:22.10747\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[10]\tvalidation_0-rmse:22.20352" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" + "[10]\tvalidation_0-rmse:22.20352\n" ] }, { @@ -1373,42 +1359,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "[12]\tvalidation_0-rmse:22.25308" + "[12]\tvalidation_0-rmse:22.25308\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[13]\tvalidation_0-rmse:22.31415" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[14]\tvalidation_0-rmse:22.31000\n" + "[13]\tvalidation_0-rmse:22.31415\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Started fitting XGBoost model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Started fitting XGBoost model\u001b[0m\n" ] }, { @@ -1422,14 +1387,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:A single GBM iteration takes 0.1 seconds\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:A single GBM iteration takes 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.988573551178 seconds constraint\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.987644195557 seconds constraint\u001b[0m\n" ] }, { @@ -1492,14 +1457,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[8]\tvalidation_0-rmse:21.74380" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" + "[8]\tvalidation_0-rmse:21.74380\n" ] }, { @@ -1537,130 +1495,123 @@ "[13]\tvalidation_0-rmse:21.68890\n" ] }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[14]\tvalidation_0-rmse:21.70025\n" - ] - }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `fit_mixer` runtime: 0.5 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `fit_mixer` runtime: 0.5 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Ensembling the mixer\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Ensembling the mixer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Mixer: NeuralTs got accuracy: 0.875\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Mixer: NeuralTs got accuracy: 0.875\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:This model does not output probability estimates\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:This model does not output probability estimates\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Mixer: XGBoostArrayMixer got accuracy: 0.869\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Mixer: XGBoostArrayMixer got accuracy: 0.869\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Picked best mixer: NeuralTs\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Picked best mixer: NeuralTs\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `fit` runtime: 1.41 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `fit` runtime: 1.4 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Analyzing the ensemble of mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Analyzing the ensemble of mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block ICP is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block ICP is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block ConfStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block ConfStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block AccStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block AccStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:Block 'PermutationFeatureImportance' does not support time series nor text encoding, skipping...\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:Block 'PermutationFeatureImportance' does not support time series nor text encoding, skipping...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `analyze_ensemble` runtime: 0.16 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `analyze_ensemble` runtime: 0.16 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Updating the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Updating the mixers\u001b[0m\n" ] }, { @@ -1668,84 +1619,78 @@ "output_type": "stream", "text": [ "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/torch/amp/grad_scaler.py:131: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available. Disabling.\n", - " warnings.warn(\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 1: 0.29626286526521045\u001b[0m\n" + " warnings.warn(\n", + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 1: 0.29626286526521045\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 2: 0.2954987535874049\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 2: 0.2954987535874049\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Updating array of LGBM models...\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Updating array of LGBM models...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `adjust` runtime: 0.09 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `adjust` runtime: 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `learn` runtime: 1.92 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `learn` runtime: 1.91 seconds\u001b[0m\n" ] } ], @@ -1767,10 +1712,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:10.301152Z", - "iopub.status.busy": "2024-05-15T12:32:10.300912Z", - "iopub.status.idle": "2024-05-15T12:32:10.529312Z", - "shell.execute_reply": "2024-05-15T12:32:10.528664Z" + "iopub.execute_input": "2024-05-15T12:39:16.484128Z", + "iopub.status.busy": "2024-05-15T12:39:16.483722Z", + "iopub.status.idle": "2024-05-15T12:39:16.713196Z", + "shell.execute_reply": "2024-05-15T12:39:16.712480Z" } }, "outputs": [ @@ -1778,20 +1723,20 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "/tmp/11cf2e3a3fe2d38f7293f27fbfc34dab78123e8d8e63ffa417157763283658414.py:587: SettingWithCopyWarning: \n", + "/tmp/b9f9761599676d055346cd2b368083bd2229f6aecb71536117157767545533166.py:587: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " data[col] = [None] * len(data)\n", - "\u001b[32mINFO:dataprep_ml-2872:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Cleaning the data\u001b[0m\n" ] }, { @@ -1800,119 +1745,119 @@ "text": [ "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/dataprep_ml/cleaners.py:163: UserWarning: The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", " result = pd.to_datetime(element,\n", - "\u001b[32mINFO:dataprep_ml-2872:Transforming timeseries data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Transforming timeseries data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `preprocess` runtime: 0.02 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `preprocess` runtime: 0.02 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Predict phase 2/4] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Predict phase 2/4] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `featurize` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `featurize` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `_timed_call` runtime: 0.09 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `_timed_call` runtime: 0.09 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Predict phase 4/4] - Analyzing output\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Predict phase 4/4] - Analyzing output\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block ICP is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block ICP is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block ConfStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block ConfStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block AccStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block AccStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `explain` runtime: 0.09 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `explain` runtime: 0.09 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `predict` runtime: 0.22 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `predict` runtime: 0.22 seconds\u001b[0m\n" ] } ], @@ -1932,10 +1877,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:10.531834Z", - "iopub.status.busy": "2024-05-15T12:32:10.531626Z", - "iopub.status.idle": "2024-05-15T12:32:10.542916Z", - "shell.execute_reply": "2024-05-15T12:32:10.542282Z" + "iopub.execute_input": "2024-05-15T12:39:16.715848Z", + "iopub.status.busy": "2024-05-15T12:39:16.715440Z", + "iopub.status.idle": "2024-05-15T12:39:16.726742Z", + "shell.execute_reply": "2024-05-15T12:39:16.726049Z" } }, "outputs": [ @@ -2040,10 +1985,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:10.545546Z", - "iopub.status.busy": "2024-05-15T12:32:10.545158Z", - "iopub.status.idle": "2024-05-15T12:32:10.951600Z", - "shell.execute_reply": "2024-05-15T12:32:10.950867Z" + "iopub.execute_input": "2024-05-15T12:39:16.729246Z", + "iopub.status.busy": "2024-05-15T12:39:16.728891Z", + "iopub.status.idle": "2024-05-15T12:39:17.132478Z", + "shell.execute_reply": "2024-05-15T12:39:17.131830Z" } }, "outputs": [], @@ -2056,10 +2001,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:10.954775Z", - "iopub.status.busy": "2024-05-15T12:32:10.954472Z", - "iopub.status.idle": "2024-05-15T12:32:11.144915Z", - "shell.execute_reply": "2024-05-15T12:32:11.144230Z" + "iopub.execute_input": "2024-05-15T12:39:17.135502Z", + "iopub.status.busy": "2024-05-15T12:39:17.135009Z", + "iopub.status.idle": "2024-05-15T12:39:17.315414Z", + "shell.execute_reply": "2024-05-15T12:39:17.314713Z" } }, "outputs": [ diff --git a/_sources/tutorials/tutorial_update_models/tutorial_update_models.ipynb.txt b/_sources/tutorials/tutorial_update_models/tutorial_update_models.ipynb.txt index 32ca35f36..baad7f850 100644 --- a/_sources/tutorials/tutorial_update_models/tutorial_update_models.ipynb.txt +++ b/_sources/tutorials/tutorial_update_models/tutorial_update_models.ipynb.txt @@ -21,10 +21,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:30.371645Z", - "iopub.status.busy": "2024-05-15T12:31:30.371452Z", - "iopub.status.idle": "2024-05-15T12:31:33.203343Z", - "shell.execute_reply": "2024-05-15T12:31:33.202682Z" + "iopub.execute_input": "2024-05-15T12:38:36.597254Z", + "iopub.status.busy": "2024-05-15T12:38:36.597058Z", + "iopub.status.idle": "2024-05-15T12:38:39.444383Z", + "shell.execute_reply": "2024-05-15T12:38:39.443711Z" } }, "outputs": [ @@ -32,14 +32,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] } ], @@ -53,10 +53,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:33.206422Z", - "iopub.status.busy": "2024-05-15T12:31:33.206158Z", - "iopub.status.idle": "2024-05-15T12:31:33.429712Z", - "shell.execute_reply": "2024-05-15T12:31:33.429076Z" + "iopub.execute_input": "2024-05-15T12:38:39.447713Z", + "iopub.status.busy": "2024-05-15T12:38:39.447197Z", + "iopub.status.idle": "2024-05-15T12:38:39.569705Z", + "shell.execute_reply": "2024-05-15T12:38:39.568972Z" } }, "outputs": [ @@ -98,10 +98,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:33.432194Z", - "iopub.status.busy": "2024-05-15T12:31:33.431990Z", - "iopub.status.idle": "2024-05-15T12:31:34.871737Z", - "shell.execute_reply": "2024-05-15T12:31:34.871077Z" + "iopub.execute_input": "2024-05-15T12:38:39.572420Z", + "iopub.status.busy": "2024-05-15T12:38:39.572012Z", + "iopub.status.idle": "2024-05-15T12:38:41.013683Z", + "shell.execute_reply": "2024-05-15T12:38:41.013049Z" }, "scrolled": true }, @@ -110,364 +110,364 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Analyzing a sample of 979\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Analyzing a sample of 979\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:from a total population of 1030, this is equivalent to 95.0% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:from a total population of 1030, this is equivalent to 95.0% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Using 3 processes to deduct types.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Using 3 processes to deduct types.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: cement\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: cement\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: slag\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: slag\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column cement has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column slag has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column slag has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column cement has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: water\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: water\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: flyAsh\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: flyAsh\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column water has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column water has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column flyAsh has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column flyAsh has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: superPlasticizer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: superPlasticizer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: coarseAggregate\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: coarseAggregate\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column coarseAggregate has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: id\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column superPlasticizer has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column coarseAggregate has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: fineAggregate\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column superPlasticizer has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: age\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column id has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column age has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: fineAggregate\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: concrete_strength\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: age\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column fineAggregate has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: concrete_strength\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column concrete_strength has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column age has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: id\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column fineAggregate has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column id has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column concrete_strength has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Finished statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Finished statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `analyze_data` runtime: 0.02 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `analyze_data` runtime: 0.02 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `preprocess` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `preprocess` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 3/8] - Data splitting\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 3/8] - Data splitting\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Splitting the data into train/test\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Splitting the data into train/test\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `split` runtime: 0.0 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `split` runtime: 0.0 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing sequentially...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing sequentially...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for id...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for id...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for cement...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for cement...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for slag...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for slag...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for flyAsh...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for flyAsh...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for water...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for water...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for superPlasticizer...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for superPlasticizer...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for coarseAggregate...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for coarseAggregate...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for fineAggregate...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for fineAggregate...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for age...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for age...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `prepare` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `prepare` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 5/8] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 5/8] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `featurize` runtime: 0.06 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `featurize` runtime: 0.06 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 6/8] - Mixer training\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 6/8] - Mixer training\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Training the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Training the mixers\u001b[0m\n" ] }, { @@ -487,224 +487,224 @@ "Consider using one of the following signatures instead:\n", "\taddcmul_(Tensor tensor1, Tensor tensor2, *, Number value) (Triggered internally at ../torch/csrc/utils/python_arg_parser.cpp:1578.)\n", " exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)\n", - "\u001b[32mINFO:lightwood-2759:Loss of 39.99637508392334 with learning rate 0.0001\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of 39.99637508392334 with learning rate 0.0001\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss of 21.826460361480713 with learning rate 0.0005\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of 21.826460361480713 with learning rate 0.0005\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss of 15.12899512052536 with learning rate 0.001\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of 15.12899512052536 with learning rate 0.001\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss of 15.062753021717072 with learning rate 0.002\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of 15.062753021717072 with learning rate 0.002\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss of 26.490495562553406 with learning rate 0.003\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of 26.490495562553406 with learning rate 0.003\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss of 33.6572003364563 with learning rate 0.005\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of 33.6572003364563 with learning rate 0.005\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss of 303.60721158981323 with learning rate 0.01\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of 303.60721158981323 with learning rate 0.01\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss of nan with learning rate 0.05\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of nan with learning rate 0.05\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Found learning rate of: 0.002\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Found learning rate of: 0.002\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 1: 0.11838734149932861\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 1: 0.11838734149932861\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 2: 0.4641949534416199\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 2: 0.4641949534416199\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 3: 0.3976145386695862\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 3: 0.3976145386695862\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 4: 0.3706841468811035\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 4: 0.3706841468811035\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 5: 0.2367912232875824\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 5: 0.2367912232875824\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 6: 0.22560915350914001\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 6: 0.22560915350914001\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 7: 0.12089195847511292\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 7: 0.12089195847511292\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `fit_mixer` runtime: 0.52 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `fit_mixer` runtime: 0.53 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Ensembling the mixer\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Ensembling the mixer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Mixer: Neural got accuracy: 0.238\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Mixer: Neural got accuracy: 0.238\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Picked best mixer: Neural\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Picked best mixer: Neural\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `fit` runtime: 0.53 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `fit` runtime: 0.54 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Analyzing the ensemble of mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Analyzing the ensemble of mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block ICP is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block ICP is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block ConfStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block ConfStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block AccStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block AccStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:[PFI] Using a random sample (1000 rows out of 10).\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:[PFI] Using a random sample (1000 rows out of 10).\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:[PFI] Set to consider first 10 columns out of 9: ['id', 'cement', 'slag', 'flyAsh', 'water', 'superPlasticizer', 'coarseAggregate', 'fineAggregate', 'age'].\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:[PFI] Set to consider first 10 columns out of 9: ['id', 'cement', 'slag', 'flyAsh', 'water', 'superPlasticizer', 'coarseAggregate', 'fineAggregate', 'age'].\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `analyze_ensemble` runtime: 0.15 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `analyze_ensemble` runtime: 0.15 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Updating the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Updating the mixers\u001b[0m\n" ] }, { @@ -719,21 +719,21 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 1: 0.1678172747294108\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 1: 0.1678172747294108\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `adjust` runtime: 0.03 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `adjust` runtime: 0.03 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `learn` runtime: 0.82 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `learn` runtime: 0.83 seconds\u001b[0m\n" ] } ], @@ -770,10 +770,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:34.874734Z", - "iopub.status.busy": "2024-05-15T12:31:34.874316Z", - "iopub.status.idle": "2024-05-15T12:31:35.015369Z", - "shell.execute_reply": "2024-05-15T12:31:35.014803Z" + "iopub.execute_input": "2024-05-15T12:38:41.016512Z", + "iopub.status.busy": "2024-05-15T12:38:41.016092Z", + "iopub.status.idle": "2024-05-15T12:38:41.160419Z", + "shell.execute_reply": "2024-05-15T12:38:41.159845Z" } }, "outputs": [ @@ -781,126 +781,126 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `preprocess` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `preprocess` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 2/4] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 2/4] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `featurize` runtime: 0.03 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `featurize` runtime: 0.03 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `_timed_call` runtime: 0.03 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `_timed_call` runtime: 0.03 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 4/4] - Analyzing output\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 4/4] - Analyzing output\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block ICP is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block ICP is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block ConfStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block ConfStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block AccStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block AccStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `explain` runtime: 0.05 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `explain` runtime: 0.05 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `predict` runtime: 0.13 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `predict` runtime: 0.13 seconds\u001b[0m\n" ] }, { @@ -1094,10 +1094,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:35.017903Z", - "iopub.status.busy": "2024-05-15T12:31:35.017554Z", - "iopub.status.idle": "2024-05-15T12:31:35.127911Z", - "shell.execute_reply": "2024-05-15T12:31:35.127311Z" + "iopub.execute_input": "2024-05-15T12:38:41.162902Z", + "iopub.status.busy": "2024-05-15T12:38:41.162689Z", + "iopub.status.idle": "2024-05-15T12:38:41.276226Z", + "shell.execute_reply": "2024-05-15T12:38:41.275636Z" } }, "outputs": [ @@ -1105,35 +1105,35 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `preprocess` runtime: 0.02 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `preprocess` runtime: 0.02 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `preprocess` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `preprocess` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Updating the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Updating the mixers\u001b[0m\n" ] }, { @@ -1148,14 +1148,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 1: 0.10915952424208324\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 1: 0.10915952424208324\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `adjust` runtime: 0.11 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `adjust` runtime: 0.11 seconds\u001b[0m\n" ] } ], @@ -1168,10 +1168,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:35.130571Z", - "iopub.status.busy": "2024-05-15T12:31:35.130366Z", - "iopub.status.idle": "2024-05-15T12:31:35.268592Z", - "shell.execute_reply": "2024-05-15T12:31:35.267965Z" + "iopub.execute_input": "2024-05-15T12:38:41.279047Z", + "iopub.status.busy": "2024-05-15T12:38:41.278590Z", + "iopub.status.idle": "2024-05-15T12:38:41.418298Z", + "shell.execute_reply": "2024-05-15T12:38:41.417642Z" } }, "outputs": [ @@ -1179,126 +1179,126 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `preprocess` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `preprocess` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 2/4] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 2/4] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `featurize` runtime: 0.03 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `featurize` runtime: 0.03 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `_timed_call` runtime: 0.03 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `_timed_call` runtime: 0.03 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 4/4] - Analyzing output\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 4/4] - Analyzing output\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block ICP is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block ICP is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block ConfStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block ConfStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block AccStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block AccStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `explain` runtime: 0.05 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `explain` runtime: 0.05 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `predict` runtime: 0.13 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `predict` runtime: 0.13 seconds\u001b[0m\n" ] }, { @@ -1462,10 +1462,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:35.271408Z", - "iopub.status.busy": "2024-05-15T12:31:35.270879Z", - "iopub.status.idle": "2024-05-15T12:31:35.276560Z", - "shell.execute_reply": "2024-05-15T12:31:35.275925Z" + "iopub.execute_input": "2024-05-15T12:38:41.421175Z", + "iopub.status.busy": "2024-05-15T12:38:41.420697Z", + "iopub.status.idle": "2024-05-15T12:38:41.426502Z", + "shell.execute_reply": "2024-05-15T12:38:41.425844Z" } }, "outputs": [ diff --git a/searchindex.js b/searchindex.js index 01a52c7e5..2bcaddd65 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["analysis", "api", "api/dtype", "api/encode", "api/high_level", "api/json_ai", "api/predictor", "api/types", "data", "encoder", "ensemble", "helpers", "index", "lightwood_philosophy", "mixer", "tutorials", "tutorials/README", "tutorials/custom_cleaner/custom_cleaner", "tutorials/custom_encoder_rulebased/custom_encoder_rulebased", "tutorials/custom_explainer/custom_explainer", "tutorials/custom_mixer/custom_mixer", "tutorials/custom_splitter/custom_splitter", "tutorials/tutorial_data_analysis/tutorial_data_analysis", "tutorials/tutorial_time_series/tutorial_time_series", "tutorials/tutorial_update_models/tutorial_update_models"], "filenames": ["analysis.rst", "api.rst", "api/dtype.rst", "api/encode.rst", "api/high_level.rst", "api/json_ai.rst", "api/predictor.rst", "api/types.rst", "data.rst", "encoder.rst", "ensemble.rst", "helpers.rst", "index.rst", "lightwood_philosophy.rst", "mixer.rst", "tutorials.rst", "tutorials/README.md", "tutorials/custom_cleaner/custom_cleaner.ipynb", "tutorials/custom_encoder_rulebased/custom_encoder_rulebased.ipynb", "tutorials/custom_explainer/custom_explainer.ipynb", "tutorials/custom_mixer/custom_mixer.ipynb", "tutorials/custom_splitter/custom_splitter.ipynb", "tutorials/tutorial_data_analysis/tutorial_data_analysis.ipynb", "tutorials/tutorial_time_series/tutorial_time_series.ipynb", "tutorials/tutorial_update_models/tutorial_update_models.ipynb"], "titles": ["Analysis", "API", "Data Types (dtypes)", "Encode your data", "JSON-AI Config", "JSON-AI Config", "Predictor Interface", "Lightwood API Types", "Data", "Encoders", "Ensemble", "Helpers", "Lightwood", "Lightwood Philosophy", "Mixers", "Tutorials", "How to make a tutorial notebook?", "Using your own pre-processing methods in Lightwood", "Custom Encoder: Rule-Based", "Tutorial - Implementing a custom analysis block in Lightwood", "Tutorial - Implementing a custom mixer in Lightwood", "Build your own training/testing split", "Tutorial - Introduction to Lightwood\u2019s statistical analysis", "Tutorial - Time series forecasting", "Introduction"], "terms": {"analys": 0, "mixer": [0, 6, 7, 9, 10, 12, 13, 15, 17, 18, 19, 21, 22, 23, 24], "ensembl": [0, 6, 7, 12, 13, 14, 17, 19, 20, 21, 23, 24], "extract": [0, 7, 8, 13, 17, 21], "static": [0, 7], "insight": [0, 7, 8, 17, 19, 20, 21, 22, 23, 24], "train": [0, 4, 5, 6, 7, 8, 9, 12, 14, 15, 17, 18, 19, 20, 22], "predict": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24], "time": [0, 7, 8, 9, 11, 12, 13, 14, 17, 19, 21], "model": [0, 5, 6, 7, 8, 9, 10, 14, 15, 17, 18, 19, 20, 21, 22, 23], "dynam": [0, 7, 9], "class": [0, 2, 6, 7, 8, 9, 10, 11, 13, 14, 17, 18, 19, 20, 21, 22], "accstat": [0, 12, 17, 19, 20, 21, 23, 24], "dep": [0, 17, 19, 21], "icp": [0, 7, 12, 17, 19, 20, 21, 23, 24], "sourc": [0, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 20, 21], "comput": [0, 6, 8, 9, 11, 17, 19, 21], "accuraci": [0, 6, 7, 9, 10, 17, 19, 20, 21, 23, 24], "stat": [0, 13, 14, 17, 18, 21], "confus": [0, 7, 19], "matrix": [0, 7, 19], "valid": [0, 5, 7, 10, 12, 14, 17, 19, 20, 21, 23, 24], "dataset": [0, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24], "analyz": [0, 7, 8, 12, 17, 18, 19, 20, 21, 22, 23, 24], "info": [0, 9, 14, 17, 18, 19, 20, 21, 22, 23, 24], "kwarg": [0, 10, 17, 19, 21], "thi": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "method": [0, 4, 7, 8, 9, 10, 12, 13, 14, 18, 19, 20, 21, 23, 24], "should": [0, 5, 7, 9, 10, 12, 13, 14, 16, 17, 18, 19, 21, 23], "call": [0, 4, 5, 7, 8, 9, 10, 12, 13, 14, 18, 19, 20, 22, 23, 24], "onc": [0, 7, 12, 14, 17, 18, 19, 20, 21, 23], "dure": [0, 5, 9, 14], "phase": [0, 8, 9, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24], "all": [0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24], "It": [0, 4, 9, 11, 13, 14, 17, 23], "ani": [0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 22, 24], "inform": [0, 2, 6, 7, 9, 14, 17, 19, 21], "block": [0, 7, 8, 13, 17, 20, 21, 22, 23, 24], "mai": [0, 2, 5, 7, 8, 9, 12, 14, 16, 17, 18, 21, 22], "either": [0, 7, 8, 9, 11, 13, 18], "output": [0, 6, 7, 8, 9, 10, 13, 14, 18, 19, 20, 23, 24], "object": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 24], "us": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24], "infer": [0, 2, 6, 7, 8, 9, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24], "when": [0, 4, 7, 9, 10, 11, 14, 17, 19, 21, 22, 24], "explain": [0, 7, 12, 13, 15, 17, 19, 20, 21, 23, 24], "i": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "case": [0, 7, 8, 9, 10, 17, 18, 19, 20, 21, 22], "make": [0, 7, 9, 12, 13, 15, 17, 18, 20, 21, 22, 23], "sure": [0, 12, 17, 23], "need": [0, 6, 7, 9, 12, 14, 16, 18, 20, 22, 23, 24], "ar": [0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "ad": [0, 7, 12, 14, 19], "runtim": [0, 17, 18, 19, 20, 21, 23, 24], "so": [0, 7, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "can": [0, 5, 6, 7, 9, 10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "access": [0, 17, 18, 21, 22], "them": [0, 6, 9, 11, 12, 13, 16, 17, 19, 20, 22, 23, 24], "rtype": [0, 6, 7, 9], "dict": [0, 4, 6, 7, 8, 9, 14, 17, 19, 20, 21, 24], "str": [0, 4, 5, 6, 7, 8, 9, 14, 17, 18, 19, 20, 21], "paramet": [0, 4, 5, 6, 7, 8, 9, 11, 14, 20, 21, 22, 23], "dictionari": [0, 4, 6, 7, 8, 9, 12, 14, 17, 18, 19, 21], "where": [0, 7, 8, 9, 10, 12, 14, 17, 18, 19, 20, 21, 22], "new": [0, 2, 4, 6, 7, 9, 12, 14, 15, 17, 19, 21, 24], "The": [0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24], "next": [0, 4, 14, 23], "previou": [0, 7, 9, 12, 19], "start": [0, 6, 10, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24], "point": [0, 7, 8, 9, 14, 18, 19, 23], "type": [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "param": [0, 5, 6, 7, 9, 14, 17, 18, 21], "name": [0, 5, 7, 8, 9, 12, 14, 17, 18, 21, 22], "variabl": [0, 11, 17], "from": [0, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24], "core": [0, 11, 12, 13, 14, 17, 19], "rest": [0, 7, 8, 14, 22, 23], "pipelin": [0, 2, 5, 6, 7, 8, 12, 16, 18, 19, 22, 23], "baseanalysisblock": [0, 12, 19], "inherit": [0, 2, 6, 8, 13, 14, 18, 19], "row_insight": [0, 19], "global_insight": [0, 17, 19, 21], "addit": [0, 6, 7, 9, 12, 13, 14, 17, 18, 19, 22, 23, 24], "explan": [0, 13], "an": [0, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "instanc": [0, 6, 7, 14, 21, 22], "level": [0, 7, 10, 11, 13, 18, 23], "row": [0, 6, 7, 8, 9, 12, 18, 19, 20, 21, 22, 23, 24], "wise": [0, 6, 9, 14], "global": [0, 12, 14, 16], "For": [0, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24], "former": [0, 19], "return": [0, 4, 5, 6, 7, 8, 9, 10, 11, 14, 17, 18, 19, 20, 21, 23], "data": [0, 1, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 22, 24], "frame": [0, 6, 8, 13, 18, 21], "latter": [0, 19], "requir": [0, 5, 6, 7, 11, 12, 13, 14, 16, 17, 18, 19, 21, 24], "datafram": [0, 4, 6, 7, 8, 11, 12, 16, 17, 18, 19, 20, 21, 23, 24], "previous": [0, 5, 6, 9, 18, 19], "concern": 0, "itself": [0, 13, 22], "tupl": [0, 7, 9, 11, 19], "modifi": [0, 4, 13, 17, 18, 19, 22, 24], "input": [0, 2, 6, 7, 9, 11, 12, 14, 17, 18, 20, 21, 23], "here": [0, 9, 12, 17, 18, 21, 22], "confstat": [0, 12, 17, 19, 20, 21, 23, 24], "ece_bin": 0, "10": [0, 9, 12, 14, 18, 19, 20, 22, 23, 24], "confid": [0, 7, 11, 13, 19, 20, 23, 24], "relat": [0, 17], "statist": [0, 6, 13, 17, 18, 19, 20, 21, 23, 24], "held": [0, 7, 14, 19, 24], "out": [0, 6, 7, 9, 12, 13, 14, 17, 18, 20, 21, 22, 24], "todo": [0, 7, 9, 11, 17, 21], "regress": [0, 6, 10, 12, 14, 17, 18, 19, 20, 21], "forecast": [0, 7, 8, 9, 10, 14], "task": [0, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 24], "confidence_norm": [0, 17, 21], "fals": [0, 6, 7, 9, 11, 14, 17, 18, 20, 21, 22, 23, 24], "fixed_signific": [0, 17, 21], "none": [0, 4, 6, 7, 8, 9, 10, 11, 14, 17, 18, 20, 21, 22, 23], "estim": [0, 6, 7, 14, 17, 19, 21, 23], "induct": [0, 19], "conform": [0, 7, 19], "predictor": [0, 1, 4, 7, 12, 13, 14, 17, 19, 20, 21, 22], "agnost": [0, 17], "permutationfeatureimport": [0, 12, 17, 19, 20, 21, 23, 24], "disable_column_import": 0, "row_limit": 0, "1000": [0, 14, 19, 20, 24], "col_limit": 0, "A": [0, 4, 5, 6, 7, 8, 9, 11, 13, 14, 17, 19, 21, 23], "c": [0, 9, 19], "": [0, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24], "t": [0, 5, 6, 7, 9, 11, 12, 13, 14, 17, 19, 20, 21, 22], "column": [0, 2, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 23, 24], "import": [0, 2, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24], "via": [0, 4, 6, 7, 9, 10, 12, 13, 14, 16, 18], "permut": 0, "roughli": 0, "speak": 0, "procedur": [0, 2, 5, 7, 8, 9, 13, 14, 17, 19, 21, 24], "iter": [0, 9, 11, 14, 19, 23], "over": [0, 7, 8, 9, 17], "option": [0, 4, 6, 7, 8, 9, 11, 12, 14, 17, 18, 20, 21, 24], "shuffl": [0, 21], "its": [0, 5, 6, 7, 9, 12, 13, 14, 17, 19, 20, 21, 23, 24], "valu": [0, 5, 6, 7, 8, 9, 11, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24], "gener": [0, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 19, 20, 22, 24], "compar": [0, 11, 14, 18, 19, 24], "obtain": [0, 7, 8, 10], "unshuffl": 0, "differ": [0, 7, 9, 14, 16, 17, 19, 22, 23, 24], "normal": [0, 7, 8, 9, 13, 22], "respect": [0, 6, 7, 9, 10, 13, 14, 19, 21, 24], "origin": [0, 7, 8, 9, 13, 14, 17, 18, 20, 21, 24], "clip": 0, "zero": [0, 11], "neg": [0, 17], "report": [0, 7, 9], "score": [0, 6, 7, 10, 11, 14, 17, 21], "note": [0, 7, 8, 9, 10, 12, 14, 17, 18, 19, 21, 23, 24], "crucial": [0, 19, 22], "doe": [0, 6, 9, 12, 14, 17, 19, 22, 23, 24], "refit": [0, 14], "set": [0, 6, 7, 8, 9, 10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "0": [0, 7, 9, 11, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24], "entir": [0, 6, 7, 8, 10, 12, 14, 17, 18, 19, 21, 22, 23], "consid": [0, 7, 9, 11, 14, 17, 18, 19, 20, 21, 22, 23, 24], "possibl": [0, 5, 7, 9, 12, 13, 14], "refer": [0, 7, 8, 9, 13, 14, 17, 18, 21, 22], "http": [0, 9, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24], "scikit": [0, 14, 21], "learn": [0, 2, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24], "org": [0, 9, 14, 23], "stabl": [0, 14, 17, 19, 21, 22, 23], "modul": [0, 1, 7, 8, 9, 12, 13, 14, 16, 18, 19, 20, 24], "permutation_import": 0, "html": [0, 14, 23], "compstat": 0, "lmu": 0, "github": [0, 12, 16, 17, 20, 21], "io": 0, "iml_methods_limit": 0, "pfi": [0, 19, 20, 24], "tempscal": [0, 12], "mit": 0, "licens": [0, 17], "com": [0, 12, 17, 18, 19, 20, 21, 22, 23, 24], "gpleiss": 0, "temperature_sc": 0, "nb": 0, "neural": [0, 9, 12, 14, 17, 18, 19, 20, 21, 24], "network": [0, 9, 14], "classif": [0, 6, 9, 10, 14, 20], "logit": [0, 9], "NOT": [0, 9], "softmax": [0, 10, 14], "log": [0, 9, 11, 17, 18, 21], "tune": [0, 9, 12, 14, 21], "temperatur": 0, "optim": [0, 10, 14, 20], "nll": 0, "perform": [0, 6, 7, 8, 9, 10, 12, 13, 14, 17, 18, 19, 21], "scale": [0, 7, 9, 11], "encoded_data": [0, 9, 17, 18, 21], "target_nam": [0, 17, 21], "target_dtyp": [0, 17, 21], "problem_definit": [0, 4, 5, 7, 12, 17, 18, 19, 20, 21, 22, 23, 24], "stat_analysi": [0, 17, 21], "pred_arg": [0, 8, 17, 21, 24], "runtime_analysi": [0, 17, 21], "explainer_block": [0, 17, 21], "ts_analysi": [0, 10, 14, 17, 21], "run": [0, 5, 7, 9, 10, 12, 13, 14, 16, 18, 20, 23, 24], "end": [0, 6, 7, 12, 14, 17, 20, 21], "everi": [0, 5, 6, 7, 8, 9, 14, 19, 24], "Its": [0, 9], "goal": [0, 7, 12, 17, 18, 19, 21], "potenti": [0, 10, 13, 21], "stage": [0, 12, 24], "e": [0, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 24], "g": [0, 7, 8, 9, 12, 13, 14, 16, 19, 22, 24], "As": [0, 6, 14, 17, 19, 21, 22, 23, 24], "user": [0, 1, 2, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17, 19, 22], "specifi": [0, 4, 5, 6, 7, 9, 11, 12, 14, 17, 18, 19, 21, 22, 23], "see": [0, 2, 7, 8, 9, 11, 12, 18, 19, 22, 23, 24], "also": [0, 6, 7, 9, 11, 12, 13, 14, 17, 19, 20, 21, 22], "contain": [0, 4, 5, 6, 7, 9, 11, 13, 14, 17, 20, 21, 24], "model_analyz": [0, 12, 17, 21], "train_data": [0, 14, 17, 18, 19, 20, 21, 24], "stats_info": [0, 17, 19, 21], "target": [0, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24], "pdef": [0, 12, 17, 18, 19, 20, 21, 23, 24], "dtype_dict": [0, 7, 8, 10, 14, 17, 18, 19, 20, 21, 22], "accuracy_funct": [0, 7, 10, 17, 18, 19, 20, 21, 24], "analysis_block": [0, 7, 17, 19, 21], "subset": [0, 8, 14, 24], "evalu": [0, 6, 7, 10, 17, 21, 23], "featur": [0, 2, 5, 6, 7, 9, 10, 11, 14, 17, 18, 19, 20, 21, 23, 24], "calibr": [0, 19], "futur": [0, 7, 8, 9, 23], "addition": [0, 7, 22], "modelanalysi": [0, 7, 12], "runtime_analyz": [0, 17, 19, 21], "get": [0, 7, 8, 11, 12, 13, 14, 17, 18, 20, 21, 22, 24], "popul": [0, 5, 6, 7, 9, 17, 18, 19, 20, 21, 22, 23, 24], "sequenti": [0, 9, 17, 18, 19, 20, 21, 23, 24], "fashion": [0, 13], "store": [0, 6, 7, 8, 10, 13, 17, 19, 21, 22], "model_analysi": [0, 17, 21], "metric": [0, 6, 7, 17, 19, 20, 21, 24], "necessarili": 0, "how": [1, 2, 5, 6, 7, 8, 9, 11, 13, 14, 17, 18, 19, 21, 22, 23, 24], "lightwood": [1, 2, 4, 6, 8, 9, 10, 11, 14, 15, 16, 18, 21, 23, 24], "interfac": [1, 12, 14, 24], "json": [1, 7, 12, 16, 19, 20, 22], "ai": [1, 6, 7, 12, 16, 19, 20, 22], "config": [1, 7, 12, 22], "dtype": [1, 7, 9, 12, 14, 17, 18, 20, 21, 22], "encod": [1, 5, 6, 7, 8, 10, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24], "your": [1, 4, 6, 9, 13, 15, 16, 19, 20, 22, 23, 24], "support": [2, 6, 7, 9, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24], "sever": [2, 6, 7, 17, 19, 21, 22], "standard": [2, 9, 17, 20], "machin": [2, 7, 12, 14, 17, 19, 21, 22, 23], "label": [2, 9, 10, 14, 17, 18, 19, 21, 23], "right": [2, 19], "format": [2, 7, 8, 9, 12, 13, 14, 20], "affect": [2, 12], "what": [2, 5, 8, 9, 12, 17, 18, 21, 22, 23], "engin": [2, 7, 9, 12, 17, 18, 21, 22], "methodologi": [2, 18], "current": [2, 7, 9, 11, 13, 14, 19], "wai": [2, 4, 7, 11, 13, 17, 18, 20, 22], "encourag": 2, "includ": [2, 7, 8, 17, 18, 19, 21], "custom": [2, 4, 5, 6, 7, 10, 12, 13, 14, 15, 16, 22, 23, 24], "tag": [2, 12, 23], "file": [2, 4, 5, 6, 7, 9, 12, 13, 16, 17, 18, 19, 20, 21], "clean": [2, 5, 6, 7, 8, 9, 12, 15, 17, 18, 19, 20, 21, 23, 24], "approach": [2, 5, 6, 7, 9, 12, 13, 17, 18, 21], "basic": [2, 6, 14, 22], "function": [2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 19, 21, 23], "cleaner": [2, 7, 12, 13, 21, 23], "own": [2, 5, 13, 15, 18, 19, 20, 22, 23], "flag": [2, 7, 8, 9, 14, 17, 18], "specif": [2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 21, 23], "step": [2, 6, 7, 9, 11, 12, 13, 17, 18, 21], "do": [2, 4, 7, 10, 12, 14, 16, 17, 18, 19, 20, 21, 23, 24], "pleas": [2, 8, 9, 12, 14, 16, 17, 18, 19, 21], "tutori": [2, 12, 17, 18, 21, 24], "api": [4, 5, 6, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24], "high_level": [4, 12, 19, 20, 22, 23, 24], "code_from_json_ai": [4, 12, 17, 18, 19, 20, 21, 23], "json_ai": [4, 5, 12, 17, 18, 19, 20, 21, 22, 23], "autogener": [4, 17, 21], "code": [4, 5, 6, 7, 11, 13, 16, 19, 20, 23], "base": [4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 21, 22, 23], "detail": [4, 5, 7, 8, 9, 12, 14, 17, 18, 19, 21], "you": [4, 6, 8, 9, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "insid": [4, 7, 8, 9, 14, 19, 20, 24], "jsonai": [4, 5, 7, 10, 12, 13, 17, 18, 19, 21], "text": [4, 9, 12, 13, 14, 17, 19, 21, 23], "creat": [4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 19, 20, 22], "code_from_problem": [4, 12], "df": [4, 7, 12, 17, 18, 19, 20, 21, 22, 23, 24], "raw": [4, 5, 6, 7, 12, 17, 18, 19, 20, 22, 23, 24], "union": [4, 7, 9, 17, 18, 21], "problemdefinit": [4, 5, 7, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24], "manual": [4, 18, 23], "problem": [4, 6, 7, 9, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23], "json_ai_from_problem": [4, 12, 17, 18, 19, 20, 21, 23, 24], "definit": [4, 7, 9, 13, 14, 17, 18, 21, 22, 23], "usual": [4, 7, 14], "would": [4, 7, 11, 13, 14, 16, 17, 18, 22, 24], "want": [4, 8, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24], "subsequ": [4, 7, 19, 21], "edit": [4, 5, 13, 16, 17, 20, 21], "easiest": [4, 13, 17], "unload": 4, "to_dict": [4, 7, 12, 17, 21, 22], "from_dict": [4, 7, 12, 17, 18, 19, 20, 21, 22, 23, 24], "better": [4, 10, 11], "rather": [4, 10, 13, 14], "than": [4, 7, 9, 10, 11, 14, 16, 21], "write": [4, 5, 12, 16, 17, 18, 19, 21], "scratch": [4, 17, 20, 24], "predictor_from_cod": [4, 12, 17, 18, 19, 20, 21, 23], "form": [4, 7, 9, 18], "predictorinterfac": [4, 6, 12, 17, 21], "predictor_from_json_ai": [4, 12, 24], "readi": [4, 17, 18, 19, 21, 23], "predictor_from_problem": [4, 12], "some": [4, 6, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 24], "first": [4, 7, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24], "d": [4, 7, 12, 14, 17, 18, 20], "same": [4, 6, 9, 13], "predictor_from_st": [4, 12], "state_fil": 4, "pickl": [4, 20], "result": [4, 6, 7, 9, 23], "save": [4, 6, 12, 16, 17, 19, 20, 21], "add_implicit_valu": [5, 12], "To": [5, 7, 9, 12, 14, 16, 17, 18, 19, 22, 24], "enabl": [5, 7, 9, 10, 11, 12, 13, 14, 17, 19, 21, 23, 24], "breviti": 5, "auto": [5, 14, 17, 20], "unspecifi": [5, 7], "miss": [5, 7, 9, 11, 17, 21], "ml": [5, 6, 7, 12, 13, 14, 19, 22], "describ": [5, 7, 9, 18, 19], "have": [5, 6, 7, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24], "fulli": [5, 14, 17, 19, 21, 22], "necessari": [5, 6, 7, 17, 19, 21, 22], "were": [5, 8, 17, 18], "left": [5, 7], "unment": 5, "fill": [5, 6, 12, 17, 18, 21], "generate_json_ai": [5, 12], "type_inform": [5, 22], "statistical_analysi": [5, 17, 18, 20, 21, 22], "given": [5, 6, 7, 8, 9, 13, 14, 17, 18, 19, 21, 22, 23], "type_inf": [5, 7, 17, 18, 19, 20, 21, 22, 23, 24], "typeinform": [5, 22], "dataprep_ml": [5, 7, 9, 17, 18, 19, 20, 21, 22, 23, 24], "statisticalanalysi": [5, 9, 18, 19, 22], "element": [5, 9, 17, 21, 23], "each": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23], "within": [5, 6, 7, 8, 9, 12, 16, 17, 18, 19, 21], "mindsdb": [5, 7, 12, 17, 18, 19, 20, 21, 22, 23, 24], "build": [5, 8, 12, 24], "defin": [5, 9, 10, 12, 14, 19, 20, 24], "lookup_encod": [5, 12], "col_dtyp": 5, "col_nam": [5, 17, 18, 21], "is_target": [5, 9, 17, 18, 20, 21], "problem_defint": 5, "is_target_predicting_encod": 5, "assign": [5, 6, 7, 9, 10, 11, 13, 17, 18, 21, 22], "default": [5, 7, 9, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23], "whether": [5, 7, 8, 9, 10, 11, 14, 18, 19, 21, 22], "intak": [5, 6, 7, 13, 14, 18, 21], "represent": [5, 6, 7, 8, 9, 10, 13, 14, 16, 17, 18, 19, 20, 21], "per": [5, 7, 8, 9, 10, 13, 14, 17, 18, 19, 21], "avail": [5, 7, 8, 9, 11, 14, 19, 22, 23, 24], "overrid": [5, 6, 7, 12, 13, 17, 18], "process": [5, 6, 7, 8, 9, 10, 14, 18, 19, 21, 22, 23, 24], "howev": [5, 7, 12, 13, 17, 18, 19, 21], "order": [5, 7, 9, 10, 16, 17, 18, 20, 21, 23], "templat": [5, 12], "automat": [5, 7, 9, 11, 12, 14, 16, 17, 18, 21, 22, 24], "syntax": [5, 7, 12, 17, 21], "while": [5, 9, 12, 13, 18, 19, 21], "arg": [5, 6, 7, 10, 12, 14, 17, 18, 19, 20, 21, 24], "pass": [5, 6, 7, 9, 11, 12, 14, 21, 22, 23, 24], "These": [5, 12, 17, 18, 19, 21], "depend": [5, 7, 8, 9, 12, 13, 14, 17, 20, 21], "prepar": [5, 6, 7, 9, 10, 12, 17, 18, 19, 20, 21, 23, 24], "bool": [5, 6, 7, 8, 9, 11, 14, 17, 18, 19, 21], "If": [5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 21, 23, 24], "true": [5, 6, 7, 8, 9, 10, 11, 14, 17, 18, 20, 21, 22], "onli": [5, 7, 8, 9, 10, 11, 12, 14, 17, 18, 19, 20, 21, 22, 24], "certain": [5, 9, 14, 17], "allow": [5, 6, 7, 11, 12, 13, 17, 18, 21], "particularli": 5, "complex": [5, 10, 12, 13, 19], "criteria": [5, 7, 14, 21], "validate_json_ai": [5, 12], "check": [5, 7, 8, 9, 11, 12, 14, 17, 18, 19, 21, 22, 23], "doesn": [5, 6, 12, 13, 19], "prohibit": 5, "unknown": [5, 7, 9, 14, 18, 19, 20, 21], "turn": [5, 11, 13, 17, 18, 20, 21], "skelet": 6, "structur": [6, 9, 13, 19], "around": [6, 12, 14, 21], "abstract": [6, 7, 8, 12, 13, 17, 19, 21, 22, 24], "encompass": 6, "interact": 6, "full": [6, 9, 12, 13, 17, 19, 21], "intern": [6, 7, 9, 10, 14, 17, 19, 21, 22, 23, 24], "must": [6, 9, 14, 16, 18], "expect": [6, 7, 9, 14, 17, 18, 19, 21], "analyze_data": [6, 12, 17, 18, 19, 20, 21, 23, 24], "peform": 6, "analysi": [6, 7, 11, 12, 13, 14, 15, 17, 18, 20, 21, 23, 24], "unprocess": [6, 12, 17, 21], "help": [6, 16], "downstream": [6, 17], "treat": [6, 7, 14, 18], "preprocess": [6, 7, 12, 18, 19, 20, 23, 24], "appli": [6, 8, 9, 10, 17, 18, 21], "split": [6, 7, 8, 9, 12, 13, 14, 15, 17, 18, 19, 20, 23, 24], "dev": [6, 9, 13, 14, 17, 18, 19, 20, 21, 24], "test": [6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24], "accord": [6, 8, 11, 13, 17, 18, 19, 22], "splitter": [6, 7, 12, 13, 17, 18], "pre": [6, 7, 8, 9, 12, 14, 18, 21], "vector": [6, 9, 10, 11, 14, 17, 20, 21], "fit": [6, 7, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24], "yield": [6, 7, 9, 10, 14, 23], "analyze_ensembl": [6, 12, 17, 19, 20, 21, 23, 24], "qualiti": [6, 17, 21], "adjust": [6, 9, 12, 17, 19, 20, 21, 23], "incorpor": 6, "updat": [6, 7, 12, 14, 15, 17, 18, 19, 20, 21, 23], "exist": [6, 9, 14, 15, 17, 20, 21], "simplif": 6, "we": [6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24], "offer": [6, 19, 22, 24], "follow": [6, 7, 8, 9, 12, 17, 18, 19, 20, 21, 23, 24], "until": 6, "reach": [6, 17], "techniqu": [6, 14, 17, 21], "interest": [6, 7, 9, 12, 13, 17, 21, 23], "untrain": 6, "No": [6, 17, 18, 19, 20, 21, 22, 23, 24], "explicit": 6, "provid": [6, 7, 8, 9, 12, 13, 14, 16, 17, 18, 21, 22, 23], "host": [6, 16], "thu": [6, 9, 20], "now": [6, 11, 14, 17, 18, 19, 20, 21, 22, 23, 24], "deploi": [6, 7, 9, 14], "chosen": 6, "best": [6, 7, 10, 17, 18, 19, 20, 21, 23, 24], "similar": [6, 13, 17], "further": [6, 7, 12, 17, 21, 23, 24], "j": [6, 17, 19, 21], "son": [6, 17, 21], "creation": 6, "routin": 6, "natur": [6, 13, 19], "new_data": [6, 24], "old_data": [6, 24], "adjust_arg": [6, 14, 17, 21, 24], "adopt": [6, 18], "except": [6, 9, 12, 13, 16, 17, 19, 20, 21], "been": [6, 7, 9, 14, 17, 18, 19, 20, 21, 22, 23, 24], "alreadi": [6, 9, 14, 17, 19, 22], "experiment": [6, 10, 12, 14], "subject": 6, "chang": [6, 7, 9, 11, 12, 13, 16, 17, 18, 21], "In": [6, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "situat": 6, "old": [6, 14, 24], "still": [6, 7, 10, 11, 13], "ensur": [6, 7, 9, 16, 17, 21], "finetun": [6, 14], "place": [6, 14, 22], "anyth": [6, 13, 16], "identifi": [6, 7, 13, 17, 18, 19, 20, 21, 22], "distribut": [6, 7, 9, 17, 21, 22], "imbalanc": [6, 9, 22], "other": [6, 7, 11, 13, 14, 17, 18, 20, 21, 22, 23], "nuanc": [6, 7], "enc_data": [6, 17, 21], "relev": [6, 16, 17, 19, 22], "export": [6, 12, 16], "file_path": 6, "json_ai_cod": 6, "both": [6, 7, 9, 13, 14, 18, 19, 22, 23], "singl": [6, 8, 9, 10, 14, 16, 19, 20, 23, 24], "binari": [6, 9, 13, 20, 21], "later": [6, 11, 17, 20, 21, 22], "usag": [6, 9, 11, 14, 22, 24], "locat": [6, 9, 17, 21], "split_data": [6, 17, 18, 21], "self": [6, 9, 17, 18, 19, 20, 21], "kei": [6, 7, 12, 16, 17, 19, 20, 21, 22], "instanti": [6, 7, 12, 17, 18, 21], "attribut": [6, 7, 9, 10, 11, 14, 18, 19], "accordingli": 6, "particular": [6, 17, 18, 19, 22], "ex": [6, 7, 9, 12, 13], "numer": [6, 7, 8, 9, 13, 14, 17, 18, 21, 22], "categor": [6, 9, 10, 13, 17, 18, 19, 20, 22], "etc": [6, 7, 9, 13, 18, 19, 20, 21], "convert": [6, 9, 11, 13, 17, 18], "useabl": 6, "Of": 6, "request": [6, 12, 14, 17, 19, 20, 21, 23, 24], "compil": [6, 11, 14, 17, 21], "amalg": 6, "occur": [6, 7], "noth": [6, 18], "n_sampl": 6, "n_column": 6, "correspond": [6, 7, 9, 19, 20], "sampl": [6, 7, 8, 9, 14, 17, 18, 19, 20, 21, 22, 23, 24], "behavior": [6, 7, 8, 9, 13, 14, 18, 19], "wrap": [6, 9, 10, 24], "predictionargu": [6, 7, 8, 12, 17, 20, 21], "ha": [6, 7, 9, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "explicitli": [6, 7, 8, 9, 17, 18, 19, 21], "With": [6, 18], "path": [6, 9, 12, 13, 17, 21], "stratifi": [6, 21], "fraction": [6, 9], "strict": [6, 17, 21, 23], "list": [6, 7, 8, 9, 10, 11, 14, 17, 18, 19, 21, 22], "which": [6, 7, 9, 12, 13, 14, 17, 18, 19, 20, 21, 23], "hold": 6, "rais": [6, 11, 17, 20, 21], "error": [6, 7, 9, 14, 17, 20, 21], "otherwis": [6, 9, 11, 14, 16, 17], "skip": [6, 14, 17, 20, 21, 23], "n_metric": 6, "cell": [6, 11, 19], "consist": [7, 9, 18, 23], "high": [7, 9, 19, 22, 23], "scienc": [7, 12, 18], "up": [7, 13, 16, 17, 19, 21, 23], "being": [7, 13, 14], "repres": [7, 9, 11, 12, 13, 18], "argument": [7, 8, 14, 17, 18, 21, 22, 23, 24], "constructor": 7, "timeseriesset": [7, 8, 9, 12, 14, 17, 19, 21, 22], "is_timeseri": [7, 17, 18, 20, 21, 22], "order_bi": [7, 8, 17, 18, 20, 21, 22, 23], "window": [7, 8, 9, 17, 18, 20, 21, 22, 23], "group_bi": [7, 8, 9, 14, 17, 18, 20, 21, 22], "use_previous_target": [7, 17, 18, 20, 21, 22], "horizon": [7, 8, 9, 14, 17, 18, 20, 21, 22, 23], "historical_column": [7, 17, 18, 20, 21, 22], "target_typ": [7, 17, 18, 20, 21, 22], "allow_incomplete_histori": [7, 17, 18, 20, 21, 22], "eval_incomplet": [7, 17, 18, 20, 21, 22], "interval_period": [7, 17, 18, 20, 21, 22], "seri": [7, 8, 9, 12, 13, 14, 17, 18, 21], "more": [7, 8, 9, 10, 11, 14, 16, 17, 18, 19, 20, 21], "treatment": [7, 9, 17], "carri": 7, "properli": [7, 9], "appropri": [7, 9, 11, 17, 21], "group": [7, 9, 14], "combin": [7, 8, 12, 13], "int": [7, 9, 11, 14, 18, 19, 20, 21, 23, 24], "tempor": 7, "number": [7, 9, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24], "look": [7, 13, 17, 18, 19, 21, 22, 23, 24], "back": [7, 18], "after": [7, 9, 10, 13, 14, 17, 18, 19, 21], "applic": [7, 11, 22], "made": [7, 13, 16, 19], "1": [7, 9, 11, 14, 23, 24], "abl": [7, 18, 19, 22], "mani": [7, 8, 9, 14, 17, 18, 21, 22, 23], "context": [7, 8, 11], "non": [7, 9, 17, 21], "histor": [7, 8, 9], "shall": [7, 21], "without": [7, 9, 12, 13, 17, 18, 21, 24], "through": [7, 9, 11, 13, 14, 17, 19, 21, 23, 24], "integ": [7, 9, 14, 17, 18, 19, 20, 21, 22, 24], "float": [7, 9, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24], "incomplet": 7, "less": [7, 9, 21], "observ": [7, 8, 9, 14, 21, 22, 23], "datetim": [7, 13, 23], "histori": 7, "period": [7, 14], "length": [7, 8, 9, 11, 14], "interv": [7, 8, 13, 23], "timeseries_analyz": [7, 8, 12, 14], "detect_period": 7, "document": [7, 12, 14, 17, 19, 21, 22, 23], "daili": 7, "7": [7, 17, 18, 19, 20, 21, 22, 23, 24], "obj": 7, "python": [7, 9, 11, 12, 13, 14, 18, 19, 20, 22, 23, 24], "mandatori": 7, "from_json": [7, 12], "encode_json": 7, "to_json": [7, 12, 17, 18, 20, 21], "pct_invalid": [7, 17, 18, 20, 21, 22], "unbias_target": [7, 17, 18, 20, 21, 22], "seconds_per_mix": [7, 17, 18, 20, 21, 22, 24], "seconds_per_encod": [7, 17, 18, 20, 21, 22], "expected_additional_tim": [7, 17, 18, 20, 21, 22], "time_aim": [7, 17, 18, 19, 20, 21, 22, 24], "target_weight": [7, 9, 17, 18, 20, 21, 22], "positive_domain": [7, 9, 17, 18, 20, 21, 22], "timeseries_set": [7, 8, 14, 17, 18, 20, 21, 22, 23], "anomaly_detect": [7, 17, 18, 20, 21, 22], "use_default_analysi": [7, 17, 18, 20, 21, 22], "embedding_onli": [7, 17, 18, 20, 21, 22], "ignore_featur": [7, 17, 18, 20, 21, 22], "fit_on_al": [7, 14, 17, 18, 20, 21, 22], "strict_mod": [7, 17, 18, 20, 21, 22], "seed_nr": [7, 17, 18, 20, 21, 22], "indic": [7, 9, 14, 19, 21], "try": [7, 16, 17, 18, 19, 20, 21, 23], "aspect": 7, "about": [7, 9, 13, 14, 17, 22], "long": [7, 12, 14, 17], "take": [7, 9, 11, 14, 17, 18, 19, 20, 22, 23], "maxim": 7, "toler": 7, "invalid": [7, 17, 20, 21], "exce": [7, 11], "taken": [7, 9, 13, 21], "weight": [7, 9, 10], "invers": [7, 9, 18], "often": [7, 9], "thei": [7, 8, 12, 13, 14, 16, 17, 18, 19, 21], "second": [7, 9, 13, 14, 17, 18, 19, 20, 21, 23, 24], "maximum": [7, 9, 11, 14], "spend": 7, "budget": [7, 9, 14], "compon": [7, 13, 21], "much": [7, 11, 14, 17, 18, 19, 21, 23], "tak": 7, "forc": [7, 9], "posit": [7, 9, 17, 21], "conduct": [7, 17], "unsupervis": 7, "anomali": [7, 17, 23], "detect": [7, 17, 18, 19, 20, 21, 22, 23, 24], "map": [7, 9, 14, 17, 18, 20, 21, 22], "autom": [7, 12, 14, 16, 19, 22], "wish": 7, "ignor": [7, 14, 17, 19, 20, 21], "found": [7, 9, 11, 17, 18, 19, 21, 23, 24], "remov": [7, 8, 9, 17, 19, 20, 21, 23], "strictli": [7, 17], "well": [7, 9, 13, 18, 19, 22, 24], "never": [7, 11, 17], "anticip": 7, "incom": 7, "crash": [7, 17, 21], "unstabl": 7, "fail": [7, 10, 14, 16, 20], "seed": [7, 17, 21], "dependency_dict": [7, 17, 18, 20], "imput": [7, 17, 18, 20, 21], "timeseries_transform": 7, "construct": [7, 15, 20], "flexibl": [7, 19, 22], "recip": 7, "column_nam": [7, 8], "submodel": [7, 17, 18, 20, 24], "like": [7, 8, 9, 11, 13, 17, 18, 19, 21, 23, 24], "id": [7, 12, 17, 24], "subroutin": 7, "choos": [7, 17, 21], "handl": [7, 8, 9, 10, 17, 18, 19, 20, 23], "altern": [7, 12], "suggest": 7, "packag": [7, 14, 17, 19, 20, 21, 22, 23, 24], "tool": [7, 16, 22], "transform": [7, 8, 9, 13, 18, 23], "timeseri": [7, 14, 15, 17, 23], "measur": [7, 23], "frequenc": [7, 14], "submodeldata": [7, 12], "is_best": 7, "accuracy_histogram": 7, "accuracy_sampl": 7, "train_sample_s": 7, "test_sample_s": 7, "column_import": 7, "confusion_matrix": 7, "histogram": [7, 17, 21], "submodel_data": 7, "understand": [7, 13, 19, 22], "algorithm": [7, 14, 17, 19, 21], "pair": [7, 19], "size": [7, 9, 18, 21, 22], "close": 7, "leav": [7, 19, 20, 23], "one": [7, 9, 11, 14, 17, 19, 20, 21, 22, 23, 24], "covari": 7, "strategi": [7, 9, 18], "predict_proba": 7, "all_mix": [7, 17, 21], "mixer_weight": 7, "fixed_confid": 7, "anomaly_cooldown": 7, "forecast_offset": 7, "simple_ts_bound": 7, "time_format": 7, "force_ts_inf": 7, "return_embed": [7, 17, 21], "On": 7, "field": [7, 17, 22], "trigger": [7, 14, 19, 23, 24], "probabl": [7, 9, 23], "classifi": [7, 9], "instead": [7, 11, 12, 14, 17, 19, 20, 23, 24], "emit": [7, 8, 23], "coeffici": [7, 14], "bound": [7, 11, 13, 14, 23], "mix": [7, 11, 13], "compat": [7, 9, 11, 13, 18], "5": [7, 11, 12, 14, 19, 20, 22, 23, 24], "two": [7, 9, 10, 14, 17, 18, 19, 20, 21, 22, 24], "mean": [7, 8, 9, 10, 13, 14, 18, 19], "weightedmeanensembl": [7, 10, 12], "stackedensembl": [7, 10, 12], "tsstackedensembl": [7, 10, 12], "alpha": [7, 14], "fix": [7, 10, 12], "averag": [7, 9], "correct": [7, 9, 14], "percent": 7, "translat": [7, 9], "rate": [7, 14, 19, 23, 24], "between": [7, 9, 12, 14, 16, 19, 20, 22], "01": [7, 9, 18, 19, 20, 23, 24], "99": [7, 19, 21, 24], "impli": 7, "wider": 7, "tighter": 7, "equal": [7, 21], "minimum": [7, 9, 11, 21], "amount": [7, 14, 21, 23], "timestep": [7, 9, 11, 23], "consecut": 7, "fire": 7, "detector": 7, "disabl": [7, 8, 12, 14, 19, 23, 24], "bonferroni": 7, "resort": 7, "simpler": 7, "uncertainti": 7, "helper": [7, 8, 9, 12, 17, 18, 19, 20, 21, 22, 23, 24], "add_tn_num_conf_bound": [7, 11, 12], "implement": [7, 9, 12, 13, 14, 17, 18, 21, 23, 24], "timestamp": [7, 9, 13, 14, 23], "string": [7, 9, 13, 14], "unless": [7, 9, 19, 20], "empti": [7, 9, 14, 17, 21], "produc": [7, 9, 13, 14, 19, 22, 23], "w": [7, 9, 17, 19, 21], "r": [7, 21], "focu": [8, 12, 13, 17, 18, 19], "merg": [8, 12], "concatedencodedd": [8, 12, 17, 20, 21], "encoded_ds_arr": 8, "encodedd": [8, 10, 12, 14, 17, 19, 20, 21, 24], "multipl": [8, 9, 10, 12, 13], "datasourc": 8, "entiti": 8, "torch": [8, 9, 11, 17, 18, 19, 20, 21, 23, 24], "util": [8, 14, 19, 23, 24], "cach": [8, 17, 21], "avoid": [8, 14, 16, 17, 21], "duplic": 8, "open": [8, 12, 13, 17, 21], "issu": [8, 12], "data_fram": [8, 17, 21], "clear_cach": [8, 12], "encoded_d": [8, 17, 19, 20, 21], "get_column_original_data": [8, 12, 18], "get_encoded_column_data": [8, 12, 18], "tensor": [8, 9, 11, 18, 19, 20, 23, 24], "baseencod": [8, 9, 12, 13, 14, 17, 18, 20, 21], "build_cach": [8, 12], "initi": [8, 10, 11, 14, 17, 18, 20, 21], "clear": 8, "pd": [8, 9, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24], "get_encoded_data": [8, 12, 17, 21], "include_target": [8, 17, 21], "few": [8, 12, 14, 17, 18], "val": 8, "thing": [8, 12, 13, 14, 16, 21, 22], "group_combin": 8, "determin": [8, 9, 10, 11, 13, 14], "delta": 8, "ts_naive_residu": 8, "residu": 8, "naiv": 8, "repeat": 8, "last": [8, 9, 13, 14], "seen": [8, 14], "ts_naive_ma": 8, "target_norm": 8, "effect": 8, "time_seri": 8, "common": 8, "choic": [8, 18, 19], "aforement": [8, 14], "transform_timeseri": [8, 12], "mode": [8, 9, 10, 11, 12, 17, 21], "conveni": [8, 19, 22], "posterior": 8, "main": [8, 12, 13, 17, 18, 19, 20, 23, 24], "cast": [8, 14, 19, 20], "add": [8, 11, 12, 14, 17, 19, 21], "plu": [8, 14, 17], "logic": [8, 9, 10, 14, 17, 19, 21, 24], "stream": 8, "control": [8, 18], "pytorch": [9, 13], "decod": [9, 12, 14, 18, 20], "arrayencod": [9, 12], "stop_aft": [9, 14, 17, 18, 20, 21, 24], "original_typ": [9, 17, 21], "arrai": [9, 12, 13, 19, 23], "minmax": 9, "simpl": [9, 10, 14, 18, 19, 21, 22, 23, 24], "hot": 9, "sequenc": 9, "space": 9, "column_data": [9, 18], "properti": [9, 17, 21], "train_priming_data": 9, "dev_priming_data": 9, "columnar": 9, "final": [9, 10, 12, 13, 20, 21, 24], "oppos": [9, 16, 18], "rule": [9, 10, 13, 16], "move": [9, 18], "gpu": [9, 11, 14, 18, 19, 23], "is_timeseries_encod": [9, 18], "kind": 9, "is_trainable_encod": [9, 12, 17, 18, 21], "present": [9, 17], "statement": [9, 16], "is_prepar": [9, 18], "signal": 9, "successfulli": 9, "execut": [9, 11, 14, 16, 19], "is_nn_encod": 9, "might": [9, 11, 12, 19, 22, 23, 24], "output_s": [9, 18], "rich": 9, "audio": [9, 13], "part": [9, 12, 14, 17], "concaten": [9, 11, 14], "priming_data": [9, 17, 18, 21], "distilbert": 9, "work": [9, 10, 12, 13, 14, 16, 17, 18, 19, 21, 23], "binaryencod": [9, 12, 20, 21], "handle_unknown": 9, "use_encoded_valu": 9, "assum": [9, 14, 17, 21], "arbitrari": [9, 19], "categori": [9, 12, 13, 18, 19, 20, 21], "b": 9, "special": [9, 13, 17, 22], "oh": 9, "null": [9, 17, 18, 20], "exampl": [9, 11, 16, 17, 18, 19, 21, 22, 24], "outsid": [9, 17, 23], "recogn": 9, "2": [9, 11, 12, 14, 23, 24], "uniqu": [9, 12, 18], "show": [9, 12, 16, 17, 18, 19, 22, 23], "longer": 9, "truli": [9, 12], "comfort": [9, 17], "heavili": 9, "By": [9, 12, 13, 14, 18, 20], "rel": [9, 13], "suppos": [9, 18], "80": [9, 19, 24], "20": [9, 18, 19, 23, 24], "across": [9, 14, 24], "3": [9, 11, 13, 23, 24], "class1": 9, "8": [9, 14, 17, 18, 19, 20, 21, 22, 23, 24], "class2": 9, "inv_target_weight": 9, "target_value_per_class": 9, "oper": [9, 17, 19], "larg": [9, 16, 17, 21], "small": [9, 17], "presumpt": 9, "OR": 9, "alwai": [9, 14, 18, 21], "argmax": 9, "decode_prob": [9, 12], "answer": [9, 14, 21], "revers": 9, "dimens": [9, 11, 18], "unrecogn": 9, "n_": [9, 18], "x": [9, 12, 17, 18, 20, 21, 22], "prime": [9, 17, 21], "index": [9, 12, 18, 19, 20, 22, 23], "vice": 9, "versa": 9, "catarrayencod": [9, 12], "categoricalautoencod": [9, 12, 18], "3600": 9, "max_encoded_length": 9, "100": [9, 19, 22], "desired_error": 9, "batch_siz": 9, "200": [9, 19, 24], "devic": [9, 11, 17, 21], "input_encod": 9, "autoencod": 9, "ae": 9, "excess": 9, "prefer": [9, 12], "highli": [9, 17, 23], "advis": 9, "reconstruct": 9, "abil": 9, "stop": [9, 10, 14, 17, 20, 21, 24], "limit": [9, 13], "sec": 9, "recommend": [9, 12, 17, 21], "threshold": [9, 14], "batch": 9, "get_device_from_nam": 9, "attempt": 9, "onehotencod": [9, 12, 18, 20], "simplelabelencod": [9, 12], "underli": [9, 10, 14, 17], "cardin": 9, "sle": 9, "accur": 9, "overal": [9, 19], "embed": 9, "warn": [9, 14, 17, 19, 20, 21, 23, 24], "cata": 9, "compress": 9, "togeth": [9, 10, 12, 17, 20], "Not": 9, "datetimeencod": [9, 12], "decompos": 9, "constitu": 9, "unit": [9, 12, 14, 16], "month": [9, 23], "year": [9, 18], "those": [9, 11, 12], "magnitud": 9, "sensibl": 9, "cycl": [9, 12], "return_as_datetim": 9, "ndarrai": [9, 19], "panda": [9, 11, 12, 17, 18, 19, 20, 21, 22, 23, 24], "shape": [9, 19, 23, 24], "len": [9, 17, 19, 21, 22, 23, 24], "datetimenormalizerencod": [9, 12], "sinusoid": 9, "receiv": [9, 12, 19], "encode_on": [9, 12], "unix_timestamp": 9, "resolut": 9, "img2vecencod": [9, 12], "224": [9, 19], "485": [9, 19], "456": [9, 19], "406": [9, 19], "std": 9, "229": [9, 19], "225": [9, 19, 22], "imag": [9, 13, 17, 18, 19, 20, 21, 22, 23, 24], "deep": 9, "rescal": 9, "224x224": 9, "deviat": 9, "imagenet": 9, "wa": [9, 17, 19, 20, 21, 22, 23, 24], "nn": 9, "img_to_vec": 9, "img2vec": 9, "resiz": 9, "y": [9, 20, 21, 22], "pixel": 9, "encoded_values_tensor": 9, "referenc": 9, "filepath": 9, "url": [9, 13, 16], "floattensor": 9, "available_devic": 9, "cpu": [9, 11, 18, 19, 23], "multihotencod": [9, 12], "max_dimens": 9, "numarrayencod": [9, 12], "numericencod": [9, 12, 17, 18, 20, 21], "data_typ": 9, "natural_log": 9, "ab": 9, "absolute_mean": 9, "sinc": [9, 12, 13, 14, 20], "just": [9, 14, 18, 19, 21, 22], "absolut": 9, "feed": 9, "stand": 9, "actual": [9, 14, 17, 19, 21, 23], "sort": [9, 18], "nan": [9, 11, 17, 24], "inf": 9, "quantiti": [9, 13, 14, 23], "encoded_valu": 9, "decode_log": 9, "linear": [9, 14], "numpi": [9, 17, 19, 20, 21, 22, 24], "numericalencod": 9, "use_unknown": 9, "One": 9, "individu": [9, 17, 21], "imagin": [9, 18], "n": [9, 11, 14, 17, 19, 22], "05": [9, 14, 17, 19, 23, 24], "15": [9, 12, 17, 19, 20, 21, 23, 24], "class3": 9, "percentag": [9, 21], "total": [9, 14, 17, 18, 19, 20, 21, 22, 23, 24], "extra": [9, 11, 16, 21], "account": [9, 12], "flexibli": 9, "pretrainedlangencod": [9, 12, 17], "max_position_embed": 9, "frozen": 9, "epoch": [9, 14, 19, 23, 24], "output_typ": [9, 17], "embed_mod": 9, "yet": 9, "fine": [9, 14, 22], "max": [9, 11, 14], "freez": 9, "layer": 9, "cl": [9, 13], "max_length": [9, 11], "state": [9, 14, 23], "token": [9, 13], "latent": 9, "most": [9, 12, 13, 17, 21, 23], "separ": [9, 13], "soft": 9, "n_row": [9, 18], "nembed_dim": 9, "n_class": 9, "arxiv": 9, "1910": 9, "01108": 9, "contextu": 9, "sanh": 9, "et": [9, 14], "al": 9, "2019": [9, 18], "encoded_target_valu": [9, 17, 21], "decai": 9, "faster": 9, "lower": [9, 13, 23, 24], "benchmark": [9, 12, 16, 18, 20, 23], "nrow": 9, "n_output_dimens": 9, "fastest": 9, "shorttextencod": [9, 12], "concat": [9, 17, 18, 20, 21], "alloc": 9, "exact": 9, "match": [9, 11], "temporarili": 9, "unnorm": 9, "timeseriesencod": [9, 12], "along": [9, 11, 17, 21, 22, 23], "tsarraynumericencod": [9, 12], "grouped_bi": 9, "domain": [9, 23], "dependency_data": [9, 17, 21], "slice": [9, 23], "decode_on": [9, 12], "tss": [9, 14, 17, 21, 23], "belong": [9, 19], "retriev": [9, 19], "k": [9, 17, 21], "data_window": 9, "sub": 9, "tscatarrayencod": [9, 12], "tsnumericencod": [9, 12], "nxk": 9, "variant": [9, 14], "vanilla": 9, "re": [9, 17, 18, 19, 20, 21], "datum": 9, "vocabularyencod": [9, 12], "baseensembl": [10, 12, 17, 19, 21], "There": [10, 13, 14, 17, 18, 21, 23], "__init__": [10, 14, 17, 18, 19, 20, 21], "__call__": [10, 14, 20], "aggreg": [10, 24], "supports_proba": [10, 12, 14, 17, 21], "bestof": [10, 12, 14, 17, 18, 19, 20, 21, 24], "act": 10, "selector": 10, "embedd": [10, 12, 17, 21], "bypass": 10, "identityensembl": [10, 12], "activ": [10, 11, 14, 23], "said": 10, "ideal": [10, 17, 18, 21], "expens": 10, "done": [10, 11, 12, 13, 14, 17, 18, 20, 23, 24], "meanensembl": [10, 12], "modeensembl": [10, 12], "whose": 10, "vote": 10, "highest": 10, "stochast": 10, "gradient": [10, 13, 14], "descent": 10, "uniformli": 10, "roadmap": 10, "faulti": 10, "earli": [10, 14, 20, 24], "arbitrarili": [10, 11], "secondari": 10, "thin": 10, "wrapper": [10, 14, 19, 22], "afterward": [10, 22], "variou": [11, 12, 18], "lightwoodautocast": [11, 12], "equival": [11, 17, 18, 19, 20, 21, 22, 23, 24], "cuda": [11, 19, 23, 24], "amp": [11, 19, 23, 24], "autocast": 11, "capabl": [11, 24], "leverag": [11, 19, 22, 23, 24], "lt": [11, 19], "manag": 11, "precis": 11, "tss_arg": 11, "deprec": [11, 19, 23, 24], "opt": [11, 19, 20, 23, 24], "solut": 11, "nc": [11, 19], "research": 11, "question": [11, 12, 19, 21, 22], "guarante": [11, 12, 14], "coverag": 11, "conserv": 11, "increas": [11, 21], "width": 11, "factor": [11, 22], "concat_vectors_and_pad": [11, 12], "vec_list": 11, "max_": 11, "pad": 11, "dim": 11, "achiev": [11, 22], "assertionerror": 11, "greater": 11, "max_len": 11, "input_tensor": 11, "4": [11, 20, 22, 23, 24], "concatenated_pad": 11, "print": [11, 12, 16, 17, 18, 20, 21, 22, 23, 24], "get_devic": [11, 12], "is_cuda_compat": [11, 12], "select": [11, 14], "randomli": 11, "random_gpu": 11, "environ": 11, "num_devic": 11, "system": [11, 13, 14], "architectur": [11, 12, 13, 24], "version": [11, 12, 13, 17, 19, 20, 21, 23], "verifi": [11, 17, 21], "meet": 11, "is_compat": 11, "is_non": [11, 12], "stabil": 11, "chose": 11, "reli": [11, 18], "corrupt": 11, "hopefulli": [11, 14], "But": 11, "releas": 12, "24": [12, 17, 19, 21, 23, 24], "date": [12, 13, 16, 23], "2024": 12, "automl": [12, 14, 19, 22], "framework": 12, "declar": 12, "our": [12, 16, 17, 18, 19, 21, 22, 23, 24], "life": 12, "easier": [12, 16, 17, 23], "repetit": 12, "boilerpl": 12, "varieti": [12, 17, 21], "multimedia": 12, "solv": [12, 15, 20], "outlin": 12, "replac": [12, 17, 18, 20, 21], "random": [12, 14, 19, 20, 21, 24], "forest": [12, 20], "philosophi": 12, "pip3": 12, "pip": [12, 14, 23], "abov": [12, 17, 18, 19, 21], "command": [12, 17, 18, 21], "virtual": 12, "clone": 12, "cd": 12, "txt": 12, "pythonpath": 12, "newlin": 12, "bashrc": 12, "go": [12, 17, 18, 19, 20, 21, 24], "directori": [12, 19], "m": [12, 17, 20, 21], "unittest": 12, "discov": 12, "python2": 12, "python3": [12, 19, 20, 23, 24], "visual": [12, 19], "studio": 12, "veri": [12, 13, 14, 17, 19, 22, 23], "popular": [12, 14], "don": [12, 14, 20], "feel": [12, 17], "free": [12, 13], "section": 12, "tip": 12, "trick": 12, "sync": 12, "pylanc": 12, "pyright": 12, "lint": 12, "everyth": [12, 13, 19, 22, 23], "flake8": 12, "flake8path": 12, "autopep8": 12, "path_to": 12, "live": [12, 17], "share": 12, "whiteboard": 12, "load": [12, 16, 19, 20, 24], "read_csv": [12, 16, 17, 18, 19, 20, 21, 22, 23, 24], "githubusercont": [12, 18, 19, 20, 22, 23, 24], "hdi": [12, 19, 22], "csv": [12, 17, 18, 19, 20, 21, 22, 23, 24], "develop": [12, 13, 19, 22], "test_df": [12, 24], "pred": [12, 17, 21], "iloc": [12, 17, 21, 23], "introduc": [12, 18], "stai": [12, 17], "love": 12, "hear": 12, "opinion": 12, "easi": [12, 13, 17, 22], "Being": [12, 19], "team": [12, 16], "anyon": 12, "who": [12, 17], "motiv": 12, "journei": 12, "continu": [12, 13, 17, 19, 21], "read": [12, 17, 19, 20, 21], "democrat": 12, "improv": [12, 13, 17, 21, 24], "propos": [12, 16], "discuss": [12, 19], "submit": 12, "let": [12, 17, 18, 19, 20, 21, 22, 23, 24], "know": [12, 19, 22, 23], "went": 12, "fork": 12, "pull": [12, 13], "git": 12, "workflow": 12, "repositori": 12, "checkout": [12, 18], "branch": [12, 17], "weekli": 12, "ask": [12, 14, 18, 19, 22], "confirm": [12, 19], "commit": 12, "ci": [12, 16], "suit": [12, 16, 18], "local": [12, 16, 23], "style": 12, "remot": 12, "env": 12, "push": 12, "repo": 12, "Be": 12, "latest": [12, 14], "befor": [12, 17], "sign": 12, "cli": 12, "agreement": 12, "under": [12, 14], "gpl": 12, "track": 12, "pr": [12, 13], "regular": 12, "basi": 12, "address": [12, 17], "chanc": 12, "privat": 12, "respond": 12, "feedback": 12, "chat": 12, "join": [12, 17, 21], "announc": 12, "event": [12, 21], "monthli": [12, 23], "newslett": 12, "mission": 12, "becom": 12, "scientist": 12, "project": [12, 13], "particip": 12, "agre": 12, "abid": 12, "term": [12, 13, 17, 22], "arimamix": [12, 14], "basemix": [12, 13, 14, 17, 20, 21], "partial_fit": [12, 14, 17, 19, 20, 21, 23], "etsmix": [12, 14], "neuralt": [12, 14, 23], "prophetmix": [12, 14], "randomforest": [12, 14, 17, 18, 19, 20, 21], "sktime": [12, 14], "tabtransformermix": [12, 14], "xgboostarraymix": [12, 14, 23], "xgboostmix": [12, 14, 17, 18, 19, 20, 21], "introduct": 12, "ii": 12, "iii": 12, "strength": [12, 24], "drawback": 12, "simplest": 13, "languag": 13, "english": [13, 17], "primari": 13, "matric": [13, 19], "video": 13, "three": [13, 17, 19, 21, 24], "cumbersom": 13, "That": [13, 17, 20, 22], "gist": 13, "intermedi": [13, 19, 20], "prototyp": 13, "librari": [13, 14, 17, 19, 22], "even": [13, 22], "instal": [13, 14, 23], "entail": 13, "suspect": 13, "brief": 13, "instruct": [13, 17, 18, 21], "wherea": [13, 18], "inter": 13, "datatyp": [13, 17], "predominantli": 13, "decid": 13, "whole": 13, "u": [13, 16, 17, 18, 19, 21, 24], "benefit": 13, "extend": [13, 19, 22], "easili": [13, 19, 22], "integr": 13, "minim": [13, 14, 17, 21], "hassl": 13, "accept": 13, "els": [13, 17, 18, 21, 22], "upstream": 13, "advantag": 13, "trivial": 13, "parallel": [13, 17, 21], "bit": [13, 19, 20], "themselv": 13, "built": 13, "citizen": 13, "far": 13, "sens": [13, 17], "hardwar": 13, "care": 13, "wield": 13, "great": [13, 14, 17], "influenc": 13, "joint": 13, "stuff": 13, "propag": 13, "nor": [13, 22, 23], "grant": 13, "hard": 13, "unwieldi": 13, "model_path": 14, "statsforecast": 14, "statsforecastautoarima": 14, "auto_s": 14, "sp": 14, "use_stl": 14, "start_p": 14, "start_q": 14, "max_p": 14, "max_d": 14, "max_q": 14, "max_ord": 14, "season": 14, "stationari": 14, "information_criterion": 14, "kpss": 14, "seasonal_test": 14, "stepwis": 14, "n_job": 14, "start_param": 14, "trend": 14, "maxit": 14, "50": [14, 19, 21, 22, 23, 24], "offset_test_arg": 14, "seasonal_test_arg": 14, "suppress_warn": 14, "error_act": 14, "trace": 14, "random_st": [14, 21, 24], "n_fit": 14, "out_of_sample_s": 14, "mse": 14, "scoring_arg": 14, "with_intercept": 14, "update_pdq": 14, "time_varying_regress": 14, "enforce_stationar": 14, "enforce_invert": 14, "simple_differenc": 14, "measurement_error": 14, "mle_regress": 14, "hamilton_represent": 14, "concentrate_scal": 14, "autoarima": 14, "filter": [14, 17, 21], "bigger": 14, "big": 14, "de": 14, "trender": 14, "backbon": 14, "fulfil": 14, "circumst": 14, "fit_data_len": 14, "trains_onc": [14, 17, 21], "fit_on_dev": [14, 17, 18, 20, 21, 24], "post": [14, 17, 19, 21], "portion": 14, "mistak": 14, "dev_data": [14, 17, 18, 20, 21, 24], "partial": [14, 17, 20, 21], "somewhat": [14, 17], "aim": [14, 17, 18], "autoet": 14, "damped_trend": 14, "initialization_method": 14, "initial_level": 14, "initial_trend": 14, "initial_season": 14, "aic": 14, "allow_multiplicative_trend": 14, "restrict": 14, "additive_onli": 14, "ignore_inf_": 14, "target_encod": [14, 17, 20, 21], "net": [14, 17, 21], "search_hyperparamet": [14, 17, 18, 20, 21, 24], "n_epoch": 14, "lr": 14, "connect": 14, "dens": 14, "deafultnet": 14, "arnet": 14, "hyperparamet": 14, "search": [14, 17, 21, 22], "supersed": 14, "augment": [14, 17], "nr": 14, "took": 14, "subclass": 14, "scenario": [14, 18], "add_season": 14, "add_country_holidai": 14, "growth": 14, "growth_floor": 14, "growth_cap": 14, "changepoint": 14, "n_changepoint": 14, "25": [14, 19, 22, 23, 24], "changepoint_rang": 14, "yearly_season": 14, "weekly_season": 14, "daily_season": 14, "holidai": 14, "seasonality_mod": 14, "seasonality_prior_scal": 14, "holidays_prior_scal": 14, "changepoint_prior_scal": 14, "mcmc_sampl": 14, "uncertainty_sampl": 14, "prophet": 14, "use_optuna": [14, 17, 21], "sklearn": [14, 19, 20, 21, 24], "randomforestregressor": 14, "randomforestclassifi": [14, 20], "optuna": 14, "speed": 14, "too": 14, "slow": 14, "ridg": 14, "linear_model": 14, "ordinari": 14, "least": 14, "squar": 14, "ol": 14, "hood": 14, "w_1": 14, "w_2": 14, "w_n": 14, "model_kwarg": 14, "hyperparam_search": 14, "exhibit": [14, 22], "due": [14, 21], "tri": [14, 20, 22], "mark": 14, "practic": 14, "spawn": 14, "smape": 14, "enforc": [14, 17, 18], "miscellan": 14, "arima": 14, "paramt": 14, "model_class": 14, "compli": 14, "immedi": 14, "becaus": [14, 21, 23], "train_arg": 14, "tabtransform": 14, "ft": [14, 18], "serv": 14, "essenti": [14, 19, 22], "borrow": [14, 17], "word": [14, 17], "simpli": [14, 17, 21], "input_col": [14, 17, 19, 21], "xgboost": [14, 19, 23], "intend": [14, 17, 21], "boost": 14, "good": [14, 19, 24], "rounder": 14, "tree": 14, "supervis": [14, 21], "tabular": 14, "regard": [14, 19], "apart": [14, 19, 23], "booster": 14, "technic": 14, "paper": 14, "scalabl": 14, "2016": [14, 18], "think": [14, 22], "caveat": [14, 23], "awar": [14, 22], "seek": 14, "reg": 14, "squarederror": 14, "loss": [14, 19, 23, 24], "multiclass": 14, "multi": 14, "coupl": [14, 18, 23], "backlog": 14, "soon": [14, 17], "deem": 14, "fast": 14, "enough": 14, "preprocessor": 15, "design": [15, 18, 19, 22], "keep": [16, 17, 21, 23, 24], "preserv": 16, "reader": 16, "saniti": [16, 21], "behav": [16, 17], "extern": 16, "link": [16, 18, 21], "download": [16, 17, 21], "contact": 16, "believ": 16, "writefil": [16, 17, 18, 19, 20, 21], "my_fil": 16, "py": [16, 17, 18, 19, 20, 21, 23, 24], "top": 16, "jupyt": [16, 17, 21], "codeblock": 16, "ok": [16, 19, 22], "realli": [16, 22], "metadata": 16, "action": [16, 19], "grep": 16, "kernel": 16, "find": [16, 18], "ipynb": 16, "accompani": 16, "png": 16, "jpg": 16, "reject": 16, "happi": 16, "adapt": 16, "notebook": [17, 18, 21, 23], "below": [17, 18, 21], "ll": [17, 18, 19, 20, 21, 22, 23], "explor": [17, 22], "protocol": 17, "highlight": 17, "kaggl": [17, 18, 21], "ultim": 17, "readabl": 17, "url_leg": 17, "among": [17, 22, 23], "excerpt": 17, "nltk": [17, 21], "challeng": 17, "meaning": 17, "demonstr": 17, "proce": 17, "power": 17, "np": [17, 19, 21, 22, 24], "o": [17, 21], "sy": [17, 21], "lw": [17, 18, 21], "2845": 17, "torchvis": [17, 18, 19, 20, 21, 22, 23, 24], "pillow": [17, 18, 19, 20, 21, 22, 23, 24], "datasci": 17, "manner": [17, 19], "folder": [17, 21], "s3": [17, 21], "eu": [17, 21], "west": [17, 21], "amazonaw": [17, 21], "zip": [17, 21], "head": [17, 18, 21, 22], "standard_error": 17, "c12129c31": 17, "young": 17, "peopl": 17, "ballroom": 17, "340259": 17, "464009": 17, "85aa80a4c": 17, "dinner": 17, "mr": 17, "fayr": 17, "somewh": 17, "315372": 17, "480805": 17, "b69ac6792": 17, "roger": 17, "had": 17, "snow": 17, "depart": 17, "q": 17, "580118": 17, "476676": 17, "dd1000b26": 17, "And": [17, 19], "palac": 17, "garden": 17, "054013": 17, "450007": 17, "37c1b32fb": 17, "upon": 17, "bear": 17, "li": 17, "247197": 17, "510845": 17, "aptli": 17, "tell": [17, 19, 20], "throw": [17, 20], "awai": 17, "line": [17, 18], "setup": [17, 19, 21], "drop": [17, 21], "39": [17, 18, 19, 20, 21, 22, 23, 24], "2478": 17, "2834": 17, "87": [17, 19, 23, 24], "34": [17, 18, 19, 20, 21, 23, 24], "hash": 17, "finish": [17, 18, 19, 20, 21, 22, 23, 24], "piec": [17, 19, 20], "notic": [17, 19, 22], "rich_text": 17, "21384": [17, 18], "85536": [17, 18], "485530853271484": 17, "259200": [17, 18, 20, 21], "r2_score": [17, 18, 24], "lastli": [17, 21], "ingredi": [17, 22], "off": [17, 21], "ground": [17, 21], "mycustomclean": [17, 21], "inspir": 17, "companion": 17, "broader": [17, 19], "ecosystem": [17, 22], "theori": 17, "irregular": 17, "strip": 17, "unwant": 17, "omit": [17, 21], "complet": [17, 18, 22, 24], "invit": 17, "get_cleaning_func": 17, "custom_cleaning_funct": 17, "corpu": 17, "stopword": 17, "stop_word": 17, "_remove_column": 17, "_get_columns_to_clean": 17, "values_for_nan_and_none_in_panda": 17, "def": [17, 18, 19, 20, 21], "malform": 17, "noqa": [17, 18], "col": [17, 21, 22, 23], "fn": 17, "vec": 17, "short_text": 17, "lambda": [17, 18], "to_replac": 17, "script": [17, 18, 19, 21], "load_custom_modul": [17, 18, 19, 20, 21], "lightweight": [17, 19, 21, 22], "could": [17, 20, 21], "keyword": [17, 21], "wonder": 17, "ve": [17, 18, 19, 21], "modular": 17, "custom_cleaner_pipelin": 17, "fp": [17, 21], "__version__": [17, 19, 21], "lightwood_vers": [17, 21], "mindsdb_evalu": [17, 21], "evaluate_accuraci": [17, 21], "__all__": [17, 21], "mdb_eval_accuracy_metr": [17, 21], "moduletyp": [17, 21], "importlib": [17, 21], "machineri": [17, 21], "import_dir": [17, 21], "expandus": [17, 21], "_": [17, 20, 21, 23], "r_ok": [17, 21], "file_nam": [17, 21], "walk": [17, 21], "mod_nam": [17, 21], "loader": [17, 21], "sourcefileload": [17, 21], "exec_modul": [17, 21], "exec": [17, 21], "f": [17, 20, 21, 22, 24], "inact": [17, 21], "runtime_log": [17, 21], "feature_cach": [17, 21], "timed_predictor": [17, 21], "gt": [17, 19, 21], "train_test_data": [17, 21], "pct_train": [17, 21], "pct_dev": [17, 21], "pct_test": [17, 21], "concatenated_train_dev": [17, 21], "prepped_encod": [17, 21], "parallel_encod": [17, 21], "parallel_encoding_check": [17, 21], "debug": [17, 18, 19, 20, 21, 23, 24], "item": [17, 18, 21, 22], "mut_method_cal": [17, 21], "hasattr": [17, 21], "uses_target": [17, 21], "feature_data": [17, 21], "stratified_on": [17, 21], "featurized_split": [17, 21], "filtered_subset": [17, 21], "filter_t": [17, 21], "_filter": [17, 21], "encoded_train_data": [17, 21], "encoded_dev_data": [17, 21], "encoded_test_data": [17, 21], "test_filt": [17, 21], "defaultnet": [17, 21], "trained_mix": [17, 21], "fit_mix": [17, 19, 20, 21, 23, 24], "append": [17, 19, 20, 21], "dirti": [17, 21], "hack": [17, 21], "n_phase": [17, 21], "train_dev_test": [17, 21], "enc_train_test": [17, 21], "evolv": [17, 21], "henc": [17, 21], "reserv": [17, 18, 21], "TO": [17, 21], "learn_cal": [17, 21], "abort": [17, 21], "again": [17, 21], "predict_data": [17, 21], "_timed_cal": [17, 20, 21, 23, 24], "renam": [17, 19, 20, 21], "regist": [17, 21], "callabl": [17, 21], "label_map": [17, 21], "mind": [17, 21], "mdb_eval": [17, 21], "v": [17, 21], "isinst": [17, 18, 19, 21], "from_record": [17, 21], "disaggreg": [17, 21], "transpar": [17, 21, 24], "goe": [17, 21], "familiar": [17, 21], "give": [17, 21, 22, 24], "9": [17, 18, 19, 20, 21, 22, 23, 24], "cleaned_data": [17, 18, 21], "08": [17, 23], "000000": [17, 24], "silent": 17, "quickli": [17, 21], "came": [17, 19], "wall": 17, "round": [17, 19, 22, 24], "hou": 17, "033": 17, "1m": 17, "0m": 17, "ntarget": 17, "nclean": 17, "decidedli": 17, "appear": [17, 21], "interior": 17, "scene": 17, "winter": 17, "landscap": 17, "floor": 17, "cover": 17, "white": 17, "canva": 17, "laid": 17, "smoothli": 17, "rumpl": 17, "bump": [17, 21], "hillock": 17, "real": 17, "palm": 17, "evergreen": 17, "decor": 17, "room": 17, "powder": 17, "flour": 17, "strewn": 17, "tuft": 17, "cotton": 17, "diamond": 17, "dust": 17, "lightli": 17, "sprinkl": 17, "glitter": 17, "crystal": 17, "icicl": 17, "hung": 17, "At": 17, "beauti": 17, "skin": 17, "rug": 17, "prize": 17, "girl": 17, "boi": 17, "game": 17, "gather": 17, "north": 17, "pole": 17, "south": 17, "player": 17, "plant": 17, "matter": 17, "travel": 17, "oblig": 17, "wear": 17, "snowsho": 17, "340259125": 17, "cut": 17, "hope": [17, 21], "docssrc": [17, 21], "custom_clean": 17, "experi": [18, 24], "mycolumndata": 18, "appl": 18, "orang": 18, "banana": 18, "dragonfruit": 18, "arrang": 18, "alphabet": 18, "myfeaturedata": 18, "car": 18, "sale": 18, "sell": 18, "2555": 18, "filenam": 18, "used_car_pric": 18, "price": 18, "transmiss": 18, "mileag": 18, "fueltyp": 18, "tax": 18, "mpg": 18, "engines": 18, "a1": 18, "2017": 18, "12500": 18, "15735": 18, "petrol": 18, "150": [18, 19], "55": [18, 19, 23], "a6": 18, "16500": 18, "36203": 18, "diesel": 18, "64": [18, 19], "11000": 18, "29946": 18, "30": [18, 19, 20, 23, 24], "a4": 18, "16800": 18, "25952": 18, "145": [18, 19], "67": [18, 19, 24], "a3": 18, "17300": 18, "1998": 18, "49": [18, 19], "6": [18, 19, 20, 22, 23, 24], "hand": [18, 22, 23], "datapoint": 18, "6920": 18, "10668": 18, "deduct": [18, 21, 24], "851930856704712": 18, "revert": 18, "mostli": [18, 21], "ones": [18, 22], "satisfi": 18, "success": 18, "dedic": 18, "although": [18, 21], "2021": 18, "13": [18, 19, 20, 22, 23, 24], "organ": 18, "labeldict": 18, "associ": [18, 23], "label_dict": 18, "ilabel_dict": 18, "cat": 18, "idx": 18, "enumer": 18, "enc": 18, "tolist": [18, 20], "unsqueez": 18, "dimension": 18, "lightwood_modul": [18, 19, 20], "switch": 18, "directli": [18, 22], "examin": 18, "data_dtyp": 18, "programat": 18, "simplic": 18, "ft_data": 18, "43": [18, 19, 22, 23, 24], "57": [18, 19], "pick": [18, 19, 20, 23, 24], "enc_ft": 18, "squeez": 18, "n_output_dim": 18, "orig_data": 18, "compare_data": 18, "encdata": 18, "axi": 18, "inspect": 18, "11": [18, 19, 22, 23, 24], "hybrid": 18, "guid": 18, "spectrum": [19, 22], "customiz": [19, 22], "come": [19, 22, 23, 24], "thank": 19, "deal": 19, "correl": 19, "heatmap": 19, "2634": 19, "Or": 19, "modelcorrelationheatmap": 19, "super": [19, 20], "__main__": 19, "0x7fc16da6f8e0": 19, "newli": [19, 24], "exactli": [19, 20], "parent": 19, "okai": [19, 23], "fun": 19, "idea": [19, 24], "normal_predict": 19, "encoded_val_data": 19, "is_classif": 19, "is_numer": 19, "is_multi_t": 19, "ts_cfg": 19, "has_pretrained_text_enc": 19, "lot": 19, "model_correl": 19, "simplenamespac": 19, "all_predict": 19, "flatten": 19, "astyp": 19, "calcul": 19, "corr": 19, "corrcoef": 19, "mixer_correl": 19, "dot": 19, "notat": 19, "accessor": 19, "fairli": [19, 22, 24], "straightforward": 19, "home": 19, "usernam": 19, "maco": 19, "linux": 19, "scan": 19, "wrote": 19, "compos": 19, "222": [19, 22], "98": [19, 20, 22], "area": [19, 22], "sq": [19, 22], "mi": [19, 22], "pop": [19, 22], "densiti": [19, 22], "gdp": [19, 22], "capita": [19, 22], "literaci": [19, 22], "infant": [19, 22], "mortal": [19, 22], "02": [19, 20, 23, 24], "hostedtoolcach": [19, 20, 23, 24], "19": [19, 20, 22, 23, 24], "x64": [19, 20, 23, 24], "lib": [19, 20, 23, 24], "site": [19, 20, 23, 24], "grad_scal": [19, 23, 24], "131": [19, 23, 24], "userwarn": [19, 20, 23, 24], "gradscal": [19, 23, 24], "12": [19, 20, 22, 23], "31": [19, 20, 21, 23, 24], "21": [19, 23, 24], "src": [19, 23], "learner": [19, 23], "cc": [19, 23], "339": [19, 23], "visibl": [19, 23], "gpu_id": [19, 23], "pytorch_rang": [19, 23, 24], "ranger": [19, 23, 24], "172": [19, 23, 24], "overload": [19, 23, 24], "addcmul_": [19, 23, 24], "tensor1": [19, 23, 24], "tensor2": [19, 23, 24], "signatur": [19, 23, 24], "csrc": [19, 23, 24], "python_arg_pars": [19, 23, 24], "cpp": [19, 23, 24], "1578": [19, 23, 24], "exp_avg_sq": [19, 23, 24], "mul_": [19, 23, 24], "beta2": [19, 23, 24], "grad": [19, 23, 24], "18": [19, 21, 22, 23], "69619858264923": 19, "0001": [19, 23, 24], "16": [19, 23], "93891429901123": 19, "0005": [19, 23, 24], "197376608848572": 19, "001": [19, 23, 24], "06481909751892": 19, "002": [19, 23, 24], "472004413604736": 19, "003": [19, 23, 24], "28026556968689": 19, "005": [19, 23, 24], "26": [19, 23, 24], "746760368347168": 19, "101": 19, "83524441719055": 19, "319209337234497": 19, "3220206499099731": 19, "3063435554504395": 19, "2932535409927368": 19, "2823516130447388": 19, "2705544233322144": 19, "2418551445007324": 19, "2208324670791626": 19, "197828769683838": 19, "1781431436538696": 19, "161504864692688": 19, "1442031860351562": 19, "1058541536331177": 19, "14": [19, 23], "0935649871826172": 19, "0802721977233887": 19, "0696258544921875": 19, "17": [19, 22, 23], "0607414245605469": 19, "0493905544281006": 19, "020617961883545": 19, "0081787109375": 19, "9943330883979797": 19, "22": [19, 23, 24], "9842473268508911": 19, "23": [19, 23], "9762145280838013": 19, "9653865098953247": 19, "9380742311477661": 19, "9271669387817383": 19, "27": [19, 20, 23], "9147073030471802": 19, "28": [19, 23, 24], "9064992070198059": 19, "29": [19, 22], "900122344493866": 19, "8903173208236694": 19, "8648637533187866": 19, "32": [19, 23], "8549227118492126": 19, "33": [19, 23, 24], "8434366583824158": 19, "8365358114242554": 19, "35": [19, 22], "831310510635376": 19, "36": 19, "8222441673278809": 19, "37": 19, "7981722950935364": 19, "38": 19, "789170503616333": 19, "7787192463874817": 19, "40": [19, 22, 24], "7730110287666321": 19, "41": [19, 23, 24], "7687097787857056": 19, "42": [19, 23], "7602015137672424": 19, "7373268604278564": 19, "44": [19, 23], "7292225956916809": 19, "45": 19, "7197889685630798": 19, "46": 19, "7151773571968079": 19, "47": [19, 22], "7117206454277039": 19, "48": [19, 24], "7038285136222839": 19, "682073175907135": 19, "674643874168396": 19, "51": [19, 23], "6659626364707947": 19, "52": [19, 24], "6620772480964661": 19, "53": [19, 23, 24], "6590715646743774": 19, "54": [19, 21], "6515910625457764": 19, "6308077573776245": 19, "56": [19, 22], "6241987347602844": 19, "6163835525512695": 19, "58": [19, 23], "6131908297538757": 19, "59": 19, "6106155514717102": 19, "60": [19, 22], "6036757826805115": 19, "61": [19, 22], "5848420262336731": 19, "62": [19, 20, 21, 23], "5793871879577637": 19, "63": [19, 20], "5726662278175354": 19, "5703645348548889": 19, "65": [19, 24], "5684641003608704": 19, "66": [19, 21, 24], "5622180104255676": 19, "5449516773223877": 19, "68": [19, 21, 24], "5401747226715088": 19, "69": [19, 21], "5341063141822815": 19, "70": [19, 23, 24], "5322306752204895": 19, "71": [19, 23], "5305425524711609": 19, "72": [19, 24], "5246548056602478": 19, "73": [19, 24], "5083626508712769": 19, "74": [19, 23], "5040708184242249": 19, "75": [19, 24], "49863335490226746": 19, "76": [19, 22, 24], "49717265367507935": 19, "77": 19, "49564701318740845": 19, "78": [19, 24], "4900944232940674": 19, "79": [19, 23, 24], "47473227977752686": 19, "4708785116672516": 19, "81": [19, 24], "46578508615493774": 19, "82": [19, 22, 24], "4644494950771332": 19, "83": 19, "4629424810409546": 19, "84": 19, "4576236307621002": 19, "85": [19, 23, 24], "44295966625213623": 19, "86": [19, 22], "4393518269062042": 19, "4346559941768646": 19, "88": 19, "43358123302459717": 19, "89": [19, 22], "43231165409088135": 19, "90": [19, 24], "42753666639328003": 19, "91": 19, "41425880789756775": 19, "92": [19, 22, 23], "4113253951072693": 19, "93": [19, 22], "4074642062187195": 19, "94": 19, "40698081254959106": 19, "95": [19, 22, 24], "4062195420265198": 19, "96": 19, "4020974636077881": 19, "97": [19, 22, 24], "3904534876346588": 19, "3879585564136505": 19, "38447296619415283": 19, "3841344118118286": 19, "3833732604980469": 19, "102": [19, 22], "37956172227859497": 19, "103": [19, 24], "36883822083473206": 19, "104": 19, "3664571940898895": 19, "105": 19, "36335548758506775": 19, "106": 19, "36316758394241333": 19, "107": 19, "3625164330005646": 19, "108": 19, "359012246131897": 19, "109": 19, "34912365674972534": 19, "110": 19, "34696850180625916": 19, "111": 19, "3441202938556671": 19, "112": 19, "34398093819618225": 19, "113": 19, "3432472050189972": 19, "114": 19, "3399496376514435": 19, "115": 19, "3308461308479309": 19, "116": 19, "3289041221141815": 19, "117": 19, "32627207040786743": 19, "118": 19, "3261372447013855": 19, "119": 19, "32546231150627136": 19, "120": 19, "3224080502986908": 19, "121": 19, "314008891582489": 19, "122": 19, "31220486760139465": 19, "123": [19, 21], "3098214566707611": 19, "124": 19, "30979809165000916": 19, "125": 19, "3090403079986572": 19, "126": [19, 22], "30612480640411377": 19, "127": 19, "29819032549858093": 19, "128": 19, "29648637771606445": 19, "129": 19, "2943042516708374": 19, "130": 19, "29420480132102966": 19, "2934538424015045": 19, "132": 19, "2907505929470062": 19, "133": 19, "2835786044597626": 19, "134": 19, "28203263878822327": 19, "135": 19, "2801313102245331": 19, "136": 19, "2801584303379059": 19, "137": [19, 23], "27946653962135315": 19, "138": 19, "2770102620124817": 19, "139": 19, "2705138921737671": 19, "140": 19, "2689667046070099": 19, "141": 19, "26713839173316956": 19, "142": 19, "26722976565361023": 19, "143": [19, 22], "26659274101257324": 19, "144": 19, "26436734199523926": 19, "2585783302783966": 19, "146": 19, "25718021392822266": 19, "147": 19, "25569674372673035": 19, "148": 19, "25572293996810913": 19, "149": [19, 21], "254925012588501": 19, "25273722410202026": 19, "151": 19, "24740025401115417": 19, "152": 19, "24594709277153015": 19, "153": 19, "2445458471775055": 19, "154": 19, "2445453554391861": 19, "155": 19, "24368290603160858": 19, "156": 19, "2416052669286728": 19, "157": 19, "23683445155620575": 19, "158": 19, "23561015725135803": 19, "159": 19, "2342897355556488": 19, "160": 19, "2342986762523651": 19, "161": 19, "2334001511335373": 19, "162": 19, "23141320049762726": 19, "163": [19, 23], "22705355286598206": 19, "164": 19, "22583813965320587": 19, "165": 19, "22455710172653198": 19, "166": 19, "2245052307844162": 19, "167": 19, "22359803318977356": 19, "168": 19, "22173909842967987": 19, "169": 19, "2178291231393814": 19, "170": 19, "21670299768447876": 19, "171": 19, "21559178829193115": 19, "21557293832302094": 19, "173": 19, "21463343501091003": 19, "174": 19, "21291333436965942": 19, "175": 19, "20953477919101715": 19, "176": 19, "20840951800346375": 19, "177": 19, "20733794569969177": 19, "178": 19, "20730628073215485": 19, "179": 19, "20635393261909485": 19, "180": 19, "20470596849918365": 19, "181": 19, "2016059160232544": 19, "182": 19, "2004680186510086": 19, "183": 19, "1995442509651184": 19, "184": 19, "1995476931333542": 19, "185": 19, "1985597461462021": 19, "186": 19, "19704405963420868": 19, "187": 19, "19429439306259155": 19, "188": 19, "1931215077638626": 19, "189": 19, "19224728643894196": 19, "190": 19, "1922168731689453": 19, "191": 19, "19120150804519653": 19, "192": 19, "1897118091583252": 19, "193": 19, "187192901968956": 19, "194": 19, "18604235351085663": 19, "195": 19, "18525990843772888": 19, "196": 19, "18517257273197174": 19, "197": 19, "1841844767332077": 19, "198": 19, "18275843560695648": 19, "199": 19, "18052375316619873": 19, "1795222908258438": 19, "201": [19, 24], "17878693342208862": 19, "202": [19, 24], "17881926894187927": 19, "203": [19, 24], "17786364257335663": 19, "204": [19, 24], "17654098570346832": 19, "205": [19, 24], "17458021640777588": 19, "206": [19, 24], "17358489334583282": 19, "207": 19, "1728101521730423": 19, "208": 19, "17278429865837097": 19, "209": [19, 23], "17180292308330536": 19, "210": 19, "17050613462924957": 19, "211": 19, "16873842477798462": 19, "212": [19, 22], "1677248477935791": 19, "213": 19, "16707710921764374": 19, "214": 19, "1671123504638672": 19, "215": 19, "16612616181373596": 19, "216": 19, "16487975418567657": 19, "217": 19, "16339382529258728": 19, "218": 19, "1624278575181961": 19, "219": 19, "16172048449516296": 19, "220": 19, "16165515780448914": 19, "221": 19, "16061937808990479": 19, "1594206690788269": 19, "223": 19, "15802235901355743": 19, "15704363584518433": 19, "15640243887901306": 19, "226": 19, "15635541081428528": 19, "227": 19, "15536457300186157": 19, "228": 19, "154209703207016": 19, "15291643142700195": 19, "230": 19, "15191468596458435": 19, "231": 19, "15118129551410675": 19, "232": 19, "151133194565773": 19, "233": [19, 24], "1501670926809311": 19, "234": 19, "14912192523479462": 19, "235": 19, "1481197327375412": 19, "236": 19, "14712536334991455": 19, "237": 19, "14660944044589996": 19, "238": [19, 24], "14649781584739685": 19, "239": 19, "145524799823761": 19, "240": 19, "14443959295749664": 19, "241": 19, "14341002702713013": 19, "242": 19, "14249812066555023": 19, "243": 19, "14185366034507751": 19, "244": 19, "1419423222541809": 19, "245": 19, "1409326195716858": 19, "246": 19, "1399424970149994": 19, "247": 19, "13920661807060242": 19, "248": 19, "13832959532737732": 19, "249": 19, "13784818351268768": 19, "250": 19, "13769637048244476": 19, "251": 19, "1367887407541275": 19, "252": 19, "13588252663612366": 19, "253": 19, "13521170616149902": 19, "254": 19, "13428467512130737": 19, "255": 19, "13384407758712769": 19, "256": 19, "13372991979122162": 19, "257": 19, "13274942338466644": 19, "258": 19, "13186557590961456": 19, "259": 19, "13135230541229248": 19, "260": 19, "13046588003635406": 19, "261": 19, "12980172038078308": 19, "262": 19, "12982229888439178": 19, "263": 19, "12882845103740692": 19, "264": 19, "12798714637756348": 19, "265": 19, "12758088111877441": 19, "266": 19, "12660843133926392": 19, "267": 19, "1261577606201172": 19, "268": 19, "1260918229818344": 19, "269": 19, "12515920400619507": 19, "270": 19, "12436933070421219": 19, "271": 19, "12405422329902649": 19, "272": 19, "12305409461259842": 19, "273": 19, "12272939085960388": 19, "274": 19, "12267134338617325": 19, "275": 19, "12182944267988205": 19, "276": 19, "12103450298309326": 19, "277": 19, "12083345651626587": 19, "278": 19, "11998103559017181": 19, "279": 19, "11937755346298218": 19, "280": 19, "1195112019777298": 19, "281": 19, "1185888797044754": 19, "282": [19, 23], "11789504438638687": 19, "283": 19, "11783000081777573": 19, "284": 19, "11681754887104034": 19, "285": 19, "11649196594953537": 19, "286": 19, "11648327857255936": 19, "287": 19, "11562418192625046": 19, "288": 19, "11489420384168625": 19, "289": [19, 23], "11485717445611954": 19, "290": 19, "11407709866762161": 19, "291": 19, "11348505318164825": 19, "292": 19, "11358898878097534": 19, "293": 19, "11268813163042068": 19, "294": [19, 22, 23], "11207651346921921": 19, "295": 19, "11220688372850418": 19, "296": 19, "11118005961179733": 19, "297": 19, "11089354008436203": 19, "298": [19, 20], "11088859289884567": 19, "299": 19, "1100316271185875": 19, "300": 19, "1093800961971283": 19, "301": 19, "10955681651830673": 19, "302": 19, "10869839787483215": 19, "303": [19, 20, 24], "10815789550542831": 19, "304": 19, "10832306742668152": 19, "305": 19, "10742544382810593": 19, "306": 19, "10682710260152817": 19, "307": 19, "10698221623897552": 19, "308": 19, "10616409033536911": 19, "309": 19, "10568025708198547": 19, "310": 19, "10574078559875488": 19, "311": 19, "10493995994329453": 19, "312": 19, "10438455641269684": 19, "313": 19, "10449497401714325": 19, "314": 19, "10372297465801239": 19, "315": 19, "10320515185594559": 19, "316": 19, "10330332815647125": 19, "317": 19, "10239537805318832": 19, "318": 19, "10185065120458603": 19, "319": 19, "10217708349227905": 19, "320": 19, "10135672241449356": 19, "321": 19, "10087659955024719": 19, "322": 19, "10087589174509048": 19, "323": 19, "10005565732717514": 19, "324": 19, "09949999302625656": 19, "325": [19, 22], "09970266371965408": 19, "326": 19, "09918338060379028": 19, "327": 19, "09840800613164902": 19, "328": 19, "09882311522960663": 19, "329": 19, "09775345772504807": 19, "330": 19, "09729817509651184": 19, "331": 19, "09763044863939285": 19, "332": 19, "0967596173286438": 19, "333": 19, "09642492234706879": 19, "334": 19, "09656761586666107": 19, "335": 19, "09573261439800262": 19, "336": 19, "09523642063140869": 19, "337": 19, "09568659961223602": 19, "338": 19, "09509280323982239": 19, "09460369497537613": 19, "340": 19, "09476538747549057": 19, "341": 19, "09388881921768188": 19, "342": 19, "09349637478590012": 19, "343": 19, "09398090839385986": 19, "344": 19, "09314301609992981": 19, "345": 19, "09281699359416962": 19, "346": 19, "09290202707052231": 19, "347": 19, "09209518879652023": 19, "348": 19, "09171803295612335": 19, "349": 19, "09221566468477249": 19, "350": 19, "09150414168834686": 19, "351": 19, "0910501629114151": 19, "352": 19, "09118885546922684": 19, "353": 19, "09043896198272705": 19, "354": 19, "09006913751363754": 19, "355": 19, "09049264341592789": 19, "356": 19, "0898597463965416": 19, "357": 19, "08943390846252441": 19, "358": 19, "0896739661693573": 19, "359": 19, "08882326632738113": 19, "360": 19, "08850156515836716": 19, "361": 19, "08897048979997635": 19, "362": 19, "08849596232175827": 19, "363": 19, "08790712803602219": 19, "364": 19, "08821234852075577": 19, "365": 19, "08732891082763672": 19, "366": 19, "08704856038093567": 19, "367": 19, "08765564113855362": 19, "368": 19, "08696923404932022": 19, "369": 19, "08649873733520508": 19, "370": 19, "08676613122224808": 19, "371": 19, "08599219471216202": 19, "372": 19, "08565033972263336": 19, "373": 19, "08618329465389252": 19, "374": 19, "08559156954288483": 19, "375": 19, "08509930223226547": 19, "376": 19, "08543801307678223": 19, "377": 19, "084554523229599": 19, "378": [19, 21], "08425222337245941": 19, "379": 19, "08496475219726562": 19, "380": 19, "08428442478179932": 19, "381": 19, "08389458060264587": 19, "382": 19, "08416417241096497": 19, "383": 19, "08331726491451263": 19, "384": 19, "08304726332426071": 19, "385": 19, "0837259590625763": 19, "386": 19, "08301664143800735": 19, "387": 19, "08279375731945038": 19, "388": 19, "08285657316446304": 19, "389": 19, "0822003185749054": 19, "390": 19, "08189017325639725": 19, "391": 19, "08244460821151733": 19, "392": 19, "08176209777593613": 19, "393": 19, "08143384009599686": 19, "394": 19, "08153267949819565": 19, "395": 19, "08074252307415009": 19, "396": 19, "0804641842842102": 19, "397": 19, "08112648874521255": 19, "398": 19, "0804068073630333": 19, "399": 19, "08000007271766663": 19, "400": 19, "08030638843774796": 19, "401": 19, "07946185022592545": 19, "402": 19, "07926557213068008": 19, "403": 19, "07995376735925674": 19, "404": 19, "07914069294929504": 19, "405": 19, "07901032269001007": 19, "07910943776369095": 19, "407": 19, "07840055227279663": 19, "408": 19, "07814037799835205": 19, "409": 19, "07874786853790283": 19, "410": 19, "07819069921970367": 19, "411": 19, "07780887931585312": 19, "412": 19, "07802116870880127": 19, "413": 19, "0772867277264595": 19, "414": 19, "07709880918264389": 19, "415": 19, "0776868537068367": 19, "416": 19, "07716330885887146": 19, "417": 19, "07688125967979431": 19, "418": 19, "07698465138673782": 19, "419": 19, "0762372612953186": 19, "420": 19, "07603802531957626": 19, "421": 19, "07675285637378693": 19, "422": 19, "07623977214097977": 19, "423": 19, "07567108422517776": 19, "424": 19, "07615751028060913": 19, "425": 19, "07526733726263046": 19, "426": 19, "07509555667638779": 19, "427": 19, "07569493353366852": 19, "428": [19, 24], "07537294924259186": 19, "429": 19, "07467805594205856": 19, "430": 19, "07528648525476456": 19, "431": 19, "07435967028141022": 19, "432": 19, "07422596961259842": 19, "433": 19, "07503972947597504": 19, "434": 19, "07434249669313431": 19, "435": 19, "07409335672855377": 19, "436": 19, "07420685887336731": 19, "437": 19, "0735834538936615": 19, "438": 19, "07333341240882874": 19, "439": 19, "07391082495450974": 19, "440": 19, "07348911464214325": 19, "441": 19, "07308389991521835": 19, "442": 19, "07328886538743973": 19, "443": 19, "0725550651550293": 19, "444": 19, "07240220904350281": 19, "445": 19, "07308465242385864": 19, "446": 19, "07288312911987305": 19, "447": 19, "0722663402557373": 19, "448": 19, "07264856994152069": 19, "449": 19, "07182618230581284": 19, "450": 19, "07167533785104752": 19, "451": 19, "07241341471672058": 19, "452": 19, "07208056002855301": 19, "453": 19, "07154601812362671": 19, "454": 19, "07190731167793274": 19, "455": 19, "0710812360048294": 19, "07096673548221588": 19, "457": 19, "0718337818980217": 19, "458": 19, "07134897261857986": 19, "459": 19, "07083813846111298": 19, "460": 19, "07124733179807663": 19, "461": 19, "0705094262957573": 19, "462": 19, "07036501169204712": 19, "463": 19, "07111788541078568": 19, "464": 19, "07069509476423264": 19, "465": 19, "07026039808988571": 19, "466": 19, "07056906819343567": 19, "467": 19, "06981150805950165": 19, "468": 19, "06967213749885559": 19, "469": 19, "0704450011253357": 19, "470": 19, "07002224773168564": 19, "471": 19, "06954890489578247": 19, "472": 19, "07001929730176926": 19, "473": 19, "06918215751647949": 19, "474": 19, "06905678659677505": 19, "475": 19, "06994140148162842": 19, "476": 19, "06957031041383743": 19, "477": 19, "06890591233968735": 19, "478": 19, "06942413747310638": 19, "479": 19, "068662129342556": 19, "480": 19, "0685315951704979": 19, "481": 19, "06919320672750473": 19, "482": 19, "06884051114320755": 19, "483": 19, "06852498650550842": 19, "484": 19, "06881336867809296": 19, "0681278333067894": 19, "486": 19, "06801153719425201": 19, "487": 19, "0688665509223938": 19, "488": 19, "06848578155040741": 19, "489": 19, "0680362805724144": 19, "490": 19, "0685308426618576": 19, "491": 19, "06770123541355133": 19, "492": 19, "06760372221469879": 19, "493": 19, "06856502592563629": 19, "494": 19, "0679614394903183": 19, "495": 19, "0675961971282959": 19, "496": 19, "06795072555541992": 19, "497": 19, "06731095910072327": 19, "498": 19, "06714644283056259": 19, "499": 19, "06786693632602692": 19, "500": [19, 22], "06758256256580353": 19, "501": 19, "06698315590620041": 19, "502": 19, "06747950613498688": 19, "503": 19, "06655343621969223": 19, "504": 19, "06652842462062836": 19, "505": 19, "06745205074548721": 19, "506": 19, "0668550580739975": 19, "507": 19, "06666403263807297": 19, "508": 19, "06683854013681412": 19, "509": 19, "06626935303211212": 19, "510": 19, "06613652408123016": 19, "511": 19, "06672576069831848": 19, "512": 19, "0666651502251625": 19, "513": 19, "06582488119602203": 19, "514": 19, "06652247160673141": 19, "515": 19, "06558185815811157": 19, "516": 19, "0655498206615448": 19, "517": 19, "06624851375818253": 19, "518": 19, "06601088494062424": 19, "519": 19, "06545697897672653": 19, "520": 19, "0659414529800415": 19, "521": 19, "06516807526350021": 19, "522": 19, "06501934677362442": 19, "523": 19, "06574487686157227": 19, "524": 19, "06553597748279572": 19, "525": 19, "06504649668931961": 19, "526": 19, "06540416181087494": 19, "527": 19, "06479271501302719": 19, "528": 19, "06469936668872833": 19, "529": 19, "0654490739107132": 19, "530": 19, "06509881466627121": 19, "531": 19, "06460769474506378": 19, "532": 19, "06506450474262238": 19, "533": 19, "06425388902425766": 19, "534": 19, "06419297307729721": 19, "535": 19, "06507144123315811": 19, "536": 19, "06475593149662018": 19, "537": 19, "0640476867556572": 19, "538": 19, "06452148407697678": 19, "539": 19, "063988097012043": 19, "540": 19, "06390102207660675": 19, "541": 19, "06427431106567383": 19, "542": 19, "06461699306964874": 19, "543": 19, "06366197764873505": 19, "544": 19, "06439769268035889": 19, "545": 19, "06354749947786331": 19, "546": 19, "06346575170755386": 19, "547": 19, "06415951251983643": 19, "548": 19, "06416907906532288": 19, "549": 19, "06350232660770416": 19, "03389815576374531": 19, "033698095567524435": 19, "0372611828148365": 19, "0382374182343483": 19, "03677316829562187": 19, "04194173291325569": 19, "04046095162630081": 19, "validation_0": [19, 23], "mlogloss": 19, "85953": 19, "gbm": [19, 23], "483366186618806": 19, "constraint": [19, 23], "58684": 19, "41458": 19, "29824": 19, "21700": 19, "15916": 19, "11747": 19, "08717": 19, "06502": 19, "04876": 19, "03678": 19, "02793": 19, "02138": 19, "01651": 19, "01288": 19, "01017": 19, "00813": 19, "00659": 19, "00542": 19, "00455": 19, "00392": 19, "00351": 19, "00320": 19, "00296": 19, "00295": 19, "00297": 19, "00298": 19, "unspport": 19, "0x7fc16cbd3c70": 19, "got": [19, 20, 23, 24], "922": 19, "_encod": [19, 20], "975": [19, 20], "futurewarn": [19, 20], "spars": [19, 20], "sparse_output": [19, 20], "033697554686417185": 19, "033981192080924906": 19, "037426896315688886": 19, "04428015494098266": 19, "061086510928968586": 19, "03466159128583968": 19, "03769115870818496": 19, "06": [19, 20, 23, 24], "matplotlib": [19, 21, 22, 23], "pyplot": [19, 21, 22, 23], "plt": [19, 21, 22, 23], "mc": 19, "mixer_nam": 19, "__class__": 19, "__name__": 19, "plot": [19, 22, 23], "fig": [19, 22], "ax": [19, 21, 22], "subplot": [19, 22], "im": 19, "imshow": 19, "cmap": [19, 22], "seismic": 19, "tick": 19, "set_xtick": [19, 21, 22], "arang": [19, 22], "set_ytick": 19, "set_xticklabel": [19, 21, 22], "set_yticklabel": 19, "rang": [19, 22, 23], "center": [19, 20], "va": 19, "color": [19, 21, 22, 23], "nice": [19, 24], "human": [19, 22], "countri": [19, 22], "cours": 19, "acc_stat": 19, "feature_import": 19, "though": [20, 22], "random_forest_mix": 20, "randomforestmix": 20, "clf": 20, "someon": 20, "anywai": 20, "messag": 20, "intuit": 20, "max_depth": 20, "hyper": [20, 21], "Then": 20, "friendli": 20, "foramat": 20, "yh": 20, "meant": 20, "decoded_predict": 20, "behaviour": 20, "ydf": 20, "unsuit": 20, "onlin": 20, "diagnos": 20, "heart": 20, "diseas": 20, "blob": 20, "heart_diseas": 20, "bother": 20, "put": 20, "2525": 20, "ag": [20, 24], "sex": 20, "cp": 20, "trestbp": 20, "chol": 20, "fb": 20, "restecg": 20, "thalach": 20, "exang": 20, "oldpeak": 20, "slope": 20, "ca": 20, "thal": 20, "42768": [20, 21], "07092165946960449": 20, "balanced_accuracy_scor": [20, 21], "standalon": 20, "03": [20, 23, 24], "798": 20, "_classif": 20, "2399": 20, "y_pred": 20, "y_true": 20, "04": [20, 23], "my_custom_heart_disease_predictor": 20, "function_bas": 20, "2455": 20, "runtimewarn": 20, "encount": 20, "_none_fn": 20, "ufunc": 20, "modif": [20, 22, 23, 24], "original_index": [20, 23, 24], "073676": 20, "250612": 20, "462595": 20, "hidden": 21, "divers": 21, "credit": 21, "card": 21, "fraud": 21, "difficult": 21, "catch": 21, "thankfulli": 21, "rare": 21, "imbal": 21, "fact": [21, 22], "smote": 21, "imblearn": 21, "ver": 21, "2259": 21, "creditcard": 21, "v1": 21, "v2": 21, "v3": 21, "v4": 21, "v5": 21, "v6": 21, "v7": 21, "v8": 21, "v9": 21, "v21": 21, "v22": 21, "v23": 21, "v24": 21, "v25": 21, "v26": 21, "v27": 21, "v28": 21, "359807": 21, "072781": 21, "536347": 21, "378155": 21, "338321": 21, "462388": 21, "239599": 21, "098698": 21, "363787": 21, "018307": 21, "277838": 21, "110474": 21, "066928": 21, "128539": 21, "189115": 21, "133558": 21, "021053": 21, "191857": 21, "266151": 21, "166480": 21, "448154": 21, "060018": 21, "082361": 21, "078803": 21, "085102": 21, "255425": 21, "225775": 21, "638672": 21, "101288": 21, "339846": 21, "167170": 21, "125895": 21, "008983": 21, "014724": 21, "358354": 21, "340163": 21, "773209": 21, "379780": 21, "503198": 21, "800499": 21, "791461": 21, "247676": 21, "514654": 21, "247998": 21, "771679": 21, "909412": 21, "689281": 21, "327642": 21, "139097": 21, "055353": 21, "059752": 21, "966272": 21, "185226": 21, "792993": 21, "863291": 21, "010309": 21, "247203": 21, "237609": 21, "377436": 21, "387024": 21, "108300": 21, "005274": 21, "190321": 21, "175575": 21, "647376": 21, "221929": 21, "062723": 21, "061458": 21, "158233": 21, "877737": 21, "548718": 21, "403034": 21, "407193": 21, "095921": 21, "592941": 21, "270533": 21, "817739": 21, "009431": 21, "798278": 21, "137458": 21, "141267": 21, "206010": 21, "502292": 21, "219422": 21, "215153": 21, "confidenti": 21, "reason": 21, "mention": 21, "v_i": 21, "principl": 21, "pc": 21, "pca": 21, "compani": 21, "remain": 21, "transact": 21, "monei": 21, "heavi": 21, "figur": [21, 23], "add_subplot": 21, "hist": [21, 22], "bin": 21, "set_ylabel": 21, "count": [21, 23], "set_xlabel": 21, "set_titl": [21, 22], "18424": 21, "284807": 21, "v10": 21, "v12": 21, "v15": 21, "v11": 21, "v13": 21, "v14": 21, "v16": 21, "v18": 21, "v17": 21, "v19": 21, "v20": 21, "won": 21, "processor": 21, "approxim": 21, "mimic": 21, "undersampl": 21, "mycustomsplitt": 21, "itertool": 21, "product": 21, "over_sampl": 21, "model_select": 21, "train_test_split": 21, "mysplitt": 21, "reproduc": 21, "frac": [21, 24], "reset_index": 21, "x2": 21, "x_test": 21, "y2": 21, "y_test": 21, "train_siz": 21, "x_train": 21, "x_dev": 21, "y_train": 21, "y_dev": 21, "test_siz": 21, "underbalanc": 21, "smote_model": 21, "xtrain_mod": 21, "ytrain_mod": 21, "fit_resampl": 21, "ravel": 21, "custom_splitter_pipelin": 21, "51064419746399": 21, "rcparam": 21, "font": 21, "figsiz": [21, 22, 23], "ndistribut": 21, "set_ylim": 21, "1e6": 21, "tight_layout": 21, "greatli": 21, "minor": 21, "custom_splitt": 21, "ran": 22, "statisticalanalyz": 22, "anoth": 22, "9944201": 22, "1284000": 22, "1200": 22, "5450661": 22, "43094": 22, "31100": 22, "26783383": 22, "437072": 22, "1500": 22, "9439": 22, "3400": 22, "3431932": 22, "176220": 22, "12800": 22, "medium": 22, "low": 22, "statu": 22, "nation": 22, "2916": 22, "dataclass": 22, "getattr": 22, "bunch": 22, "purpos": 22, "rememb": 22, "infer_typ": 22, "rule_bas": 22, "additional_info": 22, "stan": 22, "avg_words_per_sent": 22, "df_target_stddev": 22, "distinct": 22, "nr_column": 22, "nr_row": 22, "target_class_distribut": 22, "train_observed_class": 22, "ts_stat": 22, "aren": 22, "descript": 22, "proport": 22, "seemingli": 22, "colum": 22, "discret": 22, "1592": 22, "2684": 22, "3776": 22, "4868": 22, "5960": 22, "7052": 22, "8144": 22, "9236": 22, "10328": 22, "11420": 22, "12512": 22, "13604": 22, "14696": 22, "15788": 22, "16880": 22, "17972": 22, "19064": 22, "20156": 22, "21248": 22, "22340": 22, "23432": 22, "24524": 22, "25616": 22, "26708": 22, "27800": 22, "28892": 22, "29984": 22, "31076": 22, "32168": 22, "33260": 22, "34352": 22, "35444": 22, "36536": 22, "37628": 22, "38720": 22, "39812": 22, "40904": 22, "41996": 22, "43088": 22, "44180": 22, "45272": 22, "46364": 22, "47456": 22, "48548": 22, "49640": 22, "50732": 22, "51824": 22, "52916": 22, "54008": 22, "degre": 22, "colnam": 22, "entropi": 22, "bias": 22, "biased_bucket": 22, "131403695": 22, "78845027": 22, "52565693": 22, "26286360": 22, "7026": 22, "650": 22, "6183": 22, "976": 22, "753": 22, "767": 22, "cm": 22, "tab10": 22, "barplot": 22, "bar": 22, "rotat": 22, "quick": 22, "outlier": 22, "valuabl": [22, 23], "whatev": 22, "ubiquit": 23, "retail": 23, "industri": 23, "manufactur": 23, "univari": 23, "multivari": 23, "pain": 23, "commonli": 23, "sunspot": 23, "begin": 23, "monthly_sunspot": 23, "1749": 23, "2815": 23, "1983": 23, "2816": 23, "09": 23, "2817": 23, "2818": 23, "2819": 23, "2820": 23, "character": 23, "notion": 23, "2872": 23, "semest": 23, "datset": 23, "past": 23, "cutoff": 23, "2538": 23, "uncom": 23, "2467": 23, "infer_datetime_format": 23, "pydata": 23, "pdep": 23, "0004": 23, "pars": 23, "safe": 23, "to_datetim": 23, "reshap": 23, "minut": 23, "051180630922318": 23, "014871209859848": 23, "969509482383728": 23, "879052013158798": 23, "788950502872467": 23, "611965209245682": 23, "195775926113129": 23, "255893141031265": 23, "5818348675966263": 23, "4797109067440033": 23, "48386093974113464": 23, "49511992931365967": 23, "39475560188293457": 23, "39592696726322174": 23, "3622782379388809": 23, "38170479238033295": 23, "5138543993234634": 23, "6360723078250885": 23, "29868809472430835": 23, "30318967591632495": 23, "lgbm": 23, "rmse": 23, "76798": 23, "57023": 23, "7127": 23, "987446546555": 23, "72661": 23, "49596": 23, "38592": 23, "09356": 23, "88080": 23, "21734": 23, "95640": 23, "80745": 23, "76428": 23, "89176": 23, "87901": 23, "87505": 23, "95930": 23, "988590955734": 23, "27936": 23, "47815": 23, "37610": 23, "25243": 23, "03199": 23, "67706": 23, "57516": 23, "51227": 23, "51216": 23, "55192": 23, "56609": 23, "71702": 23, "75939": 23, "14000": 23, "988853693008": 23, "50446": 23, "73040": 23, "16599": 23, "28726": 23, "46406": 23, "07306": 23, "00714": 23, "13990": 23, "12589": 23, "34977": 23, "43217": 23, "48230": 23, "19079": 23, "988720655441": 23, "13289": 23, "40621": 23, "82532": 23, "03399": 23, "07010": 23, "74813": 23, "81255": 23, "69303": 23, "71044": 23, "79641": 23, "78759": 23, "83998": 23, "77980": 23, "24747": 23, "9883551597595": 23, "37446": 23, "88767": 23, "63817": 23, "84209": 23, "35045": 23, "11300": 23, "16132": 23, "21348": 23, "10747": 23, "20352": 23, "25761": 23, "25308": 23, "31415": 23, "31000": 23, "48913": 23, "988573551178": 23, "69001": 23, "87323": 23, "32567": 23, "09943": 23, "12203": 23, "71523": 23, "70934": 23, "74380": 23, "61157": 23, "73507": 23, "84587": 23, "78099": 23, "68890": 23, "70025": 23, "875": 23, "869": 23, "29626286526521045": 23, "2954987535874049": 23, "tmp": 23, "11cf2e3a3fe2d38f7293f27fbfc34dab78123e8d8e63ffa417157763283658414": 23, "587": 23, "settingwithcopywarn": 23, "copi": 23, "loc": 23, "row_index": 23, "col_index": 23, "doc": 23, "user_guid": 23, "view": 23, "versu": 23, "order_month": 23, "upper": [23, 24], "prediction_sum": 23, "lower_sum": 23, "upper_sum": 23, "confidence_mean": 23, "51358374451768": 23, "78975402923053": 23, "0303": 23, "273628800": 23, "270950400": 23, "268272000": 23, "9991": [23, 24], "14139795091352": 23, "97332333016865": 23, "88576953812185": 23, "60618472829242": 23, "494088": 23, "075865": 23, "801067": 23, "fall": 23, "region": 23, "appreci": 23, "purpl": 23, "grei": 23, "xlabel": 23, "ylabel": 23, "titl": 23, "legend": 23, "gone": [23, 24], "preexist": 24, "convieni": 24, "concret": 24, "2759": 24, "concrete_strength": 24, "train_df": 24, "update_df": 24, "721": 24, "rough": 24, "impact": 24, "jai": 24, "979": 24, "1030": 24, "cement": 24, "slag": 24, "water": 24, "flyash": 24, "superplastic": 24, "coarseaggreg": 24, "fineaggreg": 24, "99637508392334": 24, "826460361480713": 24, "12899512052536": 24, "062753021717072": 24, "490495562553406": 24, "6572003364563": 24, "60721158981323": 24, "11838734149932861": 24, "4641949534416199": 24, "3976145386695862": 24, "3706841468811035": 24, "2367912232875824": 24, "22560915350914001": 24, "12089195847511292": 24, "1678172747294108": 24, "909630": 24, "398161": 24, "146822": 24, "635353": 24, "482294": 24, "970825": 24, "593765": 24, "082296": 24, "724537": 24, "213068": 24, "553104": 24, "064574": 24, "041635": 24, "580425": 24, "091895": 24, "068956": 24, "114187": 24, "602718": 24, "676003": 24, "164533": 24, "231636": 24, "720167": 24, "partit": 24, "dummi": 24, "10915952424208324": 24, "new_predict": 24, "645542": 24, "134073": 24, "964903": 24, "453434": 24, "151918": 24, "640449": 24, "815800": 24, "304330": 24, "987530": 24, "476060": 24, "630058": 24, "141528": 24, "118589": 24, "175228": 24, "663759": 24, "047440": 24, "535970": 24, "659138": 24, "147668": 24, "264580": 24, "753111": 24, "old_acc": 24, "new_acc": 24, "nnew": 24, "acquir": 24}, "objects": {"": [[0, 0, 0, "-", "analysis"], [8, 0, 0, "-", "data"], [9, 0, 0, "-", "encoder"], [10, 0, 0, "-", "ensemble"], [11, 0, 0, "-", "helpers"], [14, 0, 0, "-", "mixer"]], "analysis": [[0, 1, 1, "", "AccStats"], [0, 1, 1, "", "BaseAnalysisBlock"], [0, 1, 1, "", "ConfStats"], [0, 1, 1, "", "ICP"], [0, 1, 1, "", "PermutationFeatureImportance"], [0, 1, 1, "", "TempScaler"], [0, 3, 1, "", "explain"], [0, 3, 1, "", "model_analyzer"]], "analysis.AccStats": [[0, 2, 1, "", "analyze"]], "analysis.BaseAnalysisBlock": [[0, 2, 1, "", "analyze"], [0, 2, 1, "", "explain"]], "analysis.ConfStats": [[0, 2, 1, "", "analyze"]], "analysis.ICP": [[0, 2, 1, "", "analyze"], [0, 2, 1, "", "explain"]], "analysis.PermutationFeatureImportance": [[0, 2, 1, "", "analyze"]], "analysis.TempScaler": [[0, 2, 1, "", "analyze"], [0, 2, 1, "", "explain"]], "api": [[4, 0, 0, "-", "high_level"], [5, 0, 0, "-", "json_ai"], [6, 0, 0, "-", "predictor"], [7, 0, 0, "-", "types"]], "api.high_level": [[4, 3, 1, "", "code_from_json_ai"], [4, 3, 1, "", "code_from_problem"], [4, 3, 1, "", "json_ai_from_problem"], [4, 3, 1, "", "predictor_from_code"], [4, 3, 1, "", "predictor_from_json_ai"], [4, 3, 1, "", "predictor_from_problem"], [4, 3, 1, "", "predictor_from_state"]], "api.json_ai": [[5, 3, 1, "", "add_implicit_values"], [5, 3, 1, "", "generate_json_ai"], [5, 3, 1, "", "lookup_encoder"], [5, 3, 1, "", "validate_json_ai"]], "api.predictor": [[6, 1, 1, "", "PredictorInterface"]], "api.predictor.PredictorInterface": [[6, 2, 1, "", "adjust"], [6, 2, 1, "", "analyze_data"], [6, 2, 1, "", "analyze_ensemble"], [6, 2, 1, "", "export"], [6, 2, 1, "", "featurize"], [6, 2, 1, "", "fit"], [6, 2, 1, "", "learn"], [6, 2, 1, "", "predict"], [6, 2, 1, "", "prepare"], [6, 2, 1, "", "preprocess"], [6, 2, 1, "", "save"], [6, 2, 1, "", "split"], [6, 2, 1, "", "test"]], "api.types": [[7, 1, 1, "", "JsonAI"], [7, 1, 1, "", "ModelAnalysis"], [7, 1, 1, "", "Module"], [7, 1, 1, "", "PredictionArguments"], [7, 1, 1, "", "ProblemDefinition"], [7, 1, 1, "", "SubmodelData"], [7, 1, 1, "", "TimeseriesSettings"]], "api.types.JsonAI": [[7, 2, 1, "", "from_dict"], [7, 2, 1, "", "from_json"], [7, 2, 1, "", "to_dict"], [7, 2, 1, "", "to_json"]], "api.types.PredictionArguments": [[7, 2, 1, "", "from_dict"], [7, 2, 1, "", "to_dict"]], "api.types.ProblemDefinition": [[7, 2, 1, "", "from_dict"], [7, 2, 1, "", "from_json"], [7, 2, 1, "", "to_dict"], [7, 2, 1, "", "to_json"]], "api.types.TimeseriesSettings": [[7, 2, 1, "", "from_dict"], [7, 2, 1, "", "from_json"], [7, 2, 1, "", "to_dict"], [7, 2, 1, "", "to_json"]], "data": [[8, 1, 1, "", "ConcatedEncodedDs"], [8, 1, 1, "", "EncodedDs"], [8, 3, 1, "", "timeseries_analyzer"], [8, 3, 1, "", "transform_timeseries"]], "data.ConcatedEncodedDs": [[8, 2, 1, "", "clear_cache"], [8, 2, 1, "", "get_column_original_data"], [8, 2, 1, "", "get_encoded_column_data"]], "data.EncodedDs": [[8, 2, 1, "", "build_cache"], [8, 2, 1, "", "clear_cache"], [8, 2, 1, "", "get_column_original_data"], [8, 2, 1, "", "get_encoded_column_data"], [8, 2, 1, "", "get_encoded_data"]], "encoder": [[9, 1, 1, "", "ArrayEncoder"], [9, 1, 1, "", "BaseEncoder"], [9, 1, 1, "", "BinaryEncoder"], [9, 1, 1, "", "CatArrayEncoder"], [9, 1, 1, "", "CategoricalAutoEncoder"], [9, 1, 1, "", "DatetimeEncoder"], [9, 1, 1, "", "DatetimeNormalizerEncoder"], [9, 1, 1, "", "Img2VecEncoder"], [9, 1, 1, "", "MultiHotEncoder"], [9, 1, 1, "", "NumArrayEncoder"], [9, 1, 1, "", "NumericEncoder"], [9, 1, 1, "", "OneHotEncoder"], [9, 1, 1, "", "PretrainedLangEncoder"], [9, 1, 1, "", "ShortTextEncoder"], [9, 1, 1, "", "SimpleLabelEncoder"], [9, 1, 1, "", "TimeSeriesEncoder"], [9, 1, 1, "", "TsArrayNumericEncoder"], [9, 1, 1, "", "TsCatArrayEncoder"], [9, 1, 1, "", "TsNumericEncoder"], [9, 1, 1, "", "VocabularyEncoder"]], "encoder.ArrayEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.BaseEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.BinaryEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "decode_probabilities"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.CatArrayEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "prepare"]], "encoder.CategoricalAutoEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.DatetimeEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.DatetimeNormalizerEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "encode_one"], [9, 2, 1, "", "prepare"]], "encoder.Img2VecEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"], [9, 2, 1, "", "to"]], "encoder.MultiHotEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.NumericEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.OneHotEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "decode_probabilities"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.PretrainedLangEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 4, 1, "", "is_trainable_encoder"], [9, 2, 1, "", "prepare"], [9, 2, 1, "", "to"]], "encoder.ShortTextEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.SimpleLabelEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.TimeSeriesEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"]], "encoder.TsArrayNumericEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "decode_one"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.TsCatArrayEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "decode_one"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "encode_one"], [9, 2, 1, "", "prepare"]], "encoder.TsNumericEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"]], "encoder.VocabularyEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "ensemble": [[10, 1, 1, "", "BaseEnsemble"], [10, 1, 1, "", "BestOf"], [10, 1, 1, "", "Embedder"], [10, 1, 1, "", "IdentityEnsemble"], [10, 1, 1, "", "MeanEnsemble"], [10, 1, 1, "", "ModeEnsemble"], [10, 1, 1, "", "StackedEnsemble"], [10, 1, 1, "", "TsStackedEnsemble"], [10, 1, 1, "", "WeightedMeanEnsemble"]], "helpers": [[11, 1, 1, "", "LightwoodAutocast"], [11, 3, 1, "", "add_tn_num_conf_bounds"], [11, 3, 1, "", "concat_vectors_and_pad"], [11, 3, 1, "", "get_devices"], [11, 3, 1, "", "is_cuda_compatible"], [11, 3, 1, "", "is_none"]], "mixer": [[14, 1, 1, "", "ARIMAMixer"], [14, 1, 1, "", "BaseMixer"], [14, 1, 1, "", "ETSMixer"], [14, 1, 1, "", "Neural"], [14, 1, 1, "", "NeuralTs"], [14, 1, 1, "", "ProphetMixer"], [14, 1, 1, "", "RandomForest"], [14, 1, 1, "", "Regression"], [14, 1, 1, "", "SkTime"], [14, 1, 1, "", "TabTransformerMixer"], [14, 1, 1, "", "Unit"], [14, 1, 1, "", "XGBoostArrayMixer"], [14, 1, 1, "", "XGBoostMixer"]], "mixer.BaseMixer": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"]], "mixer.Neural": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"]], "mixer.NeuralTs": [[14, 2, 1, "", "fit"]], "mixer.RandomForest": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"]], "mixer.Regression": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"]], "mixer.SkTime": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"]], "mixer.TabTransformerMixer": [[14, 2, 1, "", "fit"]], "mixer.Unit": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"]], "mixer.XGBoostArrayMixer": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"]], "mixer.XGBoostMixer": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"], [14, 4, 1, "", "supports_proba"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "attribute", "Python attribute"]}, "titleterms": {"analysi": [0, 19, 22], "api": [1, 7], "tabl": 1, "content": 1, "data": [2, 3, 8, 17, 18, 21, 23], "type": [2, 7], "dtype": 2, "encod": [3, 9, 18], "your": [3, 12, 17, 18, 21], "json": [4, 5, 17, 18, 21], "ai": [4, 5, 17, 18, 21], "config": [4, 5], "predictor": [6, 18, 23, 24], "interfac": [6, 20], "lightwood": [7, 12, 13, 17, 19, 20, 22], "ensembl": 10, "helper": 11, "quick": 12, "guid": 12, "instal": 12, "set": 12, "up": 12, "dev": 12, "environ": 12, "vscode": 12, "exampl": 12, "us": [12, 17, 20], "case": 12, "byom": 12, "bring": 12, "own": [12, 17, 21], "model": [12, 13, 24], "contribut": 12, "how": [12, 16], "can": 12, "you": 12, "help": 12, "u": 12, "code": [12, 17, 18, 21], "featur": [12, 13], "bug": 12, "report": 12, "review": 12, "process": [12, 13, 17], "commun": 12, "contributor": 12, "conduct": 12, "current": 12, "licens": 12, "other": 12, "link": 12, "philosophi": 13, "introduct": [13, 19, 20, 22, 23, 24], "pipelin": [13, 17, 21], "i": 13, "pre": [13, 17], "clean": 13, "ii": 13, "engin": 13, "iii": 13, "build": [13, 17, 21], "train": [13, 21, 23, 24], "strength": 13, "drawback": 13, "mixer": [14, 20], "tutori": [15, 16, 19, 20, 22, 23], "make": 16, "notebook": 16, "method": 17, "date": [17, 21], "2021": [17, 21], "10": [17, 21], "07": [17, 21], "1": [17, 18, 19, 20, 21, 22], "load": [17, 18, 21, 22, 23], "2": [17, 18, 19, 20, 21, 22], "creat": [17, 18, 21], "default": [17, 21], "object": [17, 19, 20, 21, 22, 23], "3": [17, 18, 19, 20, 21, 22], "cleaner": 17, "modul": [17, 21], "place": [17, 21], "custom": [17, 18, 19, 20, 21], "lightwood_modul": [17, 21], "etc": 17, "4": [17, 18, 19, 21], "introduc": [17, 21], "5": [17, 18, 21], "gener": [17, 18, 21, 23], "python": [17, 21], "repres": [17, 21], "ml": [17, 21], "6": [17, 21], "call": [17, 21], "run": [17, 19, 21, 22], "see": [17, 21], "preprocess": [17, 21], "output": [17, 21], "rule": 18, "base": 18, "syntax": 18, "labelencod": 18, "edit": 18, "from": 18, "implement": [19, 20], "block": 19, "step": [19, 20, 22], "figur": 19, "out": 19, "what": 19, "we": 19, "need": 19, "expos": 19, "final": [19, 22], "test": [19, 21], "The": 20, "write": 20, "our": 20, "split": 21, "splitter": 21, "": 22, "statist": 22, "dataset": 22, "defin": [22, 23], "predict": [22, 23], "task": [22, 23], "peek": 22, "insid": 22, "amount": 22, "miss": 22, "inform": 22, "bucket": 22, "per": 22, "column": 22, "bia": 22, "histogram": 22, "thought": 22, "time": 23, "seri": 23, "forecast": 23, "visual": 23, "conclus": [23, 24], "initi": 24, "updat": 24, "basemix": 24, "partial_fit": 24, "predictorinterfac": 24, "adjust": 24}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 57}, "alltitles": {"Analysis": [[0, "analysis"]], "API": [[1, "api"]], "Table of Contents:": [[1, null]], "Data Types (dtypes)": [[2, "data-types-dtypes"]], "Encode your data": [[3, "encode-your-data"]], "JSON-AI Config": [[4, "module-api.high_level"], [5, "module-api.json_ai"]], "Predictor Interface": [[6, "predictor-interface"]], "Lightwood API Types": [[7, "lightwood-api-types"]], "Data": [[8, "data"]], "Encoders": [[9, "encoders"]], "Ensemble": [[10, "ensemble"]], "Helpers": [[11, "helpers"]], "Lightwood": [[12, "lightwood"]], "Quick Guide": [[12, "quick-guide"]], "Installation": [[12, "installation"]], "Setting up a dev environment": [[12, "setting-up-a-dev-environment"]], "Setting up a VSCode environment": [[12, "setting-up-a-vscode-environment"]], "Example Use Cases": [[12, "example-use-cases"]], "BYOM: Bring your own models": [[12, "byom-bring-your-own-models"]], "Contribute to Lightwood": [[12, "contribute-to-lightwood"]], "How can you help us?": [[12, "how-can-you-help-us"]], "Code contributions": [[12, "code-contributions"]], "Feature and Bug reports": [[12, "feature-and-bug-reports"]], "Code review process": [[12, "code-review-process"]], "Community": [[12, "community"]], "Contributor Code of Conduct": [[12, "contributor-code-of-conduct"]], "Current contributors": [[12, "current-contributors"]], "License": [[12, "license"]], "Other Links": [[12, "other-links"]], "Lightwood Philosophy": [[13, "lightwood-philosophy"]], "Introduction": [[13, "introduction"], [19, "Introduction"], [20, "Introduction"], [23, "Introduction"], [24, "Introduction"]], "Pipeline": [[13, "pipeline"]], "i) Pre-processing and cleaning": [[13, "i-pre-processing-and-cleaning"]], "ii) Feature Engineering": [[13, "ii-feature-engineering"]], "iii) Model Building and Training": [[13, "iii-model-building-and-training"]], "Strengths and drawbacks": [[13, "strengths-and-drawbacks"]], "Mixers": [[14, "mixers"]], "Tutorials": [[15, "tutorials"]], "How to make a tutorial notebook?": [[16, "how-to-make-a-tutorial-notebook"]], "Using your own pre-processing methods in Lightwood": [[17, "Using-your-own-pre-processing-methods-in-Lightwood"]], "Date: 2021.10.07": [[17, "Date:-2021.10.07"], [21, "Date:-2021.10.07"]], "1) Load your data": [[17, "1)-Load-your-data"], [18, "1)-Load-your-data"], [21, "1)-Load-your-data"]], "2) Create a JSON-AI default object": [[17, "2)-Create-a-JSON-AI-default-object"], [21, "2)-Create-a-JSON-AI-default-object"]], "3) Build your own cleaner module": [[17, "3)-Build-your-own-cleaner-module"]], "Place your custom module in ~/lightwood_modules or /etc/lightwood_modules": [[17, "Place-your-custom-module-in-~/lightwood_modules-or-/etc/lightwood_modules"]], "4) Introduce your custom cleaner in JSON-AI": [[17, "4)-Introduce-your-custom-cleaner-in-JSON-AI"]], "5) Generate Python code representing your ML pipeline": [[17, "5)-Generate-Python-code-representing-your-ML-pipeline"], [21, "5)-Generate-Python-code-representing-your-ML-pipeline"]], "6) Call python to run your code and see your preprocessed outputs": [[17, "6)-Call-python-to-run-your-code-and-see-your-preprocessed-outputs"], [21, "6)-Call-python-to-run-your-code-and-see-your-preprocessed-outputs"]], "Custom Encoder: Rule-Based": [[18, "Custom-Encoder:-Rule-Based"]], "2) Generate JSON-AI Syntax": [[18, "2)-Generate-JSON-AI-Syntax"]], "3) Create your custom encoder (LabelEncoder).": [[18, "3)-Create-your-custom-encoder-(LabelEncoder)."]], "LabelEncoder": [[18, "LabelEncoder"]], "4) Edit JSON-AI": [[18, "4)-Edit-JSON-AI"]], "5) Generate code and your predictor from JSON-AI": [[18, "5)-Generate-code-and-your-predictor-from-JSON-AI"]], "Tutorial - Implementing a custom analysis block in Lightwood": [[19, "Tutorial---Implementing-a-custom-analysis-block-in-Lightwood"]], "Objective": [[19, "Objective"], [20, "Objective"], [22, "Objective"]], "Step 1: figuring out what we need": [[19, "Step-1:-figuring-out-what-we-need"]], "Step 2: Implementing the custom analysis block": [[19, "Step-2:-Implementing-the-custom-analysis-block"]], "Step 3: Exposing the block to Lightwood": [[19, "Step-3:-Exposing-the-block-to-Lightwood"]], "Step 4: Final test run": [[19, "Step-4:-Final-test-run"]], "Tutorial - Implementing a custom mixer in Lightwood": [[20, "Tutorial---Implementing-a-custom-mixer-in-Lightwood"]], "Step 1: The Mixer Interface": [[20, "Step-1:-The-Mixer-Interface"]], "Step 2: Writing our mixer": [[20, "Step-2:-Writing-our-mixer"]], "Step 3: Using our mixer": [[20, "Step-3:-Using-our-mixer"]], "Build your own training/testing split": [[21, "Build-your-own-training/testing-split"]], "3) Build your own splitter module": [[21, "3)-Build-your-own-splitter-module"]], "Place your custom module in ~/lightwood_modules": [[21, "Place-your-custom-module-in-~/lightwood_modules"]], "4) Introduce your custom splitter in JSON-AI": [[21, "4)-Introduce-your-custom-splitter-in-JSON-AI"]], "Tutorial - Introduction to Lightwood\u2019s statistical analysis": [[22, "Tutorial---Introduction-to-Lightwood's-statistical-analysis"]], "Step 1: load the dataset and define the predictive task": [[22, "Step-1:-load-the-dataset-and-define-the-predictive-task"]], "Step 2: Run the statistical analysis": [[22, "Step-2:-Run-the-statistical-analysis"]], "Step 3: Peeking inside": [[22, "Step-3:-Peeking-inside"]], "Amount of missing information": [[22, "Amount-of-missing-information"]], "Buckets per column": [[22, "Buckets-per-column"]], "Bias per column": [[22, "Bias-per-column"]], "Column histograms": [[22, "Column-histograms"]], "Final thoughts": [[22, "Final-thoughts"]], "Tutorial - Time series forecasting": [[23, "Tutorial---Time-series-forecasting"]], "Load data": [[23, "Load-data"]], "Define the predictive task": [[23, "Define-the-predictive-task"]], "Generate the predictor object": [[23, "Generate-the-predictor-object"]], "Train": [[23, "Train"]], "Predict": [[23, "Predict"]], "Visualizing a forecast": [[23, "Visualizing-a-forecast"]], "Conclusion": [[23, "Conclusion"], [24, "Conclusion"]], "Initial model training": [[24, "Initial-model-training"]], "Updating the predictor": [[24, "Updating-the-predictor"]], "BaseMixer.partial_fit()": [[24, "BaseMixer.partial_fit()"]], "PredictorInterface.adjust()": [[24, "PredictorInterface.adjust()"]]}, "indexentries": {"accstats (class in analysis)": [[0, "analysis.AccStats"]], "baseanalysisblock (class in analysis)": [[0, "analysis.BaseAnalysisBlock"]], "confstats (class in analysis)": [[0, "analysis.ConfStats"]], "icp (class in analysis)": [[0, "analysis.ICP"]], "permutationfeatureimportance (class in analysis)": [[0, "analysis.PermutationFeatureImportance"]], "tempscaler (class in analysis)": [[0, "analysis.TempScaler"]], "analysis": [[0, "module-analysis"]], "analyze() (analysis.accstats method)": [[0, "analysis.AccStats.analyze"]], "analyze() (analysis.baseanalysisblock method)": [[0, "analysis.BaseAnalysisBlock.analyze"]], "analyze() (analysis.confstats method)": [[0, "analysis.ConfStats.analyze"]], "analyze() (analysis.icp method)": [[0, "analysis.ICP.analyze"]], "analyze() (analysis.permutationfeatureimportance method)": [[0, "analysis.PermutationFeatureImportance.analyze"]], "analyze() (analysis.tempscaler method)": [[0, "analysis.TempScaler.analyze"]], "explain() (analysis.baseanalysisblock method)": [[0, "analysis.BaseAnalysisBlock.explain"]], "explain() (analysis.icp method)": [[0, "analysis.ICP.explain"]], "explain() (analysis.tempscaler method)": [[0, "analysis.TempScaler.explain"]], "explain() (in module analysis)": [[0, "analysis.explain"]], "model_analyzer() (in module analysis)": [[0, "analysis.model_analyzer"]], "module": [[0, "module-analysis"], [4, "module-api.high_level"], [5, "module-api.json_ai"], [6, "module-api.predictor"], [7, "module-api.types"], [8, "module-data"], [9, "module-encoder"], [10, "module-ensemble"], [11, "module-helpers"], [14, "module-mixer"]], "api.high_level": [[4, "module-api.high_level"]], "code_from_json_ai() (in module api.high_level)": [[4, "api.high_level.code_from_json_ai"]], "code_from_problem() (in module api.high_level)": [[4, "api.high_level.code_from_problem"]], "json_ai_from_problem() (in module api.high_level)": [[4, "api.high_level.json_ai_from_problem"]], "predictor_from_code() (in module api.high_level)": [[4, "api.high_level.predictor_from_code"]], "predictor_from_json_ai() (in module api.high_level)": [[4, "api.high_level.predictor_from_json_ai"]], "predictor_from_problem() (in module api.high_level)": [[4, "api.high_level.predictor_from_problem"]], "predictor_from_state() (in module api.high_level)": [[4, "api.high_level.predictor_from_state"]], "add_implicit_values() (in module api.json_ai)": [[5, "api.json_ai.add_implicit_values"]], "api.json_ai": [[5, "module-api.json_ai"]], "generate_json_ai() (in module api.json_ai)": [[5, "api.json_ai.generate_json_ai"]], "lookup_encoder() (in module api.json_ai)": [[5, "api.json_ai.lookup_encoder"]], "validate_json_ai() (in module api.json_ai)": [[5, "api.json_ai.validate_json_ai"]], "predictorinterface (class in api.predictor)": [[6, "api.predictor.PredictorInterface"]], "adjust() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.adjust"]], "analyze_data() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.analyze_data"]], "analyze_ensemble() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.analyze_ensemble"]], "api.predictor": [[6, "module-api.predictor"]], "export() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.export"]], "featurize() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.featurize"]], "fit() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.fit"]], "learn() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.learn"]], "predict() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.predict"]], "prepare() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.prepare"]], "preprocess() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.preprocess"]], "save() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.save"]], "split() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.split"]], "test() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.test"]], "jsonai (class in api.types)": [[7, "api.types.JsonAI"]], "modelanalysis (class in api.types)": [[7, "api.types.ModelAnalysis"]], "module (class in api.types)": [[7, "api.types.Module"]], "predictionarguments (class in api.types)": [[7, "api.types.PredictionArguments"]], "problemdefinition (class in api.types)": [[7, "api.types.ProblemDefinition"]], "submodeldata (class in api.types)": [[7, "api.types.SubmodelData"]], "timeseriessettings (class in api.types)": [[7, "api.types.TimeseriesSettings"]], "api.types": [[7, "module-api.types"]], "from_dict() (api.types.jsonai static method)": [[7, "api.types.JsonAI.from_dict"]], "from_dict() (api.types.predictionarguments static method)": [[7, "api.types.PredictionArguments.from_dict"]], "from_dict() (api.types.problemdefinition static method)": [[7, "api.types.ProblemDefinition.from_dict"]], "from_dict() (api.types.timeseriessettings static method)": [[7, "api.types.TimeseriesSettings.from_dict"]], "from_json() (api.types.jsonai static method)": [[7, "api.types.JsonAI.from_json"]], "from_json() (api.types.problemdefinition static method)": [[7, "api.types.ProblemDefinition.from_json"]], "from_json() (api.types.timeseriessettings static method)": [[7, "api.types.TimeseriesSettings.from_json"]], "to_dict() (api.types.jsonai method)": [[7, "api.types.JsonAI.to_dict"]], "to_dict() (api.types.predictionarguments method)": [[7, "api.types.PredictionArguments.to_dict"]], "to_dict() (api.types.problemdefinition method)": [[7, "api.types.ProblemDefinition.to_dict"]], "to_dict() (api.types.timeseriessettings method)": [[7, "api.types.TimeseriesSettings.to_dict"]], "to_json() (api.types.jsonai method)": [[7, "api.types.JsonAI.to_json"]], "to_json() (api.types.problemdefinition method)": [[7, "api.types.ProblemDefinition.to_json"]], "to_json() (api.types.timeseriessettings method)": [[7, "api.types.TimeseriesSettings.to_json"]], "concatedencodedds (class in data)": [[8, "data.ConcatedEncodedDs"]], "encodedds (class in data)": [[8, "data.EncodedDs"]], "build_cache() (data.encodedds method)": [[8, "data.EncodedDs.build_cache"]], "clear_cache() (data.concatedencodedds method)": [[8, "data.ConcatedEncodedDs.clear_cache"]], "clear_cache() (data.encodedds method)": [[8, "data.EncodedDs.clear_cache"]], "data": [[8, "module-data"]], "get_column_original_data() (data.concatedencodedds method)": [[8, "data.ConcatedEncodedDs.get_column_original_data"]], "get_column_original_data() (data.encodedds method)": [[8, "data.EncodedDs.get_column_original_data"]], "get_encoded_column_data() (data.concatedencodedds method)": [[8, "data.ConcatedEncodedDs.get_encoded_column_data"]], "get_encoded_column_data() (data.encodedds method)": [[8, "data.EncodedDs.get_encoded_column_data"]], "get_encoded_data() (data.encodedds method)": [[8, "data.EncodedDs.get_encoded_data"]], "timeseries_analyzer() (in module data)": [[8, "data.timeseries_analyzer"]], "transform_timeseries() (in module data)": [[8, "data.transform_timeseries"]], "arrayencoder (class in encoder)": [[9, "encoder.ArrayEncoder"]], "baseencoder (class in encoder)": [[9, "encoder.BaseEncoder"]], "binaryencoder (class in encoder)": [[9, "encoder.BinaryEncoder"]], "catarrayencoder (class in encoder)": [[9, "encoder.CatArrayEncoder"]], "categoricalautoencoder (class in encoder)": [[9, "encoder.CategoricalAutoEncoder"]], "datetimeencoder (class in encoder)": [[9, "encoder.DatetimeEncoder"]], "datetimenormalizerencoder (class in encoder)": [[9, "encoder.DatetimeNormalizerEncoder"]], "img2vecencoder (class in encoder)": [[9, "encoder.Img2VecEncoder"]], "multihotencoder (class in encoder)": [[9, "encoder.MultiHotEncoder"]], "numarrayencoder (class in encoder)": [[9, "encoder.NumArrayEncoder"]], "numericencoder (class in encoder)": [[9, "encoder.NumericEncoder"]], "onehotencoder (class in encoder)": [[9, "encoder.OneHotEncoder"]], "pretrainedlangencoder (class in encoder)": [[9, "encoder.PretrainedLangEncoder"]], "shorttextencoder (class in encoder)": [[9, "encoder.ShortTextEncoder"]], "simplelabelencoder (class in encoder)": [[9, "encoder.SimpleLabelEncoder"]], "timeseriesencoder (class in encoder)": [[9, "encoder.TimeSeriesEncoder"]], "tsarraynumericencoder (class in encoder)": [[9, "encoder.TsArrayNumericEncoder"]], "tscatarrayencoder (class in encoder)": [[9, "encoder.TsCatArrayEncoder"]], "tsnumericencoder (class in encoder)": [[9, "encoder.TsNumericEncoder"]], "vocabularyencoder (class in encoder)": [[9, "encoder.VocabularyEncoder"]], "decode() (encoder.arrayencoder method)": [[9, "encoder.ArrayEncoder.decode"]], "decode() (encoder.baseencoder method)": [[9, "encoder.BaseEncoder.decode"]], "decode() (encoder.binaryencoder method)": [[9, "encoder.BinaryEncoder.decode"]], "decode() (encoder.catarrayencoder method)": [[9, "encoder.CatArrayEncoder.decode"]], "decode() (encoder.categoricalautoencoder method)": [[9, "encoder.CategoricalAutoEncoder.decode"]], "decode() (encoder.datetimeencoder method)": [[9, "encoder.DatetimeEncoder.decode"]], "decode() (encoder.datetimenormalizerencoder method)": [[9, "encoder.DatetimeNormalizerEncoder.decode"]], "decode() (encoder.img2vecencoder method)": [[9, "encoder.Img2VecEncoder.decode"]], "decode() (encoder.multihotencoder method)": [[9, "encoder.MultiHotEncoder.decode"]], "decode() (encoder.numericencoder method)": [[9, "encoder.NumericEncoder.decode"]], "decode() (encoder.onehotencoder method)": [[9, "encoder.OneHotEncoder.decode"]], "decode() (encoder.pretrainedlangencoder method)": [[9, "encoder.PretrainedLangEncoder.decode"]], "decode() (encoder.shorttextencoder method)": [[9, "encoder.ShortTextEncoder.decode"]], "decode() (encoder.simplelabelencoder method)": [[9, "encoder.SimpleLabelEncoder.decode"]], "decode() (encoder.timeseriesencoder method)": [[9, "encoder.TimeSeriesEncoder.decode"]], "decode() (encoder.tsarraynumericencoder method)": [[9, "encoder.TsArrayNumericEncoder.decode"]], "decode() (encoder.tscatarrayencoder method)": [[9, "encoder.TsCatArrayEncoder.decode"]], "decode() (encoder.tsnumericencoder method)": [[9, "encoder.TsNumericEncoder.decode"]], "decode() (encoder.vocabularyencoder method)": [[9, "encoder.VocabularyEncoder.decode"]], "decode_one() (encoder.tsarraynumericencoder method)": [[9, "encoder.TsArrayNumericEncoder.decode_one"]], "decode_one() (encoder.tscatarrayencoder method)": [[9, "encoder.TsCatArrayEncoder.decode_one"]], "decode_probabilities() (encoder.binaryencoder method)": [[9, "encoder.BinaryEncoder.decode_probabilities"]], "decode_probabilities() (encoder.onehotencoder method)": [[9, "encoder.OneHotEncoder.decode_probabilities"]], "encode() (encoder.arrayencoder method)": [[9, "encoder.ArrayEncoder.encode"]], "encode() (encoder.baseencoder method)": [[9, "encoder.BaseEncoder.encode"]], "encode() (encoder.binaryencoder method)": [[9, "encoder.BinaryEncoder.encode"]], "encode() (encoder.categoricalautoencoder method)": [[9, "encoder.CategoricalAutoEncoder.encode"]], "encode() (encoder.datetimeencoder method)": [[9, "encoder.DatetimeEncoder.encode"]], "encode() (encoder.datetimenormalizerencoder method)": [[9, "encoder.DatetimeNormalizerEncoder.encode"]], "encode() (encoder.img2vecencoder method)": [[9, "encoder.Img2VecEncoder.encode"]], "encode() (encoder.multihotencoder method)": [[9, "encoder.MultiHotEncoder.encode"]], "encode() (encoder.numericencoder method)": [[9, "encoder.NumericEncoder.encode"]], "encode() (encoder.onehotencoder method)": [[9, "encoder.OneHotEncoder.encode"]], "encode() (encoder.pretrainedlangencoder method)": [[9, "encoder.PretrainedLangEncoder.encode"]], "encode() (encoder.shorttextencoder method)": [[9, "encoder.ShortTextEncoder.encode"]], "encode() (encoder.simplelabelencoder method)": [[9, "encoder.SimpleLabelEncoder.encode"]], "encode() (encoder.timeseriesencoder method)": [[9, "encoder.TimeSeriesEncoder.encode"]], "encode() (encoder.tsarraynumericencoder method)": [[9, "encoder.TsArrayNumericEncoder.encode"]], "encode() (encoder.tscatarrayencoder method)": [[9, "encoder.TsCatArrayEncoder.encode"]], "encode() (encoder.tsnumericencoder method)": [[9, "encoder.TsNumericEncoder.encode"]], "encode() (encoder.vocabularyencoder method)": [[9, "encoder.VocabularyEncoder.encode"]], "encode_one() (encoder.datetimenormalizerencoder method)": [[9, "encoder.DatetimeNormalizerEncoder.encode_one"]], "encode_one() (encoder.tscatarrayencoder method)": [[9, "encoder.TsCatArrayEncoder.encode_one"]], "encoder": [[9, "module-encoder"]], "is_trainable_encoder (encoder.pretrainedlangencoder attribute)": [[9, "encoder.PretrainedLangEncoder.is_trainable_encoder"]], "prepare() (encoder.arrayencoder method)": [[9, "encoder.ArrayEncoder.prepare"]], "prepare() (encoder.baseencoder method)": [[9, "encoder.BaseEncoder.prepare"]], "prepare() (encoder.binaryencoder method)": [[9, "encoder.BinaryEncoder.prepare"]], "prepare() (encoder.catarrayencoder method)": [[9, "encoder.CatArrayEncoder.prepare"]], "prepare() (encoder.categoricalautoencoder method)": [[9, "encoder.CategoricalAutoEncoder.prepare"]], "prepare() (encoder.datetimeencoder method)": [[9, "encoder.DatetimeEncoder.prepare"]], "prepare() (encoder.datetimenormalizerencoder method)": [[9, "encoder.DatetimeNormalizerEncoder.prepare"]], "prepare() (encoder.img2vecencoder method)": [[9, "encoder.Img2VecEncoder.prepare"]], "prepare() (encoder.multihotencoder method)": [[9, "encoder.MultiHotEncoder.prepare"]], "prepare() (encoder.numericencoder method)": [[9, "encoder.NumericEncoder.prepare"]], "prepare() (encoder.onehotencoder method)": [[9, "encoder.OneHotEncoder.prepare"]], "prepare() (encoder.pretrainedlangencoder method)": [[9, "encoder.PretrainedLangEncoder.prepare"]], "prepare() (encoder.shorttextencoder method)": [[9, "encoder.ShortTextEncoder.prepare"]], "prepare() (encoder.simplelabelencoder method)": [[9, "encoder.SimpleLabelEncoder.prepare"]], "prepare() (encoder.tsarraynumericencoder method)": [[9, "encoder.TsArrayNumericEncoder.prepare"]], "prepare() (encoder.tscatarrayencoder method)": [[9, "encoder.TsCatArrayEncoder.prepare"]], "prepare() (encoder.vocabularyencoder method)": [[9, "encoder.VocabularyEncoder.prepare"]], "to() (encoder.img2vecencoder method)": [[9, "encoder.Img2VecEncoder.to"]], "to() (encoder.pretrainedlangencoder method)": [[9, "encoder.PretrainedLangEncoder.to"]], "baseensemble (class in ensemble)": [[10, "ensemble.BaseEnsemble"]], "bestof (class in ensemble)": [[10, "ensemble.BestOf"]], "embedder (class in ensemble)": [[10, "ensemble.Embedder"]], "identityensemble (class in ensemble)": [[10, "ensemble.IdentityEnsemble"]], "meanensemble (class in ensemble)": [[10, "ensemble.MeanEnsemble"]], "modeensemble (class in ensemble)": [[10, "ensemble.ModeEnsemble"]], "stackedensemble (class in ensemble)": [[10, "ensemble.StackedEnsemble"]], "tsstackedensemble (class in ensemble)": [[10, "ensemble.TsStackedEnsemble"]], "weightedmeanensemble (class in ensemble)": [[10, "ensemble.WeightedMeanEnsemble"]], "ensemble": [[10, "module-ensemble"]], "lightwoodautocast (class in helpers)": [[11, "helpers.LightwoodAutocast"]], "add_tn_num_conf_bounds() (in module helpers)": [[11, "helpers.add_tn_num_conf_bounds"]], "concat_vectors_and_pad() (in module helpers)": [[11, "helpers.concat_vectors_and_pad"]], "get_devices() (in module helpers)": [[11, "helpers.get_devices"]], "helpers": [[11, "module-helpers"]], "is_cuda_compatible() (in module helpers)": [[11, "helpers.is_cuda_compatible"]], "is_none() (in module helpers)": [[11, "helpers.is_none"]], "arimamixer (class in mixer)": [[14, "mixer.ARIMAMixer"]], "basemixer (class in mixer)": [[14, "mixer.BaseMixer"]], "etsmixer (class in mixer)": [[14, "mixer.ETSMixer"]], "neural (class in mixer)": [[14, "mixer.Neural"]], "neuralts (class in mixer)": [[14, "mixer.NeuralTs"]], "prophetmixer (class in mixer)": [[14, "mixer.ProphetMixer"]], "randomforest (class in mixer)": [[14, "mixer.RandomForest"]], "regression (class in mixer)": [[14, "mixer.Regression"]], "sktime (class in mixer)": [[14, "mixer.SkTime"]], "tabtransformermixer (class in mixer)": [[14, "mixer.TabTransformerMixer"]], "unit (class in mixer)": [[14, "mixer.Unit"]], "xgboostarraymixer (class in mixer)": [[14, "mixer.XGBoostArrayMixer"]], "xgboostmixer (class in mixer)": [[14, "mixer.XGBoostMixer"]], "fit() (mixer.basemixer method)": [[14, "mixer.BaseMixer.fit"]], "fit() (mixer.neural method)": [[14, "mixer.Neural.fit"]], "fit() (mixer.neuralts method)": [[14, "mixer.NeuralTs.fit"]], "fit() (mixer.randomforest method)": [[14, "mixer.RandomForest.fit"]], "fit() (mixer.regression method)": [[14, "mixer.Regression.fit"]], "fit() (mixer.sktime method)": [[14, "mixer.SkTime.fit"]], "fit() (mixer.tabtransformermixer method)": [[14, "mixer.TabTransformerMixer.fit"]], "fit() (mixer.unit method)": [[14, "mixer.Unit.fit"]], "fit() (mixer.xgboostarraymixer method)": [[14, "mixer.XGBoostArrayMixer.fit"]], "fit() (mixer.xgboostmixer method)": [[14, "mixer.XGBoostMixer.fit"]], "mixer": [[14, "module-mixer"]], "partial_fit() (mixer.basemixer method)": [[14, "mixer.BaseMixer.partial_fit"]], "partial_fit() (mixer.neural method)": [[14, "mixer.Neural.partial_fit"]], "partial_fit() (mixer.randomforest method)": [[14, "mixer.RandomForest.partial_fit"]], "partial_fit() (mixer.regression method)": [[14, "mixer.Regression.partial_fit"]], "partial_fit() (mixer.sktime method)": [[14, "mixer.SkTime.partial_fit"]], "partial_fit() (mixer.unit method)": [[14, "mixer.Unit.partial_fit"]], "partial_fit() (mixer.xgboostarraymixer method)": [[14, "mixer.XGBoostArrayMixer.partial_fit"]], "partial_fit() (mixer.xgboostmixer method)": [[14, "mixer.XGBoostMixer.partial_fit"]], "supports_proba (mixer.xgboostmixer attribute)": [[14, "mixer.XGBoostMixer.supports_proba"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["analysis", "api", "api/dtype", "api/encode", "api/high_level", "api/json_ai", "api/predictor", "api/types", "data", "encoder", "ensemble", "helpers", "index", "lightwood_philosophy", "mixer", "tutorials", "tutorials/README", "tutorials/custom_cleaner/custom_cleaner", "tutorials/custom_encoder_rulebased/custom_encoder_rulebased", "tutorials/custom_explainer/custom_explainer", "tutorials/custom_mixer/custom_mixer", "tutorials/custom_splitter/custom_splitter", "tutorials/tutorial_data_analysis/tutorial_data_analysis", "tutorials/tutorial_time_series/tutorial_time_series", "tutorials/tutorial_update_models/tutorial_update_models"], "filenames": ["analysis.rst", "api.rst", "api/dtype.rst", "api/encode.rst", "api/high_level.rst", "api/json_ai.rst", "api/predictor.rst", "api/types.rst", "data.rst", "encoder.rst", "ensemble.rst", "helpers.rst", "index.rst", "lightwood_philosophy.rst", "mixer.rst", "tutorials.rst", "tutorials/README.md", "tutorials/custom_cleaner/custom_cleaner.ipynb", "tutorials/custom_encoder_rulebased/custom_encoder_rulebased.ipynb", "tutorials/custom_explainer/custom_explainer.ipynb", "tutorials/custom_mixer/custom_mixer.ipynb", "tutorials/custom_splitter/custom_splitter.ipynb", "tutorials/tutorial_data_analysis/tutorial_data_analysis.ipynb", "tutorials/tutorial_time_series/tutorial_time_series.ipynb", "tutorials/tutorial_update_models/tutorial_update_models.ipynb"], "titles": ["Analysis", "API", "Data Types (dtypes)", "Encode your data", "JSON-AI Config", "JSON-AI Config", "Predictor Interface", "Lightwood API Types", "Data", "Encoders", "Ensemble", "Helpers", "Lightwood", "Lightwood Philosophy", "Mixers", "Tutorials", "How to make a tutorial notebook?", "Using your own pre-processing methods in Lightwood", "Custom Encoder: Rule-Based", "Tutorial - Implementing a custom analysis block in Lightwood", "Tutorial - Implementing a custom mixer in Lightwood", "Build your own training/testing split", "Tutorial - Introduction to Lightwood\u2019s statistical analysis", "Tutorial - Time series forecasting", "Introduction"], "terms": {"analys": 0, "mixer": [0, 6, 7, 9, 10, 12, 13, 15, 17, 18, 19, 21, 22, 23, 24], "ensembl": [0, 6, 7, 12, 13, 14, 17, 19, 20, 21, 23, 24], "extract": [0, 7, 8, 13, 17, 21], "static": [0, 7], "insight": [0, 7, 8, 17, 19, 20, 21, 22, 23, 24], "train": [0, 4, 5, 6, 7, 8, 9, 12, 14, 15, 17, 18, 19, 20, 22], "predict": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24], "time": [0, 7, 8, 9, 11, 12, 13, 14, 17, 19, 21], "model": [0, 5, 6, 7, 8, 9, 10, 14, 15, 17, 18, 19, 20, 21, 22, 23], "dynam": [0, 7, 9], "class": [0, 2, 6, 7, 8, 9, 10, 11, 13, 14, 17, 18, 19, 20, 21, 22], "accstat": [0, 12, 17, 19, 20, 21, 23, 24], "dep": [0, 17, 19, 21], "icp": [0, 7, 12, 17, 19, 20, 21, 23, 24], "sourc": [0, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 20, 21], "comput": [0, 6, 8, 9, 11, 17, 19, 21], "accuraci": [0, 6, 7, 9, 10, 17, 19, 20, 21, 23, 24], "stat": [0, 13, 14, 17, 18, 21], "confus": [0, 7, 19], "matrix": [0, 7, 19], "valid": [0, 5, 7, 10, 12, 14, 17, 19, 20, 21, 23, 24], "dataset": [0, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24], "analyz": [0, 7, 8, 12, 17, 18, 19, 20, 21, 22, 23, 24], "info": [0, 9, 14, 17, 18, 19, 20, 21, 22, 23, 24], "kwarg": [0, 10, 17, 19, 21], "thi": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "method": [0, 4, 7, 8, 9, 10, 12, 13, 14, 18, 19, 20, 21, 23, 24], "should": [0, 5, 7, 9, 10, 12, 13, 14, 16, 17, 18, 19, 21, 23], "call": [0, 4, 5, 7, 8, 9, 10, 12, 13, 14, 18, 19, 20, 22, 23, 24], "onc": [0, 7, 12, 14, 17, 18, 19, 20, 21, 23], "dure": [0, 5, 9, 14], "phase": [0, 8, 9, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24], "all": [0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24], "It": [0, 4, 9, 11, 13, 14, 17, 23], "ani": [0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 22, 24], "inform": [0, 2, 6, 7, 9, 14, 17, 19, 21], "block": [0, 7, 8, 13, 17, 20, 21, 22, 23, 24], "mai": [0, 2, 5, 7, 8, 9, 12, 14, 16, 17, 18, 21, 22], "either": [0, 7, 8, 9, 11, 13, 18], "output": [0, 6, 7, 8, 9, 10, 13, 14, 18, 19, 20, 23, 24], "object": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 24], "us": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24], "infer": [0, 2, 6, 7, 8, 9, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24], "when": [0, 4, 7, 9, 10, 11, 14, 17, 19, 21, 22, 24], "explain": [0, 7, 12, 13, 15, 17, 19, 20, 21, 23, 24], "i": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "case": [0, 7, 8, 9, 10, 17, 18, 19, 20, 21, 22], "make": [0, 7, 9, 12, 13, 15, 17, 18, 20, 21, 22, 23], "sure": [0, 12, 17, 23], "need": [0, 6, 7, 9, 12, 14, 16, 18, 20, 22, 23, 24], "ar": [0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "ad": [0, 7, 12, 14, 19], "runtim": [0, 17, 18, 19, 20, 21, 23, 24], "so": [0, 7, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "can": [0, 5, 6, 7, 9, 10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "access": [0, 17, 18, 21, 22], "them": [0, 6, 9, 11, 12, 13, 16, 17, 19, 20, 22, 23, 24], "rtype": [0, 6, 7, 9], "dict": [0, 4, 6, 7, 8, 9, 14, 17, 19, 20, 21, 24], "str": [0, 4, 5, 6, 7, 8, 9, 14, 17, 18, 19, 20, 21], "paramet": [0, 4, 5, 6, 7, 8, 9, 11, 14, 20, 21, 22, 23], "dictionari": [0, 4, 6, 7, 8, 9, 12, 14, 17, 18, 19, 21], "where": [0, 7, 8, 9, 10, 12, 14, 17, 18, 19, 20, 21, 22], "new": [0, 2, 4, 6, 7, 9, 12, 14, 15, 17, 19, 21, 24], "The": [0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24], "next": [0, 4, 14, 23], "previou": [0, 7, 9, 12, 19], "start": [0, 6, 10, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24], "point": [0, 7, 8, 9, 14, 18, 19, 23], "type": [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "param": [0, 5, 6, 7, 9, 14, 17, 18, 21], "name": [0, 5, 7, 8, 9, 12, 14, 17, 18, 21, 22], "variabl": [0, 11, 17], "from": [0, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24], "core": [0, 11, 12, 13, 14, 17, 19], "rest": [0, 7, 8, 14, 22, 23], "pipelin": [0, 2, 5, 6, 7, 8, 12, 16, 18, 19, 22, 23], "baseanalysisblock": [0, 12, 19], "inherit": [0, 2, 6, 8, 13, 14, 18, 19], "row_insight": [0, 19], "global_insight": [0, 17, 19, 21], "addit": [0, 6, 7, 9, 12, 13, 14, 17, 18, 19, 22, 23, 24], "explan": [0, 13], "an": [0, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "instanc": [0, 6, 7, 14, 21, 22], "level": [0, 7, 10, 11, 13, 18, 23], "row": [0, 6, 7, 8, 9, 12, 18, 19, 20, 21, 22, 23, 24], "wise": [0, 6, 9, 14], "global": [0, 12, 14, 16], "For": [0, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24], "former": [0, 19], "return": [0, 4, 5, 6, 7, 8, 9, 10, 11, 14, 17, 18, 19, 20, 21, 23], "data": [0, 1, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 22, 24], "frame": [0, 6, 8, 13, 18, 21], "latter": [0, 19], "requir": [0, 5, 6, 7, 11, 12, 13, 14, 16, 17, 18, 19, 21, 24], "datafram": [0, 4, 6, 7, 8, 11, 12, 16, 17, 18, 19, 20, 21, 23, 24], "previous": [0, 5, 6, 9, 18, 19], "concern": 0, "itself": [0, 13, 22], "tupl": [0, 7, 9, 11, 19], "modifi": [0, 4, 13, 17, 18, 19, 22, 24], "input": [0, 2, 6, 7, 9, 11, 12, 14, 17, 18, 20, 21, 23], "here": [0, 9, 12, 17, 18, 21, 22], "confstat": [0, 12, 17, 19, 20, 21, 23, 24], "ece_bin": 0, "10": [0, 9, 12, 14, 18, 19, 20, 22, 23, 24], "confid": [0, 7, 11, 13, 19, 20, 23, 24], "relat": [0, 17], "statist": [0, 6, 13, 17, 18, 19, 20, 21, 23, 24], "held": [0, 7, 14, 19, 24], "out": [0, 6, 7, 9, 12, 13, 14, 17, 18, 20, 21, 22, 24], "todo": [0, 7, 9, 11, 17, 21], "regress": [0, 6, 10, 12, 14, 17, 18, 19, 20, 21], "forecast": [0, 7, 8, 9, 10, 14], "task": [0, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 24], "confidence_norm": [0, 17, 21], "fals": [0, 6, 7, 9, 11, 14, 17, 18, 20, 21, 22, 23, 24], "fixed_signific": [0, 17, 21], "none": [0, 4, 6, 7, 8, 9, 10, 11, 14, 17, 18, 20, 21, 22, 23], "estim": [0, 6, 7, 14, 17, 19, 21, 23], "induct": [0, 19], "conform": [0, 7, 19], "predictor": [0, 1, 4, 7, 12, 13, 14, 17, 19, 20, 21, 22], "agnost": [0, 17], "permutationfeatureimport": [0, 12, 17, 19, 20, 21, 23, 24], "disable_column_import": 0, "row_limit": 0, "1000": [0, 14, 19, 20, 24], "col_limit": 0, "A": [0, 4, 5, 6, 7, 8, 9, 11, 13, 14, 17, 19, 21, 23], "c": [0, 9, 19], "": [0, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24], "t": [0, 5, 6, 7, 9, 11, 12, 13, 14, 17, 19, 20, 21, 22], "column": [0, 2, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 23, 24], "import": [0, 2, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24], "via": [0, 4, 6, 7, 9, 10, 12, 13, 14, 16, 18], "permut": 0, "roughli": 0, "speak": 0, "procedur": [0, 2, 5, 7, 8, 9, 13, 14, 17, 19, 21, 24], "iter": [0, 9, 11, 14, 19, 23], "over": [0, 7, 8, 9, 17], "option": [0, 4, 6, 7, 8, 9, 11, 12, 14, 17, 18, 20, 21, 24], "shuffl": [0, 21], "its": [0, 5, 6, 7, 9, 12, 13, 14, 17, 19, 20, 21, 23, 24], "valu": [0, 5, 6, 7, 8, 9, 11, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24], "gener": [0, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 19, 20, 22, 24], "compar": [0, 11, 14, 18, 19, 24], "obtain": [0, 7, 8, 10], "unshuffl": 0, "differ": [0, 7, 9, 14, 16, 17, 19, 22, 23, 24], "normal": [0, 7, 8, 9, 13, 22], "respect": [0, 6, 7, 9, 10, 13, 14, 19, 21, 24], "origin": [0, 7, 8, 9, 13, 14, 17, 18, 20, 21, 24], "clip": 0, "zero": [0, 11], "neg": [0, 17], "report": [0, 7, 9], "score": [0, 6, 7, 10, 11, 14, 17, 21], "note": [0, 7, 8, 9, 10, 12, 14, 17, 18, 19, 21, 23, 24], "crucial": [0, 19, 22], "doe": [0, 6, 9, 12, 14, 17, 19, 22, 23, 24], "refit": [0, 14], "set": [0, 6, 7, 8, 9, 10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "0": [0, 7, 9, 11, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24], "entir": [0, 6, 7, 8, 10, 12, 14, 17, 18, 19, 21, 22, 23], "consid": [0, 7, 9, 11, 14, 17, 18, 19, 20, 21, 22, 23, 24], "possibl": [0, 5, 7, 9, 12, 13, 14], "refer": [0, 7, 8, 9, 13, 14, 17, 18, 21, 22], "http": [0, 9, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24], "scikit": [0, 14, 21], "learn": [0, 2, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24], "org": [0, 9, 14, 23], "stabl": [0, 14, 17, 19, 21, 22, 23], "modul": [0, 1, 7, 8, 9, 12, 13, 14, 16, 18, 19, 20, 24], "permutation_import": 0, "html": [0, 14, 23], "compstat": 0, "lmu": 0, "github": [0, 12, 16, 17, 20, 21], "io": 0, "iml_methods_limit": 0, "pfi": [0, 19, 20, 24], "tempscal": [0, 12], "mit": 0, "licens": [0, 17], "com": [0, 12, 17, 18, 19, 20, 21, 22, 23, 24], "gpleiss": 0, "temperature_sc": 0, "nb": 0, "neural": [0, 9, 12, 14, 17, 18, 19, 20, 21, 24], "network": [0, 9, 14], "classif": [0, 6, 9, 10, 14, 20], "logit": [0, 9], "NOT": [0, 9], "softmax": [0, 10, 14], "log": [0, 9, 11, 17, 18, 21], "tune": [0, 9, 12, 14, 21], "temperatur": 0, "optim": [0, 10, 14, 20], "nll": 0, "perform": [0, 6, 7, 8, 9, 10, 12, 13, 14, 17, 18, 19, 21], "scale": [0, 7, 9, 11], "encoded_data": [0, 9, 17, 18, 21], "target_nam": [0, 17, 21], "target_dtyp": [0, 17, 21], "problem_definit": [0, 4, 5, 7, 12, 17, 18, 19, 20, 21, 22, 23, 24], "stat_analysi": [0, 17, 21], "pred_arg": [0, 8, 17, 21, 24], "runtime_analysi": [0, 17, 21], "explainer_block": [0, 17, 21], "ts_analysi": [0, 10, 14, 17, 21], "run": [0, 5, 7, 9, 10, 12, 13, 14, 16, 18, 20, 23, 24], "end": [0, 6, 7, 12, 14, 17, 20, 21], "everi": [0, 5, 6, 7, 8, 9, 14, 19, 24], "Its": [0, 9], "goal": [0, 7, 12, 17, 18, 19, 21], "potenti": [0, 10, 13, 21], "stage": [0, 12, 24], "e": [0, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 24], "g": [0, 7, 8, 9, 12, 13, 14, 16, 19, 22, 24], "As": [0, 6, 14, 17, 19, 21, 22, 23, 24], "user": [0, 1, 2, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17, 19, 22], "specifi": [0, 4, 5, 6, 7, 9, 11, 12, 14, 17, 18, 19, 21, 22, 23], "see": [0, 2, 7, 8, 9, 11, 12, 18, 19, 22, 23, 24], "also": [0, 6, 7, 9, 11, 12, 13, 14, 17, 19, 20, 21, 22], "contain": [0, 4, 5, 6, 7, 9, 11, 13, 14, 17, 20, 21, 24], "model_analyz": [0, 12, 17, 21], "train_data": [0, 14, 17, 18, 19, 20, 21, 24], "stats_info": [0, 17, 19, 21], "target": [0, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24], "pdef": [0, 12, 17, 18, 19, 20, 21, 23, 24], "dtype_dict": [0, 7, 8, 10, 14, 17, 18, 19, 20, 21, 22], "accuracy_funct": [0, 7, 10, 17, 18, 19, 20, 21, 24], "analysis_block": [0, 7, 17, 19, 21], "subset": [0, 8, 14, 24], "evalu": [0, 6, 7, 10, 17, 21, 23], "featur": [0, 2, 5, 6, 7, 9, 10, 11, 14, 17, 18, 19, 20, 21, 23, 24], "calibr": [0, 19], "futur": [0, 7, 8, 9, 23], "addition": [0, 7, 22], "modelanalysi": [0, 7, 12], "runtime_analyz": [0, 17, 19, 21], "get": [0, 7, 8, 11, 12, 13, 14, 17, 18, 20, 21, 22, 24], "popul": [0, 5, 6, 7, 9, 17, 18, 19, 20, 21, 22, 23, 24], "sequenti": [0, 9, 17, 18, 19, 20, 21, 23, 24], "fashion": [0, 13], "store": [0, 6, 7, 8, 10, 13, 17, 19, 21, 22], "model_analysi": [0, 17, 21], "metric": [0, 6, 7, 17, 19, 20, 21, 24], "necessarili": 0, "how": [1, 2, 5, 6, 7, 8, 9, 11, 13, 14, 17, 18, 19, 21, 22, 23, 24], "lightwood": [1, 2, 4, 6, 8, 9, 10, 11, 14, 15, 16, 18, 21, 23, 24], "interfac": [1, 12, 14, 24], "json": [1, 7, 12, 16, 19, 20, 22], "ai": [1, 6, 7, 12, 16, 19, 20, 22], "config": [1, 7, 12, 22], "dtype": [1, 7, 9, 12, 14, 17, 18, 20, 21, 22], "encod": [1, 5, 6, 7, 8, 10, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24], "your": [1, 4, 6, 9, 13, 15, 16, 19, 20, 22, 23, 24], "support": [2, 6, 7, 9, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24], "sever": [2, 6, 7, 17, 19, 21, 22], "standard": [2, 9, 17, 20], "machin": [2, 7, 12, 14, 17, 19, 21, 22, 23], "label": [2, 9, 10, 14, 17, 18, 19, 21, 23], "right": [2, 19], "format": [2, 7, 8, 9, 12, 13, 14, 20], "affect": [2, 12], "what": [2, 5, 8, 9, 12, 17, 18, 21, 22, 23], "engin": [2, 7, 9, 12, 17, 18, 21, 22], "methodologi": [2, 18], "current": [2, 7, 9, 11, 13, 14, 19], "wai": [2, 4, 7, 11, 13, 17, 18, 20, 22], "encourag": 2, "includ": [2, 7, 8, 17, 18, 19, 21], "custom": [2, 4, 5, 6, 7, 10, 12, 13, 14, 15, 16, 22, 23, 24], "tag": [2, 12, 23], "file": [2, 4, 5, 6, 7, 9, 12, 13, 16, 17, 18, 19, 20, 21], "clean": [2, 5, 6, 7, 8, 9, 12, 15, 17, 18, 19, 20, 21, 23, 24], "approach": [2, 5, 6, 7, 9, 12, 13, 17, 18, 21], "basic": [2, 6, 14, 22], "function": [2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 19, 21, 23], "cleaner": [2, 7, 12, 13, 21, 23], "own": [2, 5, 13, 15, 18, 19, 20, 22, 23], "flag": [2, 7, 8, 9, 14, 17, 18], "specif": [2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 21, 23], "step": [2, 6, 7, 9, 11, 12, 13, 17, 18, 21], "do": [2, 4, 7, 10, 12, 14, 16, 17, 18, 19, 20, 21, 23, 24], "pleas": [2, 8, 9, 12, 14, 16, 17, 18, 19, 21], "tutori": [2, 12, 17, 18, 21, 24], "api": [4, 5, 6, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24], "high_level": [4, 12, 19, 20, 22, 23, 24], "code_from_json_ai": [4, 12, 17, 18, 19, 20, 21, 23], "json_ai": [4, 5, 12, 17, 18, 19, 20, 21, 22, 23], "autogener": [4, 17, 21], "code": [4, 5, 6, 7, 11, 13, 16, 19, 20, 23], "base": [4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 21, 22, 23], "detail": [4, 5, 7, 8, 9, 12, 14, 17, 18, 19, 21], "you": [4, 6, 8, 9, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "insid": [4, 7, 8, 9, 14, 19, 20, 24], "jsonai": [4, 5, 7, 10, 12, 13, 17, 18, 19, 21], "text": [4, 9, 12, 13, 14, 17, 19, 21, 23], "creat": [4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 19, 20, 22], "code_from_problem": [4, 12], "df": [4, 7, 12, 17, 18, 19, 20, 21, 22, 23, 24], "raw": [4, 5, 6, 7, 12, 17, 18, 19, 20, 22, 23, 24], "union": [4, 7, 9, 17, 18, 21], "problemdefinit": [4, 5, 7, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24], "manual": [4, 18, 23], "problem": [4, 6, 7, 9, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23], "json_ai_from_problem": [4, 12, 17, 18, 19, 20, 21, 23, 24], "definit": [4, 7, 9, 13, 14, 17, 18, 21, 22, 23], "usual": [4, 7, 14], "would": [4, 7, 11, 13, 14, 16, 17, 18, 22, 24], "want": [4, 8, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24], "subsequ": [4, 7, 19, 21], "edit": [4, 5, 13, 16, 17, 20, 21], "easiest": [4, 13, 17], "unload": 4, "to_dict": [4, 7, 12, 17, 21, 22], "from_dict": [4, 7, 12, 17, 18, 19, 20, 21, 22, 23, 24], "better": [4, 10, 11], "rather": [4, 10, 13, 14], "than": [4, 7, 9, 10, 11, 14, 16, 21], "write": [4, 5, 12, 16, 17, 18, 19, 21], "scratch": [4, 17, 20, 24], "predictor_from_cod": [4, 12, 17, 18, 19, 20, 21, 23], "form": [4, 7, 9, 18], "predictorinterfac": [4, 6, 12, 17, 21], "predictor_from_json_ai": [4, 12, 24], "readi": [4, 17, 18, 19, 21, 23], "predictor_from_problem": [4, 12], "some": [4, 6, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 24], "first": [4, 7, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24], "d": [4, 7, 12, 14, 17, 18, 20], "same": [4, 6, 9, 13], "predictor_from_st": [4, 12], "state_fil": 4, "pickl": [4, 20], "result": [4, 6, 7, 9, 23], "save": [4, 6, 12, 16, 17, 19, 20, 21], "add_implicit_valu": [5, 12], "To": [5, 7, 9, 12, 14, 16, 17, 18, 19, 22, 24], "enabl": [5, 7, 9, 10, 11, 12, 13, 14, 17, 19, 21, 23, 24], "breviti": 5, "auto": [5, 14, 17, 20], "unspecifi": [5, 7], "miss": [5, 7, 9, 11, 17, 21], "ml": [5, 6, 7, 12, 13, 14, 19, 22], "describ": [5, 7, 9, 18, 19], "have": [5, 6, 7, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24], "fulli": [5, 14, 17, 19, 21, 22], "necessari": [5, 6, 7, 17, 19, 21, 22], "were": [5, 8, 17, 18], "left": [5, 7], "unment": 5, "fill": [5, 6, 12, 17, 18, 21], "generate_json_ai": [5, 12], "type_inform": [5, 22], "statistical_analysi": [5, 17, 18, 20, 21, 22], "given": [5, 6, 7, 8, 9, 13, 14, 17, 18, 19, 21, 22, 23], "type_inf": [5, 7, 17, 18, 19, 20, 21, 22, 23, 24], "typeinform": [5, 22], "dataprep_ml": [5, 7, 9, 17, 18, 19, 20, 21, 22, 23, 24], "statisticalanalysi": [5, 9, 18, 19, 22], "element": [5, 9, 17, 21, 23], "each": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23], "within": [5, 6, 7, 8, 9, 12, 16, 17, 18, 19, 21], "mindsdb": [5, 7, 12, 17, 18, 19, 20, 21, 22, 23, 24], "build": [5, 8, 12, 24], "defin": [5, 9, 10, 12, 14, 19, 20, 24], "lookup_encod": [5, 12], "col_dtyp": 5, "col_nam": [5, 17, 18, 21], "is_target": [5, 9, 17, 18, 20, 21], "problem_defint": 5, "is_target_predicting_encod": 5, "assign": [5, 6, 7, 9, 10, 11, 13, 17, 18, 21, 22], "default": [5, 7, 9, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23], "whether": [5, 7, 8, 9, 10, 11, 14, 18, 19, 21, 22], "intak": [5, 6, 7, 13, 14, 18, 21], "represent": [5, 6, 7, 8, 9, 10, 13, 14, 16, 17, 18, 19, 20, 21], "per": [5, 7, 8, 9, 10, 13, 14, 17, 18, 19, 21], "avail": [5, 7, 8, 9, 11, 14, 19, 22, 23, 24], "overrid": [5, 6, 7, 12, 13, 17, 18], "process": [5, 6, 7, 8, 9, 10, 14, 18, 19, 21, 22, 23, 24], "howev": [5, 7, 12, 13, 17, 18, 19, 21], "order": [5, 7, 9, 10, 16, 17, 18, 20, 21, 23], "templat": [5, 12], "automat": [5, 7, 9, 11, 12, 14, 16, 17, 18, 21, 22, 24], "syntax": [5, 7, 12, 17, 21], "while": [5, 9, 12, 13, 18, 19, 21], "arg": [5, 6, 7, 10, 12, 14, 17, 18, 19, 20, 21, 24], "pass": [5, 6, 7, 9, 11, 12, 14, 21, 22, 23, 24], "These": [5, 12, 17, 18, 19, 21], "depend": [5, 7, 8, 9, 12, 13, 14, 17, 20, 21], "prepar": [5, 6, 7, 9, 10, 12, 17, 18, 19, 20, 21, 23, 24], "bool": [5, 6, 7, 8, 9, 11, 14, 17, 18, 19, 21], "If": [5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 21, 23, 24], "true": [5, 6, 7, 8, 9, 10, 11, 14, 17, 18, 20, 21, 22], "onli": [5, 7, 8, 9, 10, 11, 12, 14, 17, 18, 19, 20, 21, 22, 24], "certain": [5, 9, 14, 17], "allow": [5, 6, 7, 11, 12, 13, 17, 18, 21], "particularli": 5, "complex": [5, 10, 12, 13, 19], "criteria": [5, 7, 14, 21], "validate_json_ai": [5, 12], "check": [5, 7, 8, 9, 11, 12, 14, 17, 18, 19, 21, 22, 23], "doesn": [5, 6, 12, 13, 19], "prohibit": 5, "unknown": [5, 7, 9, 14, 18, 19, 20, 21], "turn": [5, 11, 13, 17, 18, 20, 21], "skelet": 6, "structur": [6, 9, 13, 19], "around": [6, 12, 14, 21], "abstract": [6, 7, 8, 12, 13, 17, 19, 21, 22, 24], "encompass": 6, "interact": 6, "full": [6, 9, 12, 13, 17, 19, 21], "intern": [6, 7, 9, 10, 14, 17, 19, 21, 22, 23, 24], "must": [6, 9, 14, 16, 18], "expect": [6, 7, 9, 14, 17, 18, 19, 21], "analyze_data": [6, 12, 17, 18, 19, 20, 21, 23, 24], "peform": 6, "analysi": [6, 7, 11, 12, 13, 14, 15, 17, 18, 20, 21, 23, 24], "unprocess": [6, 12, 17, 21], "help": [6, 16], "downstream": [6, 17], "treat": [6, 7, 14, 18], "preprocess": [6, 7, 12, 18, 19, 20, 23, 24], "appli": [6, 8, 9, 10, 17, 18, 21], "split": [6, 7, 8, 9, 12, 13, 14, 15, 17, 18, 19, 20, 23, 24], "dev": [6, 9, 13, 14, 17, 18, 19, 20, 21, 24], "test": [6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24], "accord": [6, 8, 11, 13, 17, 18, 19, 22], "splitter": [6, 7, 12, 13, 17, 18], "pre": [6, 7, 8, 9, 12, 14, 18, 21], "vector": [6, 9, 10, 11, 14, 17, 20, 21], "fit": [6, 7, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24], "yield": [6, 7, 9, 10, 14, 23], "analyze_ensembl": [6, 12, 17, 19, 20, 21, 23, 24], "qualiti": [6, 17, 21], "adjust": [6, 9, 12, 17, 19, 20, 21, 23], "incorpor": 6, "updat": [6, 7, 12, 14, 15, 17, 18, 19, 20, 21, 23], "exist": [6, 9, 14, 15, 17, 20, 21], "simplif": 6, "we": [6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24], "offer": [6, 19, 22, 24], "follow": [6, 7, 8, 9, 12, 17, 18, 19, 20, 21, 23, 24], "until": 6, "reach": [6, 17], "techniqu": [6, 14, 17, 21], "interest": [6, 7, 9, 12, 13, 17, 21, 23], "untrain": 6, "No": [6, 17, 18, 19, 20, 21, 22, 23, 24], "explicit": 6, "provid": [6, 7, 8, 9, 12, 13, 14, 16, 17, 18, 21, 22, 23], "host": [6, 16], "thu": [6, 9, 20], "now": [6, 11, 14, 17, 18, 19, 20, 21, 22, 23, 24], "deploi": [6, 7, 9, 14], "chosen": 6, "best": [6, 7, 10, 17, 18, 19, 20, 21, 23, 24], "similar": [6, 13, 17], "further": [6, 7, 12, 17, 21, 23, 24], "j": [6, 17, 19, 21], "son": [6, 17, 21], "creation": 6, "routin": 6, "natur": [6, 13, 19], "new_data": [6, 24], "old_data": [6, 24], "adjust_arg": [6, 14, 17, 21, 24], "adopt": [6, 18], "except": [6, 9, 12, 13, 16, 17, 19, 20, 21], "been": [6, 7, 9, 14, 17, 18, 19, 20, 21, 22, 23, 24], "alreadi": [6, 9, 14, 17, 19, 22], "experiment": [6, 10, 12, 14], "subject": 6, "chang": [6, 7, 9, 11, 12, 13, 16, 17, 18, 21], "In": [6, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "situat": 6, "old": [6, 14, 24], "still": [6, 7, 10, 11, 13], "ensur": [6, 7, 9, 16, 17, 21], "finetun": [6, 14], "place": [6, 14, 22], "anyth": [6, 13, 16], "identifi": [6, 7, 13, 17, 18, 19, 20, 21, 22], "distribut": [6, 7, 9, 17, 21, 22], "imbalanc": [6, 9, 22], "other": [6, 7, 11, 13, 14, 17, 18, 20, 21, 22, 23], "nuanc": [6, 7], "enc_data": [6, 17, 21], "relev": [6, 16, 17, 19, 22], "export": [6, 12, 16], "file_path": 6, "json_ai_cod": 6, "both": [6, 7, 9, 13, 14, 18, 19, 22, 23], "singl": [6, 8, 9, 10, 14, 16, 19, 20, 23, 24], "binari": [6, 9, 13, 20, 21], "later": [6, 11, 17, 20, 21, 22], "usag": [6, 9, 11, 14, 22, 24], "locat": [6, 9, 17, 21], "split_data": [6, 17, 18, 21], "self": [6, 9, 17, 18, 19, 20, 21], "kei": [6, 7, 12, 16, 17, 19, 20, 21, 22], "instanti": [6, 7, 12, 17, 18, 21], "attribut": [6, 7, 9, 10, 11, 14, 18, 19], "accordingli": 6, "particular": [6, 17, 18, 19, 22], "ex": [6, 7, 9, 12, 13], "numer": [6, 7, 8, 9, 13, 14, 17, 18, 21, 22], "categor": [6, 9, 10, 13, 17, 18, 19, 20, 22], "etc": [6, 7, 9, 13, 18, 19, 20, 21], "convert": [6, 9, 11, 13, 17, 18], "useabl": 6, "Of": 6, "request": [6, 12, 14, 17, 19, 20, 21, 23, 24], "compil": [6, 11, 14, 17, 21], "amalg": 6, "occur": [6, 7], "noth": [6, 18], "n_sampl": 6, "n_column": 6, "correspond": [6, 7, 9, 19, 20], "sampl": [6, 7, 8, 9, 14, 17, 18, 19, 20, 21, 22, 23, 24], "behavior": [6, 7, 8, 9, 13, 14, 18, 19], "wrap": [6, 9, 10, 24], "predictionargu": [6, 7, 8, 12, 17, 20, 21], "ha": [6, 7, 9, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "explicitli": [6, 7, 8, 9, 17, 18, 19, 21], "With": [6, 18], "path": [6, 9, 12, 13, 17, 21], "stratifi": [6, 21], "fraction": [6, 9], "strict": [6, 17, 21, 23], "list": [6, 7, 8, 9, 10, 11, 14, 17, 18, 19, 21, 22], "which": [6, 7, 9, 12, 13, 14, 17, 18, 19, 20, 21, 23], "hold": 6, "rais": [6, 11, 17, 20, 21], "error": [6, 7, 9, 14, 17, 20, 21], "otherwis": [6, 9, 11, 14, 16, 17], "skip": [6, 14, 17, 20, 21, 23], "n_metric": 6, "cell": [6, 11, 19], "consist": [7, 9, 18, 23], "high": [7, 9, 19, 22, 23], "scienc": [7, 12, 18], "up": [7, 13, 16, 17, 19, 21, 23], "being": [7, 13, 14], "repres": [7, 9, 11, 12, 13, 18], "argument": [7, 8, 14, 17, 18, 21, 22, 23, 24], "constructor": 7, "timeseriesset": [7, 8, 9, 12, 14, 17, 19, 21, 22], "is_timeseri": [7, 17, 18, 20, 21, 22], "order_bi": [7, 8, 17, 18, 20, 21, 22, 23], "window": [7, 8, 9, 17, 18, 20, 21, 22, 23], "group_bi": [7, 8, 9, 14, 17, 18, 20, 21, 22], "use_previous_target": [7, 17, 18, 20, 21, 22], "horizon": [7, 8, 9, 14, 17, 18, 20, 21, 22, 23], "historical_column": [7, 17, 18, 20, 21, 22], "target_typ": [7, 17, 18, 20, 21, 22], "allow_incomplete_histori": [7, 17, 18, 20, 21, 22], "eval_incomplet": [7, 17, 18, 20, 21, 22], "interval_period": [7, 17, 18, 20, 21, 22], "seri": [7, 8, 9, 12, 13, 14, 17, 18, 21], "more": [7, 8, 9, 10, 11, 14, 16, 17, 18, 19, 20, 21], "treatment": [7, 9, 17], "carri": 7, "properli": [7, 9], "appropri": [7, 9, 11, 17, 21], "group": [7, 9, 14], "combin": [7, 8, 12, 13], "int": [7, 9, 11, 14, 18, 19, 20, 21, 23, 24], "tempor": 7, "number": [7, 9, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24], "look": [7, 13, 17, 18, 19, 21, 22, 23, 24], "back": [7, 18], "after": [7, 9, 10, 13, 14, 17, 18, 19, 21], "applic": [7, 11, 22], "made": [7, 13, 16, 19], "1": [7, 9, 11, 14, 23, 24], "abl": [7, 18, 19, 22], "mani": [7, 8, 9, 14, 17, 18, 21, 22, 23], "context": [7, 8, 11], "non": [7, 9, 17, 21], "histor": [7, 8, 9], "shall": [7, 21], "without": [7, 9, 12, 13, 17, 18, 21, 24], "through": [7, 9, 11, 13, 14, 17, 19, 21, 23, 24], "integ": [7, 9, 14, 17, 18, 19, 20, 21, 22, 24], "float": [7, 9, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24], "incomplet": 7, "less": [7, 9, 21], "observ": [7, 8, 9, 14, 21, 22, 23], "datetim": [7, 13, 23], "histori": 7, "period": [7, 14], "length": [7, 8, 9, 11, 14], "interv": [7, 8, 13, 23], "timeseries_analyz": [7, 8, 12, 14], "detect_period": 7, "document": [7, 12, 14, 17, 19, 21, 22, 23], "daili": 7, "7": [7, 17, 18, 19, 20, 21, 22, 23, 24], "obj": 7, "python": [7, 9, 11, 12, 13, 14, 18, 19, 20, 22, 23, 24], "mandatori": 7, "from_json": [7, 12], "encode_json": 7, "to_json": [7, 12, 17, 18, 20, 21], "pct_invalid": [7, 17, 18, 20, 21, 22], "unbias_target": [7, 17, 18, 20, 21, 22], "seconds_per_mix": [7, 17, 18, 20, 21, 22, 24], "seconds_per_encod": [7, 17, 18, 20, 21, 22], "expected_additional_tim": [7, 17, 18, 20, 21, 22], "time_aim": [7, 17, 18, 19, 20, 21, 22, 24], "target_weight": [7, 9, 17, 18, 20, 21, 22], "positive_domain": [7, 9, 17, 18, 20, 21, 22], "timeseries_set": [7, 8, 14, 17, 18, 20, 21, 22, 23], "anomaly_detect": [7, 17, 18, 20, 21, 22], "use_default_analysi": [7, 17, 18, 20, 21, 22], "embedding_onli": [7, 17, 18, 20, 21, 22], "ignore_featur": [7, 17, 18, 20, 21, 22], "fit_on_al": [7, 14, 17, 18, 20, 21, 22], "strict_mod": [7, 17, 18, 20, 21, 22], "seed_nr": [7, 17, 18, 20, 21, 22], "indic": [7, 9, 14, 19, 21], "try": [7, 16, 17, 18, 19, 20, 21, 23], "aspect": 7, "about": [7, 9, 13, 14, 17, 22], "long": [7, 12, 14, 17], "take": [7, 9, 11, 14, 17, 18, 19, 20, 22, 23], "maxim": 7, "toler": 7, "invalid": [7, 17, 20, 21], "exce": [7, 11], "taken": [7, 9, 13, 21], "weight": [7, 9, 10], "invers": [7, 9, 18], "often": [7, 9], "thei": [7, 8, 12, 13, 14, 16, 17, 18, 19, 21], "second": [7, 9, 13, 14, 17, 18, 19, 20, 21, 23, 24], "maximum": [7, 9, 11, 14], "spend": 7, "budget": [7, 9, 14], "compon": [7, 13, 21], "much": [7, 11, 14, 17, 18, 19, 21, 23], "tak": 7, "forc": [7, 9], "posit": [7, 9, 17, 21], "conduct": [7, 17], "unsupervis": 7, "anomali": [7, 17, 23], "detect": [7, 17, 18, 19, 20, 21, 22, 23, 24], "map": [7, 9, 14, 17, 18, 20, 21, 22], "autom": [7, 12, 14, 16, 19, 22], "wish": 7, "ignor": [7, 14, 17, 19, 20, 21], "found": [7, 9, 11, 17, 18, 19, 21, 23, 24], "remov": [7, 8, 9, 17, 19, 20, 21, 23], "strictli": [7, 17], "well": [7, 9, 13, 18, 19, 22, 24], "never": [7, 11, 17], "anticip": 7, "incom": 7, "crash": [7, 17, 21], "unstabl": 7, "fail": [7, 10, 14, 16, 20], "seed": [7, 17, 21], "dependency_dict": [7, 17, 18, 20], "imput": [7, 17, 18, 20, 21], "timeseries_transform": 7, "construct": [7, 15, 20], "flexibl": [7, 19, 22], "recip": 7, "column_nam": [7, 8], "submodel": [7, 17, 18, 20, 24], "like": [7, 8, 9, 11, 13, 17, 18, 19, 21, 23, 24], "id": [7, 12, 17, 24], "subroutin": 7, "choos": [7, 17, 21], "handl": [7, 8, 9, 10, 17, 18, 19, 20, 23], "altern": [7, 12], "suggest": 7, "packag": [7, 14, 17, 19, 20, 21, 22, 23, 24], "tool": [7, 16, 22], "transform": [7, 8, 9, 13, 18, 23], "timeseri": [7, 14, 15, 17, 23], "measur": [7, 23], "frequenc": [7, 14], "submodeldata": [7, 12], "is_best": 7, "accuracy_histogram": 7, "accuracy_sampl": 7, "train_sample_s": 7, "test_sample_s": 7, "column_import": 7, "confusion_matrix": 7, "histogram": [7, 17, 21], "submodel_data": 7, "understand": [7, 13, 19, 22], "algorithm": [7, 14, 17, 19, 21], "pair": [7, 19], "size": [7, 9, 18, 21, 22], "close": 7, "leav": [7, 19, 20, 23], "one": [7, 9, 11, 14, 17, 19, 20, 21, 22, 23, 24], "covari": 7, "strategi": [7, 9, 18], "predict_proba": 7, "all_mix": [7, 17, 21], "mixer_weight": 7, "fixed_confid": 7, "anomaly_cooldown": 7, "forecast_offset": 7, "simple_ts_bound": 7, "time_format": 7, "force_ts_inf": 7, "return_embed": [7, 17, 21], "On": 7, "field": [7, 17, 22], "trigger": [7, 14, 19, 23, 24], "probabl": [7, 9, 23], "classifi": [7, 9], "instead": [7, 11, 12, 14, 17, 19, 20, 23, 24], "emit": [7, 8, 23], "coeffici": [7, 14], "bound": [7, 11, 13, 14, 23], "mix": [7, 11, 13], "compat": [7, 9, 11, 13, 18], "5": [7, 11, 12, 14, 19, 20, 22, 23, 24], "two": [7, 9, 10, 14, 17, 18, 19, 20, 21, 22, 24], "mean": [7, 8, 9, 10, 13, 14, 18, 19], "weightedmeanensembl": [7, 10, 12], "stackedensembl": [7, 10, 12], "tsstackedensembl": [7, 10, 12], "alpha": [7, 14], "fix": [7, 10, 12], "averag": [7, 9], "correct": [7, 9, 14], "percent": 7, "translat": [7, 9], "rate": [7, 14, 19, 23, 24], "between": [7, 9, 12, 14, 16, 19, 20, 22], "01": [7, 9, 19, 20, 23, 24], "99": [7, 19, 21, 24], "impli": 7, "wider": 7, "tighter": 7, "equal": [7, 21], "minimum": [7, 9, 11, 21], "amount": [7, 14, 21, 23], "timestep": [7, 9, 11, 23], "consecut": 7, "fire": 7, "detector": 7, "disabl": [7, 8, 12, 14, 19, 23, 24], "bonferroni": 7, "resort": 7, "simpler": 7, "uncertainti": 7, "helper": [7, 8, 9, 12, 17, 18, 19, 20, 21, 22, 23, 24], "add_tn_num_conf_bound": [7, 11, 12], "implement": [7, 9, 12, 13, 14, 17, 18, 21, 23, 24], "timestamp": [7, 9, 13, 14, 23], "string": [7, 9, 13, 14], "unless": [7, 9, 19, 20], "empti": [7, 9, 14, 17, 21], "produc": [7, 9, 13, 14, 19, 22, 23], "w": [7, 9, 17, 19, 21], "r": [7, 21], "focu": [8, 12, 13, 17, 18, 19], "merg": [8, 12], "concatedencodedd": [8, 12, 17, 20, 21], "encoded_ds_arr": 8, "encodedd": [8, 10, 12, 14, 17, 19, 20, 21, 24], "multipl": [8, 9, 10, 12, 13], "datasourc": 8, "entiti": 8, "torch": [8, 9, 11, 17, 18, 19, 20, 21, 23, 24], "util": [8, 14, 19, 23, 24], "cach": [8, 17, 21], "avoid": [8, 14, 16, 17, 21], "duplic": 8, "open": [8, 12, 13, 17, 21], "issu": [8, 12], "data_fram": [8, 17, 21], "clear_cach": [8, 12], "encoded_d": [8, 17, 19, 20, 21], "get_column_original_data": [8, 12, 18], "get_encoded_column_data": [8, 12, 18], "tensor": [8, 9, 11, 18, 19, 20, 23, 24], "baseencod": [8, 9, 12, 13, 14, 17, 18, 20, 21], "build_cach": [8, 12], "initi": [8, 10, 11, 14, 17, 18, 20, 21], "clear": 8, "pd": [8, 9, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24], "get_encoded_data": [8, 12, 17, 21], "include_target": [8, 17, 21], "few": [8, 12, 14, 17, 18], "val": 8, "thing": [8, 12, 13, 14, 16, 21, 22], "group_combin": 8, "determin": [8, 9, 10, 11, 13, 14], "delta": 8, "ts_naive_residu": 8, "residu": 8, "naiv": 8, "repeat": 8, "last": [8, 9, 13, 14], "seen": [8, 14], "ts_naive_ma": 8, "target_norm": 8, "effect": 8, "time_seri": 8, "common": 8, "choic": [8, 18, 19], "aforement": [8, 14], "transform_timeseri": [8, 12], "mode": [8, 9, 10, 11, 12, 17, 21], "conveni": [8, 19, 22], "posterior": 8, "main": [8, 12, 13, 17, 18, 19, 20, 23, 24], "cast": [8, 14, 19, 20], "add": [8, 11, 12, 14, 17, 19, 21], "plu": [8, 14, 17], "logic": [8, 9, 10, 14, 17, 19, 21, 24], "stream": 8, "control": [8, 18], "pytorch": [9, 13], "decod": [9, 12, 14, 18, 20], "arrayencod": [9, 12], "stop_aft": [9, 14, 17, 18, 20, 21, 24], "original_typ": [9, 17, 21], "arrai": [9, 12, 13, 19, 23], "minmax": 9, "simpl": [9, 10, 14, 18, 19, 21, 22, 23, 24], "hot": 9, "sequenc": 9, "space": 9, "column_data": [9, 18], "properti": [9, 17, 21], "train_priming_data": 9, "dev_priming_data": 9, "columnar": 9, "final": [9, 10, 12, 13, 20, 21, 24], "oppos": [9, 16, 18], "rule": [9, 10, 13, 16], "move": [9, 18], "gpu": [9, 11, 14, 18, 19, 23], "is_timeseries_encod": [9, 18], "kind": 9, "is_trainable_encod": [9, 12, 17, 18, 21], "present": [9, 17], "statement": [9, 16], "is_prepar": [9, 18], "signal": 9, "successfulli": 9, "execut": [9, 11, 14, 16, 19], "is_nn_encod": 9, "might": [9, 11, 12, 19, 22, 23, 24], "output_s": [9, 18], "rich": 9, "audio": [9, 13], "part": [9, 12, 14, 17], "concaten": [9, 11, 14], "priming_data": [9, 17, 18, 21], "distilbert": 9, "work": [9, 10, 12, 13, 14, 16, 17, 18, 19, 21, 23], "binaryencod": [9, 12, 20, 21], "handle_unknown": 9, "use_encoded_valu": 9, "assum": [9, 14, 17, 21], "arbitrari": [9, 19], "categori": [9, 12, 13, 18, 19, 20, 21], "b": 9, "special": [9, 13, 17, 22], "oh": 9, "null": [9, 17, 18, 20], "exampl": [9, 11, 16, 17, 18, 19, 21, 22, 24], "outsid": [9, 17, 23], "recogn": 9, "2": [9, 11, 12, 14, 23, 24], "uniqu": [9, 12, 18], "show": [9, 12, 16, 17, 18, 19, 22, 23], "longer": 9, "truli": [9, 12], "comfort": [9, 17], "heavili": 9, "By": [9, 12, 13, 14, 18, 20], "rel": [9, 13], "suppos": [9, 18], "80": [9, 19, 24], "20": [9, 18, 19, 23, 24], "across": [9, 14, 24], "3": [9, 11, 13, 23, 24], "class1": 9, "8": [9, 14, 17, 18, 19, 20, 21, 22, 23, 24], "class2": 9, "inv_target_weight": 9, "target_value_per_class": 9, "oper": [9, 17, 19], "larg": [9, 16, 17, 21], "small": [9, 17], "presumpt": 9, "OR": 9, "alwai": [9, 14, 18, 21], "argmax": 9, "decode_prob": [9, 12], "answer": [9, 14, 21], "revers": 9, "dimens": [9, 11, 18], "unrecogn": 9, "n_": [9, 18], "x": [9, 12, 17, 18, 20, 21, 22], "prime": [9, 17, 21], "index": [9, 12, 18, 19, 20, 22, 23], "vice": 9, "versa": 9, "catarrayencod": [9, 12], "categoricalautoencod": [9, 12, 18], "3600": 9, "max_encoded_length": 9, "100": [9, 19, 22], "desired_error": 9, "batch_siz": 9, "200": [9, 19, 24], "devic": [9, 11, 17, 21], "input_encod": 9, "autoencod": 9, "ae": 9, "excess": 9, "prefer": [9, 12], "highli": [9, 17, 23], "advis": 9, "reconstruct": 9, "abil": 9, "stop": [9, 10, 14, 17, 20, 21, 24], "limit": [9, 13], "sec": 9, "recommend": [9, 12, 17, 21], "threshold": [9, 14], "batch": 9, "get_device_from_nam": 9, "attempt": 9, "onehotencod": [9, 12, 18, 20], "simplelabelencod": [9, 12], "underli": [9, 10, 14, 17], "cardin": 9, "sle": 9, "accur": 9, "overal": [9, 19], "embed": 9, "warn": [9, 14, 17, 19, 20, 21, 23, 24], "cata": 9, "compress": 9, "togeth": [9, 10, 12, 17, 20], "Not": 9, "datetimeencod": [9, 12], "decompos": 9, "constitu": 9, "unit": [9, 12, 14, 16], "month": [9, 23], "year": [9, 18], "those": [9, 11, 12], "magnitud": 9, "sensibl": 9, "cycl": [9, 12], "return_as_datetim": 9, "ndarrai": [9, 19], "panda": [9, 11, 12, 17, 18, 19, 20, 21, 22, 23, 24], "shape": [9, 19, 23, 24], "len": [9, 17, 19, 21, 22, 23, 24], "datetimenormalizerencod": [9, 12], "sinusoid": 9, "receiv": [9, 12, 19], "encode_on": [9, 12], "unix_timestamp": 9, "resolut": 9, "img2vecencod": [9, 12], "224": [9, 19], "485": [9, 19], "456": [9, 19], "406": [9, 19], "std": 9, "229": [9, 19], "225": [9, 19, 22], "imag": [9, 13, 17, 18, 19, 20, 21, 22, 23, 24], "deep": 9, "rescal": 9, "224x224": 9, "deviat": 9, "imagenet": 9, "wa": [9, 17, 19, 20, 21, 22, 23, 24], "nn": 9, "img_to_vec": 9, "img2vec": 9, "resiz": 9, "y": [9, 20, 21, 22], "pixel": 9, "encoded_values_tensor": 9, "referenc": 9, "filepath": 9, "url": [9, 13, 16], "floattensor": 9, "available_devic": 9, "cpu": [9, 11, 18, 19, 23], "multihotencod": [9, 12], "max_dimens": 9, "numarrayencod": [9, 12], "numericencod": [9, 12, 17, 18, 20, 21], "data_typ": 9, "natural_log": 9, "ab": 9, "absolute_mean": 9, "sinc": [9, 12, 13, 14, 20], "just": [9, 14, 18, 19, 21, 22], "absolut": 9, "feed": 9, "stand": 9, "actual": [9, 14, 17, 19, 21, 23], "sort": [9, 18], "nan": [9, 11, 17, 24], "inf": 9, "quantiti": [9, 13, 14, 23], "encoded_valu": 9, "decode_log": 9, "linear": [9, 14], "numpi": [9, 17, 19, 20, 21, 22, 24], "numericalencod": 9, "use_unknown": 9, "One": 9, "individu": [9, 17, 21], "imagin": [9, 18], "n": [9, 11, 14, 17, 19, 22], "05": [9, 14, 17, 19, 20, 23, 24], "15": [9, 12, 17, 19, 20, 21, 23, 24], "class3": 9, "percentag": [9, 21], "total": [9, 14, 17, 18, 19, 20, 21, 22, 23, 24], "extra": [9, 11, 16, 21], "account": [9, 12], "flexibli": 9, "pretrainedlangencod": [9, 12, 17], "max_position_embed": 9, "frozen": 9, "epoch": [9, 14, 19, 23, 24], "output_typ": [9, 17], "embed_mod": 9, "yet": 9, "fine": [9, 14, 22], "max": [9, 11, 14], "freez": 9, "layer": 9, "cl": [9, 13], "max_length": [9, 11], "state": [9, 14, 23], "token": [9, 13], "latent": 9, "most": [9, 12, 13, 17, 21, 23], "separ": [9, 13], "soft": 9, "n_row": [9, 18], "nembed_dim": 9, "n_class": 9, "arxiv": 9, "1910": 9, "01108": 9, "contextu": 9, "sanh": 9, "et": [9, 14], "al": 9, "2019": [9, 18], "encoded_target_valu": [9, 17, 21], "decai": 9, "faster": 9, "lower": [9, 13, 23, 24], "benchmark": [9, 12, 16, 18, 20, 23], "nrow": 9, "n_output_dimens": 9, "fastest": 9, "shorttextencod": [9, 12], "concat": [9, 17, 18, 20, 21], "alloc": 9, "exact": 9, "match": [9, 11], "temporarili": 9, "unnorm": 9, "timeseriesencod": [9, 12], "along": [9, 11, 17, 21, 22, 23], "tsarraynumericencod": [9, 12], "grouped_bi": 9, "domain": [9, 23], "dependency_data": [9, 17, 21], "slice": [9, 23], "decode_on": [9, 12], "tss": [9, 14, 17, 21, 23], "belong": [9, 19], "retriev": [9, 19], "k": [9, 17, 21], "data_window": 9, "sub": 9, "tscatarrayencod": [9, 12], "tsnumericencod": [9, 12], "nxk": 9, "variant": [9, 14], "vanilla": 9, "re": [9, 17, 18, 19, 20, 21], "datum": 9, "vocabularyencod": [9, 12], "baseensembl": [10, 12, 17, 19, 21], "There": [10, 13, 14, 17, 18, 21, 23], "__init__": [10, 14, 17, 18, 19, 20, 21], "__call__": [10, 14, 20], "aggreg": [10, 24], "supports_proba": [10, 12, 14, 17, 21], "bestof": [10, 12, 14, 17, 18, 19, 20, 21, 24], "act": 10, "selector": 10, "embedd": [10, 12, 17, 21], "bypass": 10, "identityensembl": [10, 12], "activ": [10, 11, 14, 23], "said": 10, "ideal": [10, 17, 18, 21], "expens": 10, "done": [10, 11, 12, 13, 14, 17, 18, 20, 23, 24], "meanensembl": [10, 12], "modeensembl": [10, 12], "whose": 10, "vote": 10, "highest": 10, "stochast": 10, "gradient": [10, 13, 14], "descent": 10, "uniformli": 10, "roadmap": 10, "faulti": 10, "earli": [10, 14, 20, 24], "arbitrarili": [10, 11], "secondari": 10, "thin": 10, "wrapper": [10, 14, 19, 22], "afterward": [10, 22], "variou": [11, 12, 18], "lightwoodautocast": [11, 12], "equival": [11, 17, 18, 19, 20, 21, 22, 23, 24], "cuda": [11, 19, 23, 24], "amp": [11, 19, 23, 24], "autocast": 11, "capabl": [11, 24], "leverag": [11, 19, 22, 23, 24], "lt": [11, 19], "manag": 11, "precis": 11, "tss_arg": 11, "deprec": [11, 19, 23, 24], "opt": [11, 19, 20, 23, 24], "solut": 11, "nc": [11, 19], "research": 11, "question": [11, 12, 19, 21, 22], "guarante": [11, 12, 14], "coverag": 11, "conserv": 11, "increas": [11, 21], "width": 11, "factor": [11, 22], "concat_vectors_and_pad": [11, 12], "vec_list": 11, "max_": 11, "pad": 11, "dim": 11, "achiev": [11, 22], "assertionerror": 11, "greater": 11, "max_len": 11, "input_tensor": 11, "4": [11, 20, 22, 23, 24], "concatenated_pad": 11, "print": [11, 12, 16, 17, 18, 20, 21, 22, 23, 24], "get_devic": [11, 12], "is_cuda_compat": [11, 12], "select": [11, 14], "randomli": 11, "random_gpu": 11, "environ": 11, "num_devic": 11, "system": [11, 13, 14], "architectur": [11, 12, 13, 24], "version": [11, 12, 13, 17, 19, 20, 21, 23], "verifi": [11, 17, 21], "meet": 11, "is_compat": 11, "is_non": [11, 12], "stabil": 11, "chose": 11, "reli": [11, 18], "corrupt": 11, "hopefulli": [11, 14], "But": 11, "releas": 12, "24": [12, 17, 19, 21, 23, 24], "date": [12, 13, 16, 23], "2024": 12, "automl": [12, 14, 19, 22], "framework": 12, "declar": 12, "our": [12, 16, 17, 18, 19, 21, 22, 23, 24], "life": 12, "easier": [12, 16, 17, 23], "repetit": 12, "boilerpl": 12, "varieti": [12, 17, 21], "multimedia": 12, "solv": [12, 15, 20], "outlin": 12, "replac": [12, 17, 18, 20, 21], "random": [12, 14, 19, 20, 21, 24], "forest": [12, 20], "philosophi": 12, "pip3": 12, "pip": [12, 14, 23], "abov": [12, 17, 18, 19, 21], "command": [12, 17, 18, 21], "virtual": 12, "clone": 12, "cd": 12, "txt": 12, "pythonpath": 12, "newlin": 12, "bashrc": 12, "go": [12, 17, 18, 19, 20, 21, 24], "directori": [12, 19], "m": [12, 17, 20, 21], "unittest": 12, "discov": 12, "python2": 12, "python3": [12, 19, 20, 23, 24], "visual": [12, 19], "studio": 12, "veri": [12, 13, 14, 17, 19, 22, 23], "popular": [12, 14], "don": [12, 14, 20], "feel": [12, 17], "free": [12, 13], "section": 12, "tip": 12, "trick": 12, "sync": 12, "pylanc": 12, "pyright": 12, "lint": 12, "everyth": [12, 13, 19, 22, 23], "flake8": 12, "flake8path": 12, "autopep8": 12, "path_to": 12, "live": [12, 17], "share": 12, "whiteboard": 12, "load": [12, 16, 19, 20, 24], "read_csv": [12, 16, 17, 18, 19, 20, 21, 22, 23, 24], "githubusercont": [12, 18, 19, 20, 22, 23, 24], "hdi": [12, 19, 22], "csv": [12, 17, 18, 19, 20, 21, 22, 23, 24], "develop": [12, 13, 19, 22], "test_df": [12, 24], "pred": [12, 17, 21], "iloc": [12, 17, 21, 23], "introduc": [12, 18], "stai": [12, 17], "love": 12, "hear": 12, "opinion": 12, "easi": [12, 13, 17, 22], "Being": [12, 19], "team": [12, 16], "anyon": 12, "who": [12, 17], "motiv": 12, "journei": 12, "continu": [12, 13, 17, 19, 21], "read": [12, 17, 19, 20, 21], "democrat": 12, "improv": [12, 13, 17, 21, 24], "propos": [12, 16], "discuss": [12, 19], "submit": 12, "let": [12, 17, 18, 19, 20, 21, 22, 23, 24], "know": [12, 19, 22, 23], "went": 12, "fork": 12, "pull": [12, 13], "git": 12, "workflow": 12, "repositori": 12, "checkout": [12, 18], "branch": [12, 17], "weekli": 12, "ask": [12, 14, 18, 19, 22], "confirm": [12, 19], "commit": 12, "ci": [12, 16], "suit": [12, 16, 18], "local": [12, 16, 23], "style": 12, "remot": 12, "env": 12, "push": 12, "repo": 12, "Be": 12, "latest": [12, 14], "befor": [12, 17], "sign": 12, "cli": 12, "agreement": 12, "under": [12, 14], "gpl": 12, "track": 12, "pr": [12, 13], "regular": 12, "basi": 12, "address": [12, 17], "chanc": 12, "privat": 12, "respond": 12, "feedback": 12, "chat": 12, "join": [12, 17, 21], "announc": 12, "event": [12, 21], "monthli": [12, 23], "newslett": 12, "mission": 12, "becom": 12, "scientist": 12, "project": [12, 13], "particip": 12, "agre": 12, "abid": 12, "term": [12, 13, 17, 22], "arimamix": [12, 14], "basemix": [12, 13, 14, 17, 20, 21], "partial_fit": [12, 14, 17, 19, 20, 21, 23], "etsmix": [12, 14], "neuralt": [12, 14, 23], "prophetmix": [12, 14], "randomforest": [12, 14, 17, 18, 19, 20, 21], "sktime": [12, 14], "tabtransformermix": [12, 14], "xgboostarraymix": [12, 14, 23], "xgboostmix": [12, 14, 17, 18, 19, 20, 21], "introduct": 12, "ii": 12, "iii": 12, "strength": [12, 24], "drawback": 12, "simplest": 13, "languag": 13, "english": [13, 17], "primari": 13, "matric": [13, 19], "video": 13, "three": [13, 17, 19, 21, 24], "cumbersom": 13, "That": [13, 17, 20, 22], "gist": 13, "intermedi": [13, 19, 20], "prototyp": 13, "librari": [13, 14, 17, 19, 22], "even": [13, 22], "instal": [13, 14, 23], "entail": 13, "suspect": 13, "brief": 13, "instruct": [13, 17, 18, 21], "wherea": [13, 18], "inter": 13, "datatyp": [13, 17], "predominantli": 13, "decid": 13, "whole": 13, "u": [13, 16, 17, 18, 19, 21, 24], "benefit": 13, "extend": [13, 19, 22], "easili": [13, 19, 22], "integr": 13, "minim": [13, 14, 17, 21], "hassl": 13, "accept": 13, "els": [13, 17, 18, 21, 22], "upstream": 13, "advantag": 13, "trivial": 13, "parallel": [13, 17, 21], "bit": [13, 19, 20], "themselv": 13, "built": 13, "citizen": 13, "far": 13, "sens": [13, 17], "hardwar": 13, "care": 13, "wield": 13, "great": [13, 14, 17], "influenc": 13, "joint": 13, "stuff": 13, "propag": 13, "nor": [13, 22, 23], "grant": 13, "hard": 13, "unwieldi": 13, "model_path": 14, "statsforecast": 14, "statsforecastautoarima": 14, "auto_s": 14, "sp": 14, "use_stl": 14, "start_p": 14, "start_q": 14, "max_p": 14, "max_d": 14, "max_q": 14, "max_ord": 14, "season": 14, "stationari": 14, "information_criterion": 14, "kpss": 14, "seasonal_test": 14, "stepwis": 14, "n_job": 14, "start_param": 14, "trend": 14, "maxit": 14, "50": [14, 19, 21, 22, 23, 24], "offset_test_arg": 14, "seasonal_test_arg": 14, "suppress_warn": 14, "error_act": 14, "trace": 14, "random_st": [14, 21, 24], "n_fit": 14, "out_of_sample_s": 14, "mse": 14, "scoring_arg": 14, "with_intercept": 14, "update_pdq": 14, "time_varying_regress": 14, "enforce_stationar": 14, "enforce_invert": 14, "simple_differenc": 14, "measurement_error": 14, "mle_regress": 14, "hamilton_represent": 14, "concentrate_scal": 14, "autoarima": 14, "filter": [14, 17, 21], "bigger": 14, "big": 14, "de": 14, "trender": 14, "backbon": 14, "fulfil": 14, "circumst": 14, "fit_data_len": 14, "trains_onc": [14, 17, 21], "fit_on_dev": [14, 17, 18, 20, 21, 24], "post": [14, 17, 19, 21], "portion": 14, "mistak": 14, "dev_data": [14, 17, 18, 20, 21, 24], "partial": [14, 17, 20, 21], "somewhat": [14, 17], "aim": [14, 17, 18], "autoet": 14, "damped_trend": 14, "initialization_method": 14, "initial_level": 14, "initial_trend": 14, "initial_season": 14, "aic": 14, "allow_multiplicative_trend": 14, "restrict": 14, "additive_onli": 14, "ignore_inf_": 14, "target_encod": [14, 17, 20, 21], "net": [14, 17, 21], "search_hyperparamet": [14, 17, 18, 20, 21, 24], "n_epoch": 14, "lr": 14, "connect": 14, "dens": 14, "deafultnet": 14, "arnet": 14, "hyperparamet": 14, "search": [14, 17, 21, 22], "supersed": 14, "augment": [14, 17], "nr": 14, "took": 14, "subclass": 14, "scenario": [14, 18], "add_season": 14, "add_country_holidai": 14, "growth": 14, "growth_floor": 14, "growth_cap": 14, "changepoint": 14, "n_changepoint": 14, "25": [14, 19, 22, 23, 24], "changepoint_rang": 14, "yearly_season": 14, "weekly_season": 14, "daily_season": 14, "holidai": 14, "seasonality_mod": 14, "seasonality_prior_scal": 14, "holidays_prior_scal": 14, "changepoint_prior_scal": 14, "mcmc_sampl": 14, "uncertainty_sampl": 14, "prophet": 14, "use_optuna": [14, 17, 21], "sklearn": [14, 19, 20, 21, 24], "randomforestregressor": 14, "randomforestclassifi": [14, 20], "optuna": 14, "speed": 14, "too": 14, "slow": 14, "ridg": 14, "linear_model": 14, "ordinari": 14, "least": 14, "squar": 14, "ol": 14, "hood": 14, "w_1": 14, "w_2": 14, "w_n": 14, "model_kwarg": 14, "hyperparam_search": 14, "exhibit": [14, 22], "due": [14, 21], "tri": [14, 20, 22], "mark": 14, "practic": 14, "spawn": 14, "smape": 14, "enforc": [14, 17, 18], "miscellan": 14, "arima": 14, "paramt": 14, "model_class": 14, "compli": 14, "immedi": 14, "becaus": [14, 21, 23], "train_arg": 14, "tabtransform": 14, "ft": [14, 18], "serv": 14, "essenti": [14, 19, 22], "borrow": [14, 17], "word": [14, 17], "simpli": [14, 17, 21], "input_col": [14, 17, 19, 21], "xgboost": [14, 19, 23], "intend": [14, 17, 21], "boost": 14, "good": [14, 19, 24], "rounder": 14, "tree": 14, "supervis": [14, 21], "tabular": 14, "regard": [14, 19], "apart": [14, 19, 23], "booster": 14, "technic": 14, "paper": 14, "scalabl": 14, "2016": [14, 18], "think": [14, 22], "caveat": [14, 23], "awar": [14, 22], "seek": 14, "reg": 14, "squarederror": 14, "loss": [14, 19, 23, 24], "multiclass": 14, "multi": 14, "coupl": [14, 18, 23], "backlog": 14, "soon": [14, 17], "deem": 14, "fast": 14, "enough": 14, "preprocessor": 15, "design": [15, 18, 19, 22], "keep": [16, 17, 21, 23, 24], "preserv": 16, "reader": 16, "saniti": [16, 21], "behav": [16, 17], "extern": 16, "link": [16, 18, 21], "download": [16, 17, 21], "contact": 16, "believ": 16, "writefil": [16, 17, 18, 19, 20, 21], "my_fil": 16, "py": [16, 17, 18, 19, 20, 21, 23, 24], "top": 16, "jupyt": [16, 17, 21], "codeblock": 16, "ok": [16, 19, 22], "realli": [16, 22], "metadata": 16, "action": [16, 19], "grep": 16, "kernel": 16, "find": [16, 18], "ipynb": 16, "accompani": 16, "png": 16, "jpg": 16, "reject": 16, "happi": 16, "adapt": 16, "notebook": [17, 18, 21, 23], "below": [17, 18, 21], "ll": [17, 18, 19, 20, 21, 22, 23], "explor": [17, 22], "protocol": 17, "highlight": 17, "kaggl": [17, 18, 21], "ultim": 17, "readabl": 17, "url_leg": 17, "among": [17, 22, 23], "excerpt": 17, "nltk": [17, 21], "challeng": 17, "meaning": 17, "demonstr": 17, "proce": 17, "power": 17, "np": [17, 19, 21, 22, 24], "o": [17, 21], "sy": [17, 21], "lw": [17, 18, 21], "2730": 17, "torchvis": [17, 18, 19, 20, 21, 22, 23, 24], "pillow": [17, 18, 19, 20, 21, 22, 23, 24], "datasci": 17, "manner": [17, 19], "folder": [17, 21], "s3": [17, 21], "eu": [17, 21], "west": [17, 21], "amazonaw": [17, 21], "zip": [17, 21], "head": [17, 18, 21, 22], "standard_error": 17, "c12129c31": 17, "young": 17, "peopl": 17, "ballroom": 17, "340259": 17, "464009": 17, "85aa80a4c": 17, "dinner": 17, "mr": 17, "fayr": 17, "somewh": 17, "315372": 17, "480805": 17, "b69ac6792": 17, "roger": 17, "had": 17, "snow": 17, "depart": 17, "q": 17, "580118": 17, "476676": 17, "dd1000b26": 17, "And": [17, 19], "palac": 17, "garden": 17, "054013": 17, "450007": 17, "37c1b32fb": 17, "upon": 17, "bear": 17, "li": 17, "247197": 17, "510845": 17, "aptli": 17, "tell": [17, 19, 20], "throw": [17, 20], "awai": 17, "line": [17, 18], "setup": [17, 19, 21], "drop": [17, 21], "39": [17, 18, 19, 20, 21, 22, 23, 24], "2478": 17, "2834": 17, "87": [17, 19, 23, 24], "34": [17, 18, 19, 20, 21, 23, 24], "hash": 17, "finish": [17, 18, 19, 20, 21, 22, 23, 24], "piec": [17, 19, 20], "notic": [17, 19, 22], "rich_text": 17, "21384": [17, 18], "85536": [17, 18], "443372249603271": 17, "259200": [17, 18, 20, 21], "r2_score": [17, 18, 24], "lastli": [17, 21], "ingredi": [17, 22], "off": [17, 21], "ground": [17, 21], "mycustomclean": [17, 21], "inspir": 17, "companion": 17, "broader": [17, 19], "ecosystem": [17, 22], "theori": 17, "irregular": 17, "strip": 17, "unwant": 17, "omit": [17, 21], "complet": [17, 18, 22, 24], "invit": 17, "get_cleaning_func": 17, "custom_cleaning_funct": 17, "corpu": 17, "stopword": 17, "stop_word": 17, "_remove_column": 17, "_get_columns_to_clean": 17, "values_for_nan_and_none_in_panda": 17, "def": [17, 18, 19, 20, 21], "malform": 17, "noqa": [17, 18], "col": [17, 21, 22, 23], "fn": 17, "vec": 17, "short_text": 17, "lambda": [17, 18], "to_replac": 17, "script": [17, 18, 19, 21], "load_custom_modul": [17, 18, 19, 20, 21], "lightweight": [17, 19, 21, 22], "could": [17, 20, 21], "keyword": [17, 21], "wonder": 17, "ve": [17, 18, 19, 21], "modular": 17, "custom_cleaner_pipelin": 17, "fp": [17, 21], "__version__": [17, 19, 21], "lightwood_vers": [17, 21], "mindsdb_evalu": [17, 21], "evaluate_accuraci": [17, 21], "__all__": [17, 21], "mdb_eval_accuracy_metr": [17, 21], "moduletyp": [17, 21], "importlib": [17, 21], "machineri": [17, 21], "import_dir": [17, 21], "expandus": [17, 21], "_": [17, 20, 21, 23], "r_ok": [17, 21], "file_nam": [17, 21], "walk": [17, 21], "mod_nam": [17, 21], "loader": [17, 21], "sourcefileload": [17, 21], "exec_modul": [17, 21], "exec": [17, 21], "f": [17, 20, 21, 22, 24], "inact": [17, 21], "runtime_log": [17, 21], "feature_cach": [17, 21], "timed_predictor": [17, 21], "gt": [17, 19, 21], "train_test_data": [17, 21], "pct_train": [17, 21], "pct_dev": [17, 21], "pct_test": [17, 21], "concatenated_train_dev": [17, 21], "prepped_encod": [17, 21], "parallel_encod": [17, 21], "parallel_encoding_check": [17, 21], "debug": [17, 18, 19, 20, 21, 23, 24], "item": [17, 18, 21, 22], "mut_method_cal": [17, 21], "hasattr": [17, 21], "uses_target": [17, 21], "feature_data": [17, 21], "stratified_on": [17, 21], "featurized_split": [17, 21], "filtered_subset": [17, 21], "filter_t": [17, 21], "_filter": [17, 21], "encoded_train_data": [17, 21], "encoded_dev_data": [17, 21], "encoded_test_data": [17, 21], "test_filt": [17, 21], "defaultnet": [17, 21], "trained_mix": [17, 21], "fit_mix": [17, 19, 20, 21, 23, 24], "append": [17, 19, 20, 21], "dirti": [17, 21], "hack": [17, 21], "n_phase": [17, 21], "train_dev_test": [17, 21], "enc_train_test": [17, 21], "evolv": [17, 21], "henc": [17, 21], "reserv": [17, 18, 21], "TO": [17, 21], "learn_cal": [17, 21], "abort": [17, 21], "again": [17, 21], "predict_data": [17, 21], "_timed_cal": [17, 20, 21, 23, 24], "renam": [17, 19, 20, 21], "regist": [17, 21], "callabl": [17, 21], "label_map": [17, 21], "mind": [17, 21], "mdb_eval": [17, 21], "v": [17, 21], "isinst": [17, 18, 19, 21], "from_record": [17, 21], "disaggreg": [17, 21], "transpar": [17, 21, 24], "goe": [17, 21], "familiar": [17, 21], "give": [17, 21, 22, 24], "9": [17, 18, 19, 20, 21, 22, 23, 24], "cleaned_data": [17, 18, 21], "000000": [17, 24], "silent": 17, "quickli": [17, 21], "came": [17, 19], "wall": 17, "round": [17, 19, 22, 24], "hou": 17, "033": 17, "1m": 17, "0m": 17, "ntarget": 17, "nclean": 17, "decidedli": 17, "appear": [17, 21], "interior": 17, "scene": 17, "winter": 17, "landscap": 17, "floor": 17, "cover": 17, "white": 17, "canva": 17, "laid": 17, "smoothli": 17, "rumpl": 17, "bump": [17, 21], "hillock": 17, "real": 17, "palm": 17, "evergreen": 17, "decor": 17, "room": 17, "powder": 17, "flour": 17, "strewn": 17, "tuft": 17, "cotton": 17, "diamond": 17, "dust": 17, "lightli": 17, "sprinkl": 17, "glitter": 17, "crystal": 17, "icicl": 17, "hung": 17, "At": 17, "beauti": 17, "skin": 17, "rug": 17, "prize": 17, "girl": 17, "boi": 17, "game": 17, "gather": 17, "north": 17, "pole": 17, "south": 17, "player": 17, "plant": 17, "matter": 17, "travel": 17, "oblig": 17, "wear": 17, "snowsho": 17, "340259125": 17, "cut": 17, "hope": [17, 21], "docssrc": [17, 21], "custom_clean": 17, "experi": [18, 24], "mycolumndata": 18, "appl": 18, "orang": 18, "banana": 18, "dragonfruit": 18, "arrang": 18, "alphabet": 18, "myfeaturedata": 18, "car": 18, "sale": 18, "sell": 18, "2443": 18, "filenam": 18, "used_car_pric": 18, "price": 18, "transmiss": 18, "mileag": 18, "fueltyp": 18, "tax": 18, "mpg": 18, "engines": 18, "a1": 18, "2017": 18, "12500": 18, "15735": 18, "petrol": 18, "150": [18, 19], "55": [18, 19, 23], "a6": 18, "16500": 18, "36203": 18, "diesel": 18, "64": [18, 19], "11000": 18, "29946": 18, "30": [18, 19, 20, 23, 24], "a4": 18, "16800": 18, "25952": 18, "145": [18, 19], "67": [18, 19, 24], "a3": 18, "17300": 18, "1998": 18, "49": [18, 19], "6": [18, 19, 20, 22, 23, 24], "hand": [18, 22, 23], "datapoint": 18, "6920": 18, "10668": 18, "deduct": [18, 21, 24], "889316082000732": 18, "revert": 18, "mostli": [18, 21], "ones": [18, 22], "satisfi": 18, "success": 18, "dedic": 18, "although": [18, 21], "2021": 18, "13": [18, 19, 20, 22, 23, 24], "organ": 18, "labeldict": 18, "associ": [18, 23], "label_dict": 18, "ilabel_dict": 18, "cat": 18, "idx": 18, "enumer": 18, "enc": 18, "tolist": [18, 20], "unsqueez": 18, "dimension": 18, "lightwood_modul": [18, 19, 20], "switch": 18, "directli": [18, 22], "examin": 18, "data_dtyp": 18, "programat": 18, "simplic": 18, "ft_data": 18, "42": [18, 19, 23], "02": [18, 19, 20, 23, 24], "pick": [18, 19, 20, 23, 24], "enc_ft": 18, "squeez": 18, "n_output_dim": 18, "orig_data": 18, "compare_data": 18, "encdata": 18, "axi": 18, "inspect": 18, "11": [18, 19, 22, 23, 24], "hybrid": 18, "guid": 18, "spectrum": [19, 22], "customiz": [19, 22], "come": [19, 22, 23, 24], "thank": 19, "deal": 19, "correl": 19, "heatmap": 19, "2523": 19, "Or": 19, "modelcorrelationheatmap": 19, "super": [19, 20], "__main__": 19, "0x7ff43c2f7fd0": 19, "newli": [19, 24], "exactli": [19, 20], "parent": 19, "okai": [19, 23], "fun": 19, "idea": [19, 24], "normal_predict": 19, "encoded_val_data": 19, "is_classif": 19, "is_numer": 19, "is_multi_t": 19, "ts_cfg": 19, "has_pretrained_text_enc": 19, "lot": 19, "model_correl": 19, "simplenamespac": 19, "all_predict": 19, "flatten": 19, "astyp": 19, "calcul": 19, "corr": 19, "corrcoef": 19, "mixer_correl": 19, "dot": 19, "notat": 19, "accessor": 19, "fairli": [19, 22, 24], "straightforward": 19, "home": 19, "usernam": 19, "maco": 19, "linux": 19, "scan": 19, "wrote": 19, "compos": 19, "222": [19, 22], "98": [19, 20, 22], "area": [19, 22], "sq": [19, 22], "mi": [19, 22], "pop": [19, 22], "densiti": [19, 22], "gdp": [19, 22], "capita": [19, 22], "literaci": [19, 22], "infant": [19, 22], "mortal": [19, 22], "hostedtoolcach": [19, 20, 23, 24], "19": [19, 20, 22, 23, 24], "x64": [19, 20, 23, 24], "lib": [19, 20, 23, 24], "site": [19, 20, 23, 24], "grad_scal": [19, 23, 24], "131": [19, 23, 24], "userwarn": [19, 20, 23, 24], "gradscal": [19, 23, 24], "12": [19, 20, 22, 23], "38": 19, "27": [19, 20, 23], "src": [19, 23], "learner": [19, 23], "cc": [19, 23], "339": [19, 23], "visibl": [19, 23], "gpu_id": [19, 23], "pytorch_rang": [19, 23, 24], "ranger": [19, 23, 24], "172": [19, 23, 24], "overload": [19, 23, 24], "addcmul_": [19, 23, 24], "tensor1": [19, 23, 24], "tensor2": [19, 23, 24], "signatur": [19, 23, 24], "csrc": [19, 23, 24], "python_arg_pars": [19, 23, 24], "cpp": [19, 23, 24], "1578": [19, 23, 24], "exp_avg_sq": [19, 23, 24], "mul_": [19, 23, 24], "beta2": [19, 23, 24], "grad": [19, 23, 24], "18": [19, 21, 22, 23], "69619858264923": 19, "0001": [19, 23, 24], "16": [19, 23], "93891429901123": 19, "0005": [19, 23, 24], "197376608848572": 19, "001": [19, 23, 24], "06481909751892": 19, "002": [19, 23, 24], "472004413604736": 19, "003": [19, 23, 24], "28026556968689": 19, "005": [19, 23, 24], "26": [19, 23, 24], "746760368347168": 19, "101": 19, "83524441719055": 19, "319209337234497": 19, "3220206499099731": 19, "3063435554504395": 19, "2932535409927368": 19, "2823516130447388": 19, "2705544233322144": 19, "2418551445007324": 19, "2208324670791626": 19, "197828769683838": 19, "1781431436538696": 19, "161504864692688": 19, "1442031860351562": 19, "1058541536331177": 19, "14": [19, 23], "0935649871826172": 19, "0802721977233887": 19, "0696258544921875": 19, "17": [19, 22, 23], "0607414245605469": 19, "0493905544281006": 19, "020617961883545": 19, "0081787109375": 19, "21": [19, 23, 24], "9943330883979797": 19, "22": [19, 23, 24], "9842473268508911": 19, "23": [19, 23], "9762145280838013": 19, "9653865098953247": 19, "9380742311477661": 19, "9271669387817383": 19, "9147073030471802": 19, "28": [19, 23, 24], "9064992070198059": 19, "29": [19, 22], "900122344493866": 19, "8903173208236694": 19, "31": [19, 20, 21, 23, 24], "8648637533187866": 19, "32": [19, 23], "8549227118492126": 19, "33": [19, 23, 24], "8434366583824158": 19, "8365358114242554": 19, "35": [19, 22], "831310510635376": 19, "36": 19, "8222441673278809": 19, "37": 19, "7981722950935364": 19, "789170503616333": 19, "7787192463874817": 19, "40": [19, 22, 24], "7730110287666321": 19, "41": [19, 24], "7687097787857056": 19, "7602015137672424": 19, "43": [19, 22, 23, 24], "7373268604278564": 19, "44": [19, 23], "7292225956916809": 19, "45": 19, "7197889685630798": 19, "46": 19, "7151773571968079": 19, "47": [19, 22], "7117206454277039": 19, "48": [19, 24], "7038285136222839": 19, "682073175907135": 19, "674643874168396": 19, "51": [19, 23], "6659626364707947": 19, "52": [19, 24], "6620772480964661": 19, "53": [19, 23, 24], "6590715646743774": 19, "54": [19, 24], "6515910625457764": 19, "6308077573776245": 19, "56": [19, 21, 22], "6241987347602844": 19, "57": 19, "6163835525512695": 19, "58": [19, 23], "6131908297538757": 19, "59": 19, "6106155514717102": 19, "60": [19, 22], "6036757826805115": 19, "61": [19, 20, 22], "5848420262336731": 19, "62": [19, 21, 23], "5793871879577637": 19, "63": [19, 20], "5726662278175354": 19, "5703645348548889": 19, "65": [19, 24], "5684641003608704": 19, "66": [19, 21, 24], "5622180104255676": 19, "5449516773223877": 19, "68": [19, 21, 24], "5401747226715088": 19, "69": [19, 21], "5341063141822815": 19, "70": [19, 23, 24], "5322306752204895": 19, "71": [19, 23], "5305425524711609": 19, "72": [19, 24], "5246548056602478": 19, "73": [19, 24], "5083626508712769": 19, "74": [19, 23], "5040708184242249": 19, "75": [19, 24], "49863335490226746": 19, "76": [19, 22, 24], "49717265367507935": 19, "77": [19, 21], "49564701318740845": 19, "78": [19, 24], "4900944232940674": 19, "79": [19, 23, 24], "47473227977752686": 19, "4708785116672516": 19, "81": [19, 24], "46578508615493774": 19, "82": [19, 22], "4644494950771332": 19, "83": [19, 24], "4629424810409546": 19, "84": 19, "4576236307621002": 19, "85": [19, 23, 24], "44295966625213623": 19, "86": [19, 22, 23], "4393518269062042": 19, "4346559941768646": 19, "88": 19, "43358123302459717": 19, "89": [19, 22], "43231165409088135": 19, "90": [19, 24], "42753666639328003": 19, "91": [19, 23], "41425880789756775": 19, "92": [19, 22], "4113253951072693": 19, "93": [19, 22], "4074642062187195": 19, "94": 19, "40698081254959106": 19, "95": [19, 22, 24], "4062195420265198": 19, "96": 19, "4020974636077881": 19, "97": [19, 22, 24], "3904534876346588": 19, "3879585564136505": 19, "38447296619415283": 19, "3841344118118286": 19, "3833732604980469": 19, "102": [19, 22], "37956172227859497": 19, "103": [19, 24], "36883822083473206": 19, "104": 19, "3664571940898895": 19, "105": 19, "36335548758506775": 19, "106": 19, "36316758394241333": 19, "107": 19, "3625164330005646": 19, "108": 19, "359012246131897": 19, "109": 19, "34912365674972534": 19, "110": 19, "34696850180625916": 19, "111": 19, "3441202938556671": 19, "112": 19, "34398093819618225": 19, "113": 19, "3432472050189972": 19, "114": 19, "3399496376514435": 19, "115": 19, "3308461308479309": 19, "116": 19, "3289041221141815": 19, "117": 19, "32627207040786743": 19, "118": 19, "3261372447013855": 19, "119": 19, "32546231150627136": 19, "120": 19, "3224080502986908": 19, "121": 19, "314008891582489": 19, "122": 19, "31220486760139465": 19, "123": [19, 21], "3098214566707611": 19, "124": 19, "30979809165000916": 19, "125": 19, "3090403079986572": 19, "126": [19, 22], "30612480640411377": 19, "127": 19, "29819032549858093": 19, "128": 19, "29648637771606445": 19, "129": 19, "2943042516708374": 19, "130": 19, "29420480132102966": 19, "2934538424015045": 19, "132": 19, "2907505929470062": 19, "133": 19, "2835786044597626": 19, "134": 19, "28203263878822327": 19, "135": 19, "2801313102245331": 19, "136": 19, "2801584303379059": 19, "137": [19, 23], "27946653962135315": 19, "138": 19, "2770102620124817": 19, "139": 19, "2705138921737671": 19, "140": 19, "2689667046070099": 19, "141": 19, "26713839173316956": 19, "142": 19, "26722976565361023": 19, "143": [19, 22], "26659274101257324": 19, "144": 19, "26436734199523926": 19, "2585783302783966": 19, "146": 19, "25718021392822266": 19, "147": 19, "25569674372673035": 19, "148": 19, "25572293996810913": 19, "149": [19, 21], "254925012588501": 19, "25273722410202026": 19, "151": 19, "24740025401115417": 19, "152": 19, "24594709277153015": 19, "153": 19, "2445458471775055": 19, "154": 19, "2445453554391861": 19, "155": 19, "24368290603160858": 19, "156": 19, "2416052669286728": 19, "157": 19, "23683445155620575": 19, "158": 19, "23561015725135803": 19, "159": 19, "2342897355556488": 19, "160": 19, "2342986762523651": 19, "161": 19, "2334001511335373": 19, "162": 19, "23141320049762726": 19, "163": [19, 23], "22705355286598206": 19, "164": 19, "22583813965320587": 19, "165": 19, "22455710172653198": 19, "166": 19, "2245052307844162": 19, "167": 19, "22359803318977356": 19, "168": 19, "22173909842967987": 19, "169": 19, "2178291231393814": 19, "170": 19, "21670299768447876": 19, "171": 19, "21559178829193115": 19, "21557293832302094": 19, "173": 19, "21463343501091003": 19, "174": 19, "21291333436965942": 19, "175": 19, "20953477919101715": 19, "176": 19, "20840951800346375": 19, "177": 19, "20733794569969177": 19, "178": 19, "20730628073215485": 19, "179": 19, "20635393261909485": 19, "180": 19, "20470596849918365": 19, "181": 19, "2016059160232544": 19, "182": 19, "2004680186510086": 19, "183": 19, "1995442509651184": 19, "184": 19, "1995476931333542": 19, "185": 19, "1985597461462021": 19, "186": 19, "19704405963420868": 19, "187": 19, "19429439306259155": 19, "188": 19, "1931215077638626": 19, "189": 19, "19224728643894196": 19, "190": 19, "1922168731689453": 19, "191": 19, "19120150804519653": 19, "192": 19, "1897118091583252": 19, "193": 19, "187192901968956": 19, "194": 19, "18604235351085663": 19, "195": 19, "18525990843772888": 19, "196": 19, "18517257273197174": 19, "197": 19, "1841844767332077": 19, "198": 19, "18275843560695648": 19, "199": 19, "18052375316619873": 19, "1795222908258438": 19, "201": [19, 24], "17878693342208862": 19, "202": [19, 24], "17881926894187927": 19, "203": [19, 24], "17786364257335663": 19, "204": [19, 24], "17654098570346832": 19, "205": [19, 24], "17458021640777588": 19, "206": [19, 24], "17358489334583282": 19, "207": 19, "1728101521730423": 19, "208": 19, "17278429865837097": 19, "209": [19, 23], "17180292308330536": 19, "210": 19, "17050613462924957": 19, "211": 19, "16873842477798462": 19, "212": [19, 22], "1677248477935791": 19, "213": 19, "16707710921764374": 19, "214": 19, "1671123504638672": 19, "215": 19, "16612616181373596": 19, "216": 19, "16487975418567657": 19, "217": 19, "16339382529258728": 19, "218": 19, "1624278575181961": 19, "219": 19, "16172048449516296": 19, "220": 19, "16165515780448914": 19, "221": 19, "16061937808990479": 19, "1594206690788269": 19, "223": 19, "15802235901355743": 19, "15704363584518433": 19, "15640243887901306": 19, "226": 19, "15635541081428528": 19, "227": 19, "15536457300186157": 19, "228": 19, "154209703207016": 19, "15291643142700195": 19, "230": 19, "15191468596458435": 19, "231": 19, "15118129551410675": 19, "232": 19, "151133194565773": 19, "233": [19, 24], "1501670926809311": 19, "234": 19, "14912192523479462": 19, "235": 19, "1481197327375412": 19, "236": 19, "14712536334991455": 19, "237": 19, "14660944044589996": 19, "238": [19, 24], "14649781584739685": 19, "239": 19, "145524799823761": 19, "240": 19, "14443959295749664": 19, "241": 19, "14341002702713013": 19, "242": 19, "14249812066555023": 19, "243": 19, "14185366034507751": 19, "244": 19, "1419423222541809": 19, "245": 19, "1409326195716858": 19, "246": 19, "1399424970149994": 19, "247": 19, "13920661807060242": 19, "248": 19, "13832959532737732": 19, "249": 19, "13784818351268768": 19, "250": 19, "13769637048244476": 19, "251": 19, "1367887407541275": 19, "252": 19, "13588252663612366": 19, "253": 19, "13521170616149902": 19, "254": 19, "13428467512130737": 19, "255": 19, "13384407758712769": 19, "256": 19, "13372991979122162": 19, "257": 19, "13274942338466644": 19, "258": 19, "13186557590961456": 19, "259": 19, "13135230541229248": 19, "260": 19, "13046588003635406": 19, "261": 19, "12980172038078308": 19, "262": 19, "12982229888439178": 19, "263": 19, "12882845103740692": 19, "264": 19, "12798714637756348": 19, "265": 19, "12758088111877441": 19, "266": 19, "12660843133926392": 19, "267": 19, "1261577606201172": 19, "268": 19, "1260918229818344": 19, "269": 19, "12515920400619507": 19, "270": 19, "12436933070421219": 19, "271": 19, "12405422329902649": 19, "272": 19, "12305409461259842": 19, "273": 19, "12272939085960388": 19, "274": 19, "12267134338617325": 19, "275": 19, "12182944267988205": 19, "276": 19, "12103450298309326": 19, "277": 19, "12083345651626587": 19, "278": 19, "11998103559017181": 19, "279": 19, "11937755346298218": 19, "280": 19, "1195112019777298": 19, "281": 19, "1185888797044754": 19, "282": [19, 23], "11789504438638687": 19, "283": 19, "11783000081777573": 19, "284": 19, "11681754887104034": 19, "285": 19, "11649196594953537": 19, "286": 19, "11648327857255936": 19, "287": 19, "11562418192625046": 19, "288": 19, "11489420384168625": 19, "289": [19, 23], "11485717445611954": 19, "290": 19, "11407709866762161": 19, "291": 19, "11348505318164825": 19, "292": 19, "11358898878097534": 19, "293": 19, "11268813163042068": 19, "294": [19, 22, 23], "11207651346921921": 19, "295": 19, "11220688372850418": 19, "296": 19, "11118005961179733": 19, "297": 19, "11089354008436203": 19, "298": [19, 20], "11088859289884567": 19, "299": 19, "1100316271185875": 19, "300": 19, "1093800961971283": 19, "301": 19, "10955681651830673": 19, "302": 19, "10869839787483215": 19, "303": [19, 20, 24], "10815789550542831": 19, "304": 19, "10832306742668152": 19, "305": 19, "10742544382810593": 19, "306": 19, "10682710260152817": 19, "307": 19, "10698221623897552": 19, "308": 19, "10616409033536911": 19, "309": 19, "10568025708198547": 19, "310": 19, "10574078559875488": 19, "311": 19, "10493995994329453": 19, "312": 19, "10438455641269684": 19, "313": 19, "10449497401714325": 19, "314": 19, "10372297465801239": 19, "315": 19, "10320515185594559": 19, "316": 19, "10330332815647125": 19, "317": 19, "10239537805318832": 19, "318": 19, "10185065120458603": 19, "319": 19, "10217708349227905": 19, "320": 19, "10135672241449356": 19, "321": 19, "10087659955024719": 19, "322": 19, "10087589174509048": 19, "323": 19, "10005565732717514": 19, "324": 19, "09949999302625656": 19, "325": [19, 22], "09970266371965408": 19, "326": 19, "09918338060379028": 19, "327": 19, "09840800613164902": 19, "328": 19, "09882311522960663": 19, "329": 19, "09775345772504807": 19, "330": 19, "09729817509651184": 19, "331": 19, "09763044863939285": 19, "332": 19, "0967596173286438": 19, "333": 19, "09642492234706879": 19, "334": 19, "09656761586666107": 19, "335": 19, "09573261439800262": 19, "336": 19, "09523642063140869": 19, "337": 19, "09568659961223602": 19, "338": 19, "09509280323982239": 19, "09460369497537613": 19, "340": 19, "09476538747549057": 19, "341": 19, "09388881921768188": 19, "342": 19, "09349637478590012": 19, "343": 19, "09398090839385986": 19, "344": 19, "09314301609992981": 19, "345": 19, "09281699359416962": 19, "346": 19, "09290202707052231": 19, "347": 19, "09209518879652023": 19, "348": 19, "09171803295612335": 19, "349": 19, "09221566468477249": 19, "350": 19, "09150414168834686": 19, "351": 19, "0910501629114151": 19, "352": 19, "09118885546922684": 19, "353": 19, "09043896198272705": 19, "354": 19, "09006913751363754": 19, "355": 19, "09049264341592789": 19, "356": 19, "0898597463965416": 19, "357": 19, "08943390846252441": 19, "358": 19, "0896739661693573": 19, "359": 19, "08882326632738113": 19, "360": 19, "08850156515836716": 19, "361": 19, "08897048979997635": 19, "362": 19, "08849596232175827": 19, "363": 19, "08790712803602219": 19, "364": 19, "08821234852075577": 19, "365": 19, "08732891082763672": 19, "366": 19, "08704856038093567": 19, "367": 19, "08765564113855362": 19, "368": 19, "08696923404932022": 19, "369": 19, "08649873733520508": 19, "370": 19, "08676613122224808": 19, "371": 19, "08599219471216202": 19, "372": 19, "08565033972263336": 19, "373": 19, "08618329465389252": 19, "374": 19, "08559156954288483": 19, "375": 19, "08509930223226547": 19, "376": 19, "08543801307678223": 19, "377": 19, "084554523229599": 19, "378": [19, 21], "08425222337245941": 19, "379": 19, "08496475219726562": 19, "380": 19, "08428442478179932": 19, "381": 19, "08389458060264587": 19, "382": 19, "08416417241096497": 19, "383": 19, "08331726491451263": 19, "384": 19, "08304726332426071": 19, "385": 19, "0837259590625763": 19, "386": 19, "08301664143800735": 19, "387": 19, "08279375731945038": 19, "388": 19, "08285657316446304": 19, "389": 19, "0822003185749054": 19, "390": 19, "08189017325639725": 19, "391": 19, "08244460821151733": 19, "392": 19, "08176209777593613": 19, "393": 19, "08143384009599686": 19, "394": 19, "08153267949819565": 19, "395": 19, "08074252307415009": 19, "396": 19, "0804641842842102": 19, "397": 19, "08112648874521255": 19, "398": 19, "0804068073630333": 19, "399": 19, "08000007271766663": 19, "400": 19, "08030638843774796": 19, "401": 19, "07946185022592545": 19, "402": 19, "07926557213068008": 19, "403": 19, "07995376735925674": 19, "404": 19, "07914069294929504": 19, "405": 19, "07901032269001007": 19, "07910943776369095": 19, "407": 19, "07840055227279663": 19, "408": 19, "07814037799835205": 19, "409": 19, "07874786853790283": 19, "410": 19, "07819069921970367": 19, "411": 19, "07780887931585312": 19, "412": 19, "07802116870880127": 19, "413": 19, "0772867277264595": 19, "414": 19, "07709880918264389": 19, "415": 19, "0776868537068367": 19, "416": 19, "07716330885887146": 19, "417": 19, "07688125967979431": 19, "418": 19, "07698465138673782": 19, "419": 19, "0762372612953186": 19, "420": 19, "07603802531957626": 19, "421": 19, "07675285637378693": 19, "422": 19, "07623977214097977": 19, "423": 19, "07567108422517776": 19, "424": 19, "07615751028060913": 19, "425": 19, "07526733726263046": 19, "426": 19, "07509555667638779": 19, "427": 19, "07569493353366852": 19, "428": [19, 24], "07537294924259186": 19, "429": 19, "07467805594205856": 19, "430": 19, "07528648525476456": 19, "431": 19, "07435967028141022": 19, "432": 19, "07422596961259842": 19, "433": 19, "07503972947597504": 19, "434": 19, "07434249669313431": 19, "435": 19, "07409335672855377": 19, "436": 19, "07420685887336731": 19, "437": 19, "0735834538936615": 19, "438": 19, "07333341240882874": 19, "439": 19, "07391082495450974": 19, "440": 19, "07348911464214325": 19, "441": 19, "07308389991521835": 19, "442": 19, "07328886538743973": 19, "443": 19, "0725550651550293": 19, "444": 19, "07240220904350281": 19, "445": 19, "07308465242385864": 19, "446": 19, "07288312911987305": 19, "447": 19, "0722663402557373": 19, "448": 19, "07264856994152069": 19, "449": 19, "07182618230581284": 19, "450": 19, "07167533785104752": 19, "451": 19, "07241341471672058": 19, "452": 19, "07208056002855301": 19, "453": 19, "07154601812362671": 19, "454": 19, "07190731167793274": 19, "455": 19, "0710812360048294": 19, "07096673548221588": 19, "457": 19, "0718337818980217": 19, "458": 19, "07134897261857986": 19, "459": 19, "07083813846111298": 19, "460": 19, "07124733179807663": 19, "461": 19, "0705094262957573": 19, "462": 19, "07036501169204712": 19, "463": 19, "07111788541078568": 19, "464": 19, "07069509476423264": 19, "465": 19, "07026039808988571": 19, "466": 19, "07056906819343567": 19, "467": 19, "06981150805950165": 19, "468": 19, "06967213749885559": 19, "469": 19, "0704450011253357": 19, "470": 19, "07002224773168564": 19, "471": 19, "06954890489578247": 19, "472": 19, "07001929730176926": 19, "473": 19, "06918215751647949": 19, "474": 19, "06905678659677505": 19, "475": 19, "06994140148162842": 19, "476": 19, "06957031041383743": 19, "477": 19, "06890591233968735": 19, "478": 19, "06942413747310638": 19, "479": 19, "068662129342556": 19, "480": 19, "0685315951704979": 19, "481": 19, "06919320672750473": 19, "482": 19, "06884051114320755": 19, "483": 19, "06852498650550842": 19, "484": 19, "06881336867809296": 19, "0681278333067894": 19, "486": 19, "06801153719425201": 19, "487": 19, "0688665509223938": 19, "488": 19, "06848578155040741": 19, "489": 19, "0680362805724144": 19, "490": 19, "0685308426618576": 19, "491": 19, "06770123541355133": 19, "492": 19, "06760372221469879": 19, "493": 19, "06856502592563629": 19, "494": 19, "0679614394903183": 19, "495": 19, "0675961971282959": 19, "496": 19, "06795072555541992": 19, "497": 19, "06731095910072327": 19, "498": 19, "06714644283056259": 19, "499": 19, "06786693632602692": 19, "500": [19, 22], "06758256256580353": 19, "501": 19, "06698315590620041": 19, "502": 19, "06747950613498688": 19, "503": 19, "06655343621969223": 19, "504": 19, "06652842462062836": 19, "505": 19, "06745205074548721": 19, "506": 19, "0668550580739975": 19, "507": 19, "06666403263807297": 19, "508": 19, "06683854013681412": 19, "509": 19, "06626935303211212": 19, "510": 19, "06613652408123016": 19, "511": 19, "06672576069831848": 19, "512": 19, "0666651502251625": 19, "513": 19, "06582488119602203": 19, "514": 19, "06652247160673141": 19, "515": 19, "06558185815811157": 19, "516": 19, "0655498206615448": 19, "517": 19, "06624851375818253": 19, "518": 19, "06601088494062424": 19, "519": 19, "06545697897672653": 19, "520": 19, "0659414529800415": 19, "521": 19, "06516807526350021": 19, "522": 19, "06501934677362442": 19, "523": 19, "06574487686157227": 19, "524": 19, "06553597748279572": 19, "525": 19, "06504649668931961": 19, "526": 19, "06540416181087494": 19, "527": 19, "06479271501302719": 19, "528": 19, "06469936668872833": 19, "529": 19, "0654490739107132": 19, "530": 19, "06509881466627121": 19, "531": 19, "06460769474506378": 19, "532": 19, "06506450474262238": 19, "533": 19, "06425388902425766": 19, "534": 19, "06419297307729721": 19, "535": 19, "06507144123315811": 19, "536": 19, "06475593149662018": 19, "537": 19, "0640476867556572": 19, "538": 19, "06452148407697678": 19, "539": 19, "063988097012043": 19, "540": 19, "06390102207660675": 19, "541": 19, "06427431106567383": 19, "542": 19, "06461699306964874": 19, "543": 19, "06366197764873505": 19, "544": 19, "06439769268035889": 19, "545": 19, "06354749947786331": 19, "546": 19, "06346575170755386": 19, "547": 19, "06415951251983643": 19, "548": 19, "06416907906532288": 19, "549": 19, "06350232660770416": 19, "03389815576374531": 19, "033698095567524435": 19, "0372611828148365": 19, "0382374182343483": 19, "03677316829562187": 19, "04194173291325569": 19, "04046095162630081": 19, "validation_0": [19, 23], "mlogloss": 19, "85953": 19, "gbm": [19, 23], "483406192064287": 19, "constraint": [19, 23], "58684": 19, "41458": 19, "29824": 19, "21700": 19, "15916": 19, "11747": 19, "08717": 19, "06502": 19, "04876": 19, "03678": 19, "02793": 19, "02138": 19, "01651": 19, "01288": 19, "01017": 19, "00813": 19, "00659": 19, "00542": 19, "00455": 19, "00392": 19, "00351": 19, "00320": 19, "00296": 19, "00295": 19, "00297": 19, "00298": 19, "unspport": 19, "0x7ff43a6c0a90": 19, "got": [19, 20, 23, 24], "922": 19, "_encod": [19, 20], "975": [19, 20], "futurewarn": [19, 20], "spars": [19, 20], "sparse_output": [19, 20], "033697554686417185": 19, "033981192080924906": 19, "037426896315688886": 19, "04428015494098266": 19, "061086510928968586": 19, "03466159128583968": 19, "03769115870818496": 19, "06": [19, 23, 24], "matplotlib": [19, 21, 22, 23], "pyplot": [19, 21, 22, 23], "plt": [19, 21, 22, 23], "mc": 19, "mixer_nam": 19, "__class__": 19, "__name__": 19, "plot": [19, 22, 23], "fig": [19, 22], "ax": [19, 21, 22], "subplot": [19, 22], "im": 19, "imshow": 19, "cmap": [19, 22], "seismic": 19, "tick": 19, "set_xtick": [19, 21, 22], "arang": [19, 22], "set_ytick": 19, "set_xticklabel": [19, 21, 22], "set_yticklabel": 19, "rang": [19, 22, 23], "center": [19, 20], "va": 19, "color": [19, 21, 22, 23], "nice": [19, 24], "human": [19, 22], "countri": [19, 22], "cours": 19, "acc_stat": 19, "feature_import": 19, "though": [20, 22], "random_forest_mix": 20, "randomforestmix": 20, "clf": 20, "someon": 20, "anywai": 20, "messag": 20, "intuit": 20, "max_depth": 20, "hyper": [20, 21], "Then": 20, "friendli": 20, "foramat": 20, "yh": 20, "meant": 20, "decoded_predict": 20, "behaviour": 20, "ydf": 20, "unsuit": 20, "onlin": 20, "diagnos": 20, "heart": 20, "diseas": 20, "blob": 20, "heart_diseas": 20, "bother": 20, "put": 20, "2414": 20, "ag": [20, 24], "sex": 20, "cp": 20, "trestbp": 20, "chol": 20, "fb": 20, "restecg": 20, "thalach": 20, "exang": 20, "oldpeak": 20, "slope": 20, "ca": 20, "thal": 20, "42768": [20, 21], "07208943367004395": 20, "balanced_accuracy_scor": [20, 21], "standalon": 20, "03": [20, 23, 24], "09": [20, 23], "798": 20, "_classif": 20, "2399": 20, "y_pred": 20, "y_true": 20, "04": [20, 23], "my_custom_heart_disease_predictor": 20, "function_bas": 20, "2455": 20, "runtimewarn": 20, "encount": 20, "_none_fn": 20, "ufunc": 20, "modif": [20, 22, 23, 24], "original_index": [20, 23, 24], "073676": 20, "250612": 20, "462595": 20, "hidden": 21, "divers": 21, "credit": 21, "card": 21, "fraud": 21, "difficult": 21, "catch": 21, "thankfulli": 21, "rare": 21, "imbal": 21, "fact": [21, 22], "smote": 21, "imblearn": 21, "ver": 21, "2197": 21, "creditcard": 21, "v1": 21, "v2": 21, "v3": 21, "v4": 21, "v5": 21, "v6": 21, "v7": 21, "v8": 21, "v9": 21, "v21": 21, "v22": 21, "v23": 21, "v24": 21, "v25": 21, "v26": 21, "v27": 21, "v28": 21, "359807": 21, "072781": 21, "536347": 21, "378155": 21, "338321": 21, "462388": 21, "239599": 21, "098698": 21, "363787": 21, "018307": 21, "277838": 21, "110474": 21, "066928": 21, "128539": 21, "189115": 21, "133558": 21, "021053": 21, "191857": 21, "266151": 21, "166480": 21, "448154": 21, "060018": 21, "082361": 21, "078803": 21, "085102": 21, "255425": 21, "225775": 21, "638672": 21, "101288": 21, "339846": 21, "167170": 21, "125895": 21, "008983": 21, "014724": 21, "358354": 21, "340163": 21, "773209": 21, "379780": 21, "503198": 21, "800499": 21, "791461": 21, "247676": 21, "514654": 21, "247998": 21, "771679": 21, "909412": 21, "689281": 21, "327642": 21, "139097": 21, "055353": 21, "059752": 21, "966272": 21, "185226": 21, "792993": 21, "863291": 21, "010309": 21, "247203": 21, "237609": 21, "377436": 21, "387024": 21, "108300": 21, "005274": 21, "190321": 21, "175575": 21, "647376": 21, "221929": 21, "062723": 21, "061458": 21, "158233": 21, "877737": 21, "548718": 21, "403034": 21, "407193": 21, "095921": 21, "592941": 21, "270533": 21, "817739": 21, "009431": 21, "798278": 21, "137458": 21, "141267": 21, "206010": 21, "502292": 21, "219422": 21, "215153": 21, "confidenti": 21, "reason": 21, "mention": 21, "v_i": 21, "principl": 21, "pc": 21, "pca": 21, "compani": 21, "remain": 21, "transact": 21, "monei": 21, "heavi": 21, "figur": [21, 23], "add_subplot": 21, "hist": [21, 22], "bin": 21, "set_ylabel": 21, "count": [21, 23], "set_xlabel": 21, "set_titl": [21, 22], "18424": 21, "284807": 21, "v12": 21, "v15": 21, "v10": 21, "v16": 21, "v13": 21, "v14": 21, "v11": 21, "v17": 21, "v18": 21, "v19": 21, "v20": 21, "won": 21, "processor": 21, "approxim": 21, "mimic": 21, "undersampl": 21, "mycustomsplitt": 21, "itertool": 21, "product": 21, "over_sampl": 21, "model_select": 21, "train_test_split": 21, "mysplitt": 21, "reproduc": 21, "frac": [21, 24], "reset_index": 21, "x2": 21, "x_test": 21, "y2": 21, "y_test": 21, "train_siz": 21, "x_train": 21, "x_dev": 21, "y_train": 21, "y_dev": 21, "test_siz": 21, "underbalanc": 21, "smote_model": 21, "xtrain_mod": 21, "ytrain_mod": 21, "fit_resampl": 21, "ravel": 21, "custom_splitter_pipelin": 21, "86109614372253": 21, "rcparam": 21, "font": 21, "figsiz": [21, 22, 23], "ndistribut": 21, "set_ylim": 21, "1e6": 21, "tight_layout": 21, "greatli": 21, "minor": 21, "custom_splitt": 21, "ran": 22, "statisticalanalyz": 22, "anoth": 22, "9944201": 22, "1284000": 22, "1200": 22, "5450661": 22, "43094": 22, "31100": 22, "26783383": 22, "437072": 22, "1500": 22, "9439": 22, "3400": 22, "3431932": 22, "176220": 22, "12800": 22, "medium": 22, "low": 22, "statu": 22, "nation": 22, "2866": 22, "dataclass": 22, "getattr": 22, "bunch": 22, "purpos": 22, "rememb": 22, "infer_typ": 22, "rule_bas": 22, "additional_info": 22, "stan": 22, "avg_words_per_sent": 22, "df_target_stddev": 22, "distinct": 22, "nr_column": 22, "nr_row": 22, "target_class_distribut": 22, "train_observed_class": 22, "ts_stat": 22, "aren": 22, "descript": 22, "proport": 22, "seemingli": 22, "colum": 22, "discret": 22, "1592": 22, "2684": 22, "3776": 22, "4868": 22, "5960": 22, "7052": 22, "8144": 22, "9236": 22, "10328": 22, "11420": 22, "12512": 22, "13604": 22, "14696": 22, "15788": 22, "16880": 22, "17972": 22, "19064": 22, "20156": 22, "21248": 22, "22340": 22, "23432": 22, "24524": 22, "25616": 22, "26708": 22, "27800": 22, "28892": 22, "29984": 22, "31076": 22, "32168": 22, "33260": 22, "34352": 22, "35444": 22, "36536": 22, "37628": 22, "38720": 22, "39812": 22, "40904": 22, "41996": 22, "43088": 22, "44180": 22, "45272": 22, "46364": 22, "47456": 22, "48548": 22, "49640": 22, "50732": 22, "51824": 22, "52916": 22, "54008": 22, "degre": 22, "colnam": 22, "entropi": 22, "bias": 22, "biased_bucket": 22, "131403695": 22, "78845027": 22, "52565693": 22, "26286360": 22, "7026": 22, "650": 22, "6183": 22, "976": 22, "753": 22, "767": 22, "cm": 22, "tab10": 22, "barplot": 22, "bar": 22, "rotat": 22, "quick": 22, "outlier": 22, "valuabl": [22, 23], "whatev": 22, "ubiquit": 23, "retail": 23, "industri": 23, "manufactur": 23, "univari": 23, "multivari": 23, "pain": 23, "commonli": 23, "sunspot": 23, "begin": 23, "monthly_sunspot": 23, "1749": 23, "2815": 23, "1983": 23, "08": 23, "2816": 23, "2817": 23, "2818": 23, "2819": 23, "2820": 23, "character": 23, "notion": 23, "2821": 23, "semest": 23, "datset": 23, "past": 23, "cutoff": 23, "2538": 23, "uncom": 23, "2467": 23, "infer_datetime_format": 23, "pydata": 23, "pdep": 23, "0004": 23, "pars": 23, "safe": 23, "to_datetim": 23, "reshap": 23, "minut": 23, "051180630922318": 23, "014871209859848": 23, "969509482383728": 23, "879052013158798": 23, "788950502872467": 23, "611965209245682": 23, "195775926113129": 23, "255893141031265": 23, "5818348675966263": 23, "4797109067440033": 23, "48386093974113464": 23, "49511992931365967": 23, "39475560188293457": 23, "39592696726322174": 23, "3622782379388809": 23, "38170479238033295": 23, "5138543993234634": 23, "6360723078250885": 23, "29868809472430835": 23, "30318967591632495": 23, "lgbm": 23, "rmse": 23, "76798": 23, "57023": 23, "7127": 23, "987055063248": 23, "72661": 23, "49596": 23, "38592": 23, "09356": 23, "88080": 23, "21734": 23, "95640": 23, "80745": 23, "76428": 23, "89176": 23, "87901": 23, "87505": 23, "06330": 23, "95930": 23, "986838340759": 23, "27936": 23, "47815": 23, "37610": 23, "25243": 23, "03199": 23, "67706": 23, "57516": 23, "51227": 23, "51216": 23, "55192": 23, "56609": 23, "71702": 23, "75939": 23, "84796": 23, "14000": 23, "9879677295685": 23, "50446": 23, "73040": 23, "16599": 23, "28726": 23, "46406": 23, "07306": 23, "00714": 23, "13990": 23, "12589": 23, "34977": 23, "43217": 23, "48230": 23, "19079": 23, "9887981414795": 23, "13289": 23, "40621": 23, "82532": 23, "03399": 23, "07010": 23, "74813": 23, "81255": 23, "69303": 23, "71044": 23, "79641": 23, "78759": 23, "83998": 23, "77980": 23, "24747": 23, "988205194473": 23, "37446": 23, "88767": 23, "63817": 23, "84209": 23, "35045": 23, "11300": 23, "16132": 23, "21348": 23, "10747": 23, "20352": 23, "25761": 23, "25308": 23, "31415": 23, "48913": 23, "987644195557": 23, "69001": 23, "87323": 23, "32567": 23, "09943": 23, "12203": 23, "71523": 23, "70934": 23, "74380": 23, "61157": 23, "73507": 23, "84587": 23, "78099": 23, "68890": 23, "875": 23, "869": 23, "29626286526521045": 23, "2954987535874049": 23, "tmp": 23, "b9f9761599676d055346cd2b368083bd2229f6aecb71536117157767545533166": 23, "587": 23, "settingwithcopywarn": 23, "copi": 23, "loc": 23, "row_index": 23, "col_index": 23, "doc": 23, "user_guid": 23, "view": 23, "versu": 23, "order_month": 23, "upper": [23, 24], "prediction_sum": 23, "lower_sum": 23, "upper_sum": 23, "confidence_mean": 23, "51358374451768": 23, "78975402923053": 23, "0303": 23, "273628800": 23, "270950400": 23, "268272000": 23, "9991": [23, 24], "14139795091352": 23, "97332333016865": 23, "88576953812185": 23, "60618472829242": 23, "494088": 23, "075865": 23, "801067": 23, "fall": 23, "region": 23, "appreci": 23, "purpl": 23, "grei": 23, "xlabel": 23, "ylabel": 23, "titl": 23, "legend": 23, "gone": [23, 24], "preexist": 24, "convieni": 24, "concret": 24, "2649": 24, "concrete_strength": 24, "train_df": 24, "update_df": 24, "721": 24, "rough": 24, "impact": 24, "jai": 24, "979": 24, "1030": 24, "cement": 24, "slag": 24, "water": 24, "flyash": 24, "superplastic": 24, "coarseaggreg": 24, "fineaggreg": 24, "99637508392334": 24, "826460361480713": 24, "12899512052536": 24, "062753021717072": 24, "490495562553406": 24, "6572003364563": 24, "60721158981323": 24, "11838734149932861": 24, "4641949534416199": 24, "3976145386695862": 24, "3706841468811035": 24, "2367912232875824": 24, "22560915350914001": 24, "12089195847511292": 24, "1678172747294108": 24, "909630": 24, "398161": 24, "146822": 24, "635353": 24, "482294": 24, "970825": 24, "593765": 24, "082296": 24, "724537": 24, "213068": 24, "553104": 24, "064574": 24, "041635": 24, "580425": 24, "091895": 24, "068956": 24, "114187": 24, "602718": 24, "676003": 24, "164533": 24, "231636": 24, "720167": 24, "partit": 24, "dummi": 24, "10915952424208324": 24, "new_predict": 24, "645542": 24, "134073": 24, "964903": 24, "453434": 24, "151918": 24, "640449": 24, "815800": 24, "304330": 24, "987530": 24, "476060": 24, "630058": 24, "141528": 24, "118589": 24, "175228": 24, "663759": 24, "047440": 24, "535970": 24, "659138": 24, "147668": 24, "264580": 24, "753111": 24, "old_acc": 24, "new_acc": 24, "nnew": 24, "acquir": 24}, "objects": {"": [[0, 0, 0, "-", "analysis"], [8, 0, 0, "-", "data"], [9, 0, 0, "-", "encoder"], [10, 0, 0, "-", "ensemble"], [11, 0, 0, "-", "helpers"], [14, 0, 0, "-", "mixer"]], "analysis": [[0, 1, 1, "", "AccStats"], [0, 1, 1, "", "BaseAnalysisBlock"], [0, 1, 1, "", "ConfStats"], [0, 1, 1, "", "ICP"], [0, 1, 1, "", "PermutationFeatureImportance"], [0, 1, 1, "", "TempScaler"], [0, 3, 1, "", "explain"], [0, 3, 1, "", "model_analyzer"]], "analysis.AccStats": [[0, 2, 1, "", "analyze"]], "analysis.BaseAnalysisBlock": [[0, 2, 1, "", "analyze"], [0, 2, 1, "", "explain"]], "analysis.ConfStats": [[0, 2, 1, "", "analyze"]], "analysis.ICP": [[0, 2, 1, "", "analyze"], [0, 2, 1, "", "explain"]], "analysis.PermutationFeatureImportance": [[0, 2, 1, "", "analyze"]], "analysis.TempScaler": [[0, 2, 1, "", "analyze"], [0, 2, 1, "", "explain"]], "api": [[4, 0, 0, "-", "high_level"], [5, 0, 0, "-", "json_ai"], [6, 0, 0, "-", "predictor"], [7, 0, 0, "-", "types"]], "api.high_level": [[4, 3, 1, "", "code_from_json_ai"], [4, 3, 1, "", "code_from_problem"], [4, 3, 1, "", "json_ai_from_problem"], [4, 3, 1, "", "predictor_from_code"], [4, 3, 1, "", "predictor_from_json_ai"], [4, 3, 1, "", "predictor_from_problem"], [4, 3, 1, "", "predictor_from_state"]], "api.json_ai": [[5, 3, 1, "", "add_implicit_values"], [5, 3, 1, "", "generate_json_ai"], [5, 3, 1, "", "lookup_encoder"], [5, 3, 1, "", "validate_json_ai"]], "api.predictor": [[6, 1, 1, "", "PredictorInterface"]], "api.predictor.PredictorInterface": [[6, 2, 1, "", "adjust"], [6, 2, 1, "", "analyze_data"], [6, 2, 1, "", "analyze_ensemble"], [6, 2, 1, "", "export"], [6, 2, 1, "", "featurize"], [6, 2, 1, "", "fit"], [6, 2, 1, "", "learn"], [6, 2, 1, "", "predict"], [6, 2, 1, "", "prepare"], [6, 2, 1, "", "preprocess"], [6, 2, 1, "", "save"], [6, 2, 1, "", "split"], [6, 2, 1, "", "test"]], "api.types": [[7, 1, 1, "", "JsonAI"], [7, 1, 1, "", "ModelAnalysis"], [7, 1, 1, "", "Module"], [7, 1, 1, "", "PredictionArguments"], [7, 1, 1, "", "ProblemDefinition"], [7, 1, 1, "", "SubmodelData"], [7, 1, 1, "", "TimeseriesSettings"]], "api.types.JsonAI": [[7, 2, 1, "", "from_dict"], [7, 2, 1, "", "from_json"], [7, 2, 1, "", "to_dict"], [7, 2, 1, "", "to_json"]], "api.types.PredictionArguments": [[7, 2, 1, "", "from_dict"], [7, 2, 1, "", "to_dict"]], "api.types.ProblemDefinition": [[7, 2, 1, "", "from_dict"], [7, 2, 1, "", "from_json"], [7, 2, 1, "", "to_dict"], [7, 2, 1, "", "to_json"]], "api.types.TimeseriesSettings": [[7, 2, 1, "", "from_dict"], [7, 2, 1, "", "from_json"], [7, 2, 1, "", "to_dict"], [7, 2, 1, "", "to_json"]], "data": [[8, 1, 1, "", "ConcatedEncodedDs"], [8, 1, 1, "", "EncodedDs"], [8, 3, 1, "", "timeseries_analyzer"], [8, 3, 1, "", "transform_timeseries"]], "data.ConcatedEncodedDs": [[8, 2, 1, "", "clear_cache"], [8, 2, 1, "", "get_column_original_data"], [8, 2, 1, "", "get_encoded_column_data"]], "data.EncodedDs": [[8, 2, 1, "", "build_cache"], [8, 2, 1, "", "clear_cache"], [8, 2, 1, "", "get_column_original_data"], [8, 2, 1, "", "get_encoded_column_data"], [8, 2, 1, "", "get_encoded_data"]], "encoder": [[9, 1, 1, "", "ArrayEncoder"], [9, 1, 1, "", "BaseEncoder"], [9, 1, 1, "", "BinaryEncoder"], [9, 1, 1, "", "CatArrayEncoder"], [9, 1, 1, "", "CategoricalAutoEncoder"], [9, 1, 1, "", "DatetimeEncoder"], [9, 1, 1, "", "DatetimeNormalizerEncoder"], [9, 1, 1, "", "Img2VecEncoder"], [9, 1, 1, "", "MultiHotEncoder"], [9, 1, 1, "", "NumArrayEncoder"], [9, 1, 1, "", "NumericEncoder"], [9, 1, 1, "", "OneHotEncoder"], [9, 1, 1, "", "PretrainedLangEncoder"], [9, 1, 1, "", "ShortTextEncoder"], [9, 1, 1, "", "SimpleLabelEncoder"], [9, 1, 1, "", "TimeSeriesEncoder"], [9, 1, 1, "", "TsArrayNumericEncoder"], [9, 1, 1, "", "TsCatArrayEncoder"], [9, 1, 1, "", "TsNumericEncoder"], [9, 1, 1, "", "VocabularyEncoder"]], "encoder.ArrayEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.BaseEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.BinaryEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "decode_probabilities"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.CatArrayEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "prepare"]], "encoder.CategoricalAutoEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.DatetimeEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.DatetimeNormalizerEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "encode_one"], [9, 2, 1, "", "prepare"]], "encoder.Img2VecEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"], [9, 2, 1, "", "to"]], "encoder.MultiHotEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.NumericEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.OneHotEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "decode_probabilities"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.PretrainedLangEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 4, 1, "", "is_trainable_encoder"], [9, 2, 1, "", "prepare"], [9, 2, 1, "", "to"]], "encoder.ShortTextEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.SimpleLabelEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.TimeSeriesEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"]], "encoder.TsArrayNumericEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "decode_one"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "encoder.TsCatArrayEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "decode_one"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "encode_one"], [9, 2, 1, "", "prepare"]], "encoder.TsNumericEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"]], "encoder.VocabularyEncoder": [[9, 2, 1, "", "decode"], [9, 2, 1, "", "encode"], [9, 2, 1, "", "prepare"]], "ensemble": [[10, 1, 1, "", "BaseEnsemble"], [10, 1, 1, "", "BestOf"], [10, 1, 1, "", "Embedder"], [10, 1, 1, "", "IdentityEnsemble"], [10, 1, 1, "", "MeanEnsemble"], [10, 1, 1, "", "ModeEnsemble"], [10, 1, 1, "", "StackedEnsemble"], [10, 1, 1, "", "TsStackedEnsemble"], [10, 1, 1, "", "WeightedMeanEnsemble"]], "helpers": [[11, 1, 1, "", "LightwoodAutocast"], [11, 3, 1, "", "add_tn_num_conf_bounds"], [11, 3, 1, "", "concat_vectors_and_pad"], [11, 3, 1, "", "get_devices"], [11, 3, 1, "", "is_cuda_compatible"], [11, 3, 1, "", "is_none"]], "mixer": [[14, 1, 1, "", "ARIMAMixer"], [14, 1, 1, "", "BaseMixer"], [14, 1, 1, "", "ETSMixer"], [14, 1, 1, "", "Neural"], [14, 1, 1, "", "NeuralTs"], [14, 1, 1, "", "ProphetMixer"], [14, 1, 1, "", "RandomForest"], [14, 1, 1, "", "Regression"], [14, 1, 1, "", "SkTime"], [14, 1, 1, "", "TabTransformerMixer"], [14, 1, 1, "", "Unit"], [14, 1, 1, "", "XGBoostArrayMixer"], [14, 1, 1, "", "XGBoostMixer"]], "mixer.BaseMixer": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"]], "mixer.Neural": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"]], "mixer.NeuralTs": [[14, 2, 1, "", "fit"]], "mixer.RandomForest": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"]], "mixer.Regression": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"]], "mixer.SkTime": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"]], "mixer.TabTransformerMixer": [[14, 2, 1, "", "fit"]], "mixer.Unit": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"]], "mixer.XGBoostArrayMixer": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"]], "mixer.XGBoostMixer": [[14, 2, 1, "", "fit"], [14, 2, 1, "", "partial_fit"], [14, 4, 1, "", "supports_proba"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "attribute", "Python attribute"]}, "titleterms": {"analysi": [0, 19, 22], "api": [1, 7], "tabl": 1, "content": 1, "data": [2, 3, 8, 17, 18, 21, 23], "type": [2, 7], "dtype": 2, "encod": [3, 9, 18], "your": [3, 12, 17, 18, 21], "json": [4, 5, 17, 18, 21], "ai": [4, 5, 17, 18, 21], "config": [4, 5], "predictor": [6, 18, 23, 24], "interfac": [6, 20], "lightwood": [7, 12, 13, 17, 19, 20, 22], "ensembl": 10, "helper": 11, "quick": 12, "guid": 12, "instal": 12, "set": 12, "up": 12, "dev": 12, "environ": 12, "vscode": 12, "exampl": 12, "us": [12, 17, 20], "case": 12, "byom": 12, "bring": 12, "own": [12, 17, 21], "model": [12, 13, 24], "contribut": 12, "how": [12, 16], "can": 12, "you": 12, "help": 12, "u": 12, "code": [12, 17, 18, 21], "featur": [12, 13], "bug": 12, "report": 12, "review": 12, "process": [12, 13, 17], "commun": 12, "contributor": 12, "conduct": 12, "current": 12, "licens": 12, "other": 12, "link": 12, "philosophi": 13, "introduct": [13, 19, 20, 22, 23, 24], "pipelin": [13, 17, 21], "i": 13, "pre": [13, 17], "clean": 13, "ii": 13, "engin": 13, "iii": 13, "build": [13, 17, 21], "train": [13, 21, 23, 24], "strength": 13, "drawback": 13, "mixer": [14, 20], "tutori": [15, 16, 19, 20, 22, 23], "make": 16, "notebook": 16, "method": 17, "date": [17, 21], "2021": [17, 21], "10": [17, 21], "07": [17, 21], "1": [17, 18, 19, 20, 21, 22], "load": [17, 18, 21, 22, 23], "2": [17, 18, 19, 20, 21, 22], "creat": [17, 18, 21], "default": [17, 21], "object": [17, 19, 20, 21, 22, 23], "3": [17, 18, 19, 20, 21, 22], "cleaner": 17, "modul": [17, 21], "place": [17, 21], "custom": [17, 18, 19, 20, 21], "lightwood_modul": [17, 21], "etc": 17, "4": [17, 18, 19, 21], "introduc": [17, 21], "5": [17, 18, 21], "gener": [17, 18, 21, 23], "python": [17, 21], "repres": [17, 21], "ml": [17, 21], "6": [17, 21], "call": [17, 21], "run": [17, 19, 21, 22], "see": [17, 21], "preprocess": [17, 21], "output": [17, 21], "rule": 18, "base": 18, "syntax": 18, "labelencod": 18, "edit": 18, "from": 18, "implement": [19, 20], "block": 19, "step": [19, 20, 22], "figur": 19, "out": 19, "what": 19, "we": 19, "need": 19, "expos": 19, "final": [19, 22], "test": [19, 21], "The": 20, "write": 20, "our": 20, "split": 21, "splitter": 21, "": 22, "statist": 22, "dataset": 22, "defin": [22, 23], "predict": [22, 23], "task": [22, 23], "peek": 22, "insid": 22, "amount": 22, "miss": 22, "inform": 22, "bucket": 22, "per": 22, "column": 22, "bia": 22, "histogram": 22, "thought": 22, "time": 23, "seri": 23, "forecast": 23, "visual": 23, "conclus": [23, 24], "initi": 24, "updat": 24, "basemix": 24, "partial_fit": 24, "predictorinterfac": 24, "adjust": 24}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 57}, "alltitles": {"Analysis": [[0, "analysis"]], "API": [[1, "api"]], "Table of Contents:": [[1, null]], "Data Types (dtypes)": [[2, "data-types-dtypes"]], "Encode your data": [[3, "encode-your-data"]], "JSON-AI Config": [[4, "module-api.high_level"], [5, "module-api.json_ai"]], "Predictor Interface": [[6, "predictor-interface"]], "Lightwood API Types": [[7, "lightwood-api-types"]], "Data": [[8, "data"]], "Encoders": [[9, "encoders"]], "Ensemble": [[10, "ensemble"]], "Helpers": [[11, "helpers"]], "Lightwood": [[12, "lightwood"]], "Quick Guide": [[12, "quick-guide"]], "Installation": [[12, "installation"]], "Setting up a dev environment": [[12, "setting-up-a-dev-environment"]], "Setting up a VSCode environment": [[12, "setting-up-a-vscode-environment"]], "Example Use Cases": [[12, "example-use-cases"]], "BYOM: Bring your own models": [[12, "byom-bring-your-own-models"]], "Contribute to Lightwood": [[12, "contribute-to-lightwood"]], "How can you help us?": [[12, "how-can-you-help-us"]], "Code contributions": [[12, "code-contributions"]], "Feature and Bug reports": [[12, "feature-and-bug-reports"]], "Code review process": [[12, "code-review-process"]], "Community": [[12, "community"]], "Contributor Code of Conduct": [[12, "contributor-code-of-conduct"]], "Current contributors": [[12, "current-contributors"]], "License": [[12, "license"]], "Other Links": [[12, "other-links"]], "Lightwood Philosophy": [[13, "lightwood-philosophy"]], "Introduction": [[13, "introduction"], [19, "Introduction"], [20, "Introduction"], [23, "Introduction"], [24, "Introduction"]], "Pipeline": [[13, "pipeline"]], "i) Pre-processing and cleaning": [[13, "i-pre-processing-and-cleaning"]], "ii) Feature Engineering": [[13, "ii-feature-engineering"]], "iii) Model Building and Training": [[13, "iii-model-building-and-training"]], "Strengths and drawbacks": [[13, "strengths-and-drawbacks"]], "Mixers": [[14, "mixers"]], "Tutorials": [[15, "tutorials"]], "How to make a tutorial notebook?": [[16, "how-to-make-a-tutorial-notebook"]], "Using your own pre-processing methods in Lightwood": [[17, "Using-your-own-pre-processing-methods-in-Lightwood"]], "Date: 2021.10.07": [[17, "Date:-2021.10.07"], [21, "Date:-2021.10.07"]], "1) Load your data": [[17, "1)-Load-your-data"], [18, "1)-Load-your-data"], [21, "1)-Load-your-data"]], "2) Create a JSON-AI default object": [[17, "2)-Create-a-JSON-AI-default-object"], [21, "2)-Create-a-JSON-AI-default-object"]], "3) Build your own cleaner module": [[17, "3)-Build-your-own-cleaner-module"]], "Place your custom module in ~/lightwood_modules or /etc/lightwood_modules": [[17, "Place-your-custom-module-in-~/lightwood_modules-or-/etc/lightwood_modules"]], "4) Introduce your custom cleaner in JSON-AI": [[17, "4)-Introduce-your-custom-cleaner-in-JSON-AI"]], "5) Generate Python code representing your ML pipeline": [[17, "5)-Generate-Python-code-representing-your-ML-pipeline"], [21, "5)-Generate-Python-code-representing-your-ML-pipeline"]], "6) Call python to run your code and see your preprocessed outputs": [[17, "6)-Call-python-to-run-your-code-and-see-your-preprocessed-outputs"], [21, "6)-Call-python-to-run-your-code-and-see-your-preprocessed-outputs"]], "Custom Encoder: Rule-Based": [[18, "Custom-Encoder:-Rule-Based"]], "2) Generate JSON-AI Syntax": [[18, "2)-Generate-JSON-AI-Syntax"]], "3) Create your custom encoder (LabelEncoder).": [[18, "3)-Create-your-custom-encoder-(LabelEncoder)."]], "LabelEncoder": [[18, "LabelEncoder"]], "4) Edit JSON-AI": [[18, "4)-Edit-JSON-AI"]], "5) Generate code and your predictor from JSON-AI": [[18, "5)-Generate-code-and-your-predictor-from-JSON-AI"]], "Tutorial - Implementing a custom analysis block in Lightwood": [[19, "Tutorial---Implementing-a-custom-analysis-block-in-Lightwood"]], "Objective": [[19, "Objective"], [20, "Objective"], [22, "Objective"]], "Step 1: figuring out what we need": [[19, "Step-1:-figuring-out-what-we-need"]], "Step 2: Implementing the custom analysis block": [[19, "Step-2:-Implementing-the-custom-analysis-block"]], "Step 3: Exposing the block to Lightwood": [[19, "Step-3:-Exposing-the-block-to-Lightwood"]], "Step 4: Final test run": [[19, "Step-4:-Final-test-run"]], "Tutorial - Implementing a custom mixer in Lightwood": [[20, "Tutorial---Implementing-a-custom-mixer-in-Lightwood"]], "Step 1: The Mixer Interface": [[20, "Step-1:-The-Mixer-Interface"]], "Step 2: Writing our mixer": [[20, "Step-2:-Writing-our-mixer"]], "Step 3: Using our mixer": [[20, "Step-3:-Using-our-mixer"]], "Build your own training/testing split": [[21, "Build-your-own-training/testing-split"]], "3) Build your own splitter module": [[21, "3)-Build-your-own-splitter-module"]], "Place your custom module in ~/lightwood_modules": [[21, "Place-your-custom-module-in-~/lightwood_modules"]], "4) Introduce your custom splitter in JSON-AI": [[21, "4)-Introduce-your-custom-splitter-in-JSON-AI"]], "Tutorial - Introduction to Lightwood\u2019s statistical analysis": [[22, "Tutorial---Introduction-to-Lightwood's-statistical-analysis"]], "Step 1: load the dataset and define the predictive task": [[22, "Step-1:-load-the-dataset-and-define-the-predictive-task"]], "Step 2: Run the statistical analysis": [[22, "Step-2:-Run-the-statistical-analysis"]], "Step 3: Peeking inside": [[22, "Step-3:-Peeking-inside"]], "Amount of missing information": [[22, "Amount-of-missing-information"]], "Buckets per column": [[22, "Buckets-per-column"]], "Bias per column": [[22, "Bias-per-column"]], "Column histograms": [[22, "Column-histograms"]], "Final thoughts": [[22, "Final-thoughts"]], "Tutorial - Time series forecasting": [[23, "Tutorial---Time-series-forecasting"]], "Load data": [[23, "Load-data"]], "Define the predictive task": [[23, "Define-the-predictive-task"]], "Generate the predictor object": [[23, "Generate-the-predictor-object"]], "Train": [[23, "Train"]], "Predict": [[23, "Predict"]], "Visualizing a forecast": [[23, "Visualizing-a-forecast"]], "Conclusion": [[23, "Conclusion"], [24, "Conclusion"]], "Initial model training": [[24, "Initial-model-training"]], "Updating the predictor": [[24, "Updating-the-predictor"]], "BaseMixer.partial_fit()": [[24, "BaseMixer.partial_fit()"]], "PredictorInterface.adjust()": [[24, "PredictorInterface.adjust()"]]}, "indexentries": {"accstats (class in analysis)": [[0, "analysis.AccStats"]], "baseanalysisblock (class in analysis)": [[0, "analysis.BaseAnalysisBlock"]], "confstats (class in analysis)": [[0, "analysis.ConfStats"]], "icp (class in analysis)": [[0, "analysis.ICP"]], "permutationfeatureimportance (class in analysis)": [[0, "analysis.PermutationFeatureImportance"]], "tempscaler (class in analysis)": [[0, "analysis.TempScaler"]], "analysis": [[0, "module-analysis"]], "analyze() (analysis.accstats method)": [[0, "analysis.AccStats.analyze"]], "analyze() (analysis.baseanalysisblock method)": [[0, "analysis.BaseAnalysisBlock.analyze"]], "analyze() (analysis.confstats method)": [[0, "analysis.ConfStats.analyze"]], "analyze() (analysis.icp method)": [[0, "analysis.ICP.analyze"]], "analyze() (analysis.permutationfeatureimportance method)": [[0, "analysis.PermutationFeatureImportance.analyze"]], "analyze() (analysis.tempscaler method)": [[0, "analysis.TempScaler.analyze"]], "explain() (analysis.baseanalysisblock method)": [[0, "analysis.BaseAnalysisBlock.explain"]], "explain() (analysis.icp method)": [[0, "analysis.ICP.explain"]], "explain() (analysis.tempscaler method)": [[0, "analysis.TempScaler.explain"]], "explain() (in module analysis)": [[0, "analysis.explain"]], "model_analyzer() (in module analysis)": [[0, "analysis.model_analyzer"]], "module": [[0, "module-analysis"], [4, "module-api.high_level"], [5, "module-api.json_ai"], [6, "module-api.predictor"], [7, "module-api.types"], [8, "module-data"], [9, "module-encoder"], [10, "module-ensemble"], [11, "module-helpers"], [14, "module-mixer"]], "api.high_level": [[4, "module-api.high_level"]], "code_from_json_ai() (in module api.high_level)": [[4, "api.high_level.code_from_json_ai"]], "code_from_problem() (in module api.high_level)": [[4, "api.high_level.code_from_problem"]], "json_ai_from_problem() (in module api.high_level)": [[4, "api.high_level.json_ai_from_problem"]], "predictor_from_code() (in module api.high_level)": [[4, "api.high_level.predictor_from_code"]], "predictor_from_json_ai() (in module api.high_level)": [[4, "api.high_level.predictor_from_json_ai"]], "predictor_from_problem() (in module api.high_level)": [[4, "api.high_level.predictor_from_problem"]], "predictor_from_state() (in module api.high_level)": [[4, "api.high_level.predictor_from_state"]], "add_implicit_values() (in module api.json_ai)": [[5, "api.json_ai.add_implicit_values"]], "api.json_ai": [[5, "module-api.json_ai"]], "generate_json_ai() (in module api.json_ai)": [[5, "api.json_ai.generate_json_ai"]], "lookup_encoder() (in module api.json_ai)": [[5, "api.json_ai.lookup_encoder"]], "validate_json_ai() (in module api.json_ai)": [[5, "api.json_ai.validate_json_ai"]], "predictorinterface (class in api.predictor)": [[6, "api.predictor.PredictorInterface"]], "adjust() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.adjust"]], "analyze_data() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.analyze_data"]], "analyze_ensemble() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.analyze_ensemble"]], "api.predictor": [[6, "module-api.predictor"]], "export() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.export"]], "featurize() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.featurize"]], "fit() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.fit"]], "learn() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.learn"]], "predict() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.predict"]], "prepare() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.prepare"]], "preprocess() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.preprocess"]], "save() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.save"]], "split() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.split"]], "test() (api.predictor.predictorinterface method)": [[6, "api.predictor.PredictorInterface.test"]], "jsonai (class in api.types)": [[7, "api.types.JsonAI"]], "modelanalysis (class in api.types)": [[7, "api.types.ModelAnalysis"]], "module (class in api.types)": [[7, "api.types.Module"]], "predictionarguments (class in api.types)": [[7, "api.types.PredictionArguments"]], "problemdefinition (class in api.types)": [[7, "api.types.ProblemDefinition"]], "submodeldata (class in api.types)": [[7, "api.types.SubmodelData"]], "timeseriessettings (class in api.types)": [[7, "api.types.TimeseriesSettings"]], "api.types": [[7, "module-api.types"]], "from_dict() (api.types.jsonai static method)": [[7, "api.types.JsonAI.from_dict"]], "from_dict() (api.types.predictionarguments static method)": [[7, "api.types.PredictionArguments.from_dict"]], "from_dict() (api.types.problemdefinition static method)": [[7, "api.types.ProblemDefinition.from_dict"]], "from_dict() (api.types.timeseriessettings static method)": [[7, "api.types.TimeseriesSettings.from_dict"]], "from_json() (api.types.jsonai static method)": [[7, "api.types.JsonAI.from_json"]], "from_json() (api.types.problemdefinition static method)": [[7, "api.types.ProblemDefinition.from_json"]], "from_json() (api.types.timeseriessettings static method)": [[7, "api.types.TimeseriesSettings.from_json"]], "to_dict() (api.types.jsonai method)": [[7, "api.types.JsonAI.to_dict"]], "to_dict() (api.types.predictionarguments method)": [[7, "api.types.PredictionArguments.to_dict"]], "to_dict() (api.types.problemdefinition method)": [[7, "api.types.ProblemDefinition.to_dict"]], "to_dict() (api.types.timeseriessettings method)": [[7, "api.types.TimeseriesSettings.to_dict"]], "to_json() (api.types.jsonai method)": [[7, "api.types.JsonAI.to_json"]], "to_json() (api.types.problemdefinition method)": [[7, "api.types.ProblemDefinition.to_json"]], "to_json() (api.types.timeseriessettings method)": [[7, "api.types.TimeseriesSettings.to_json"]], "concatedencodedds (class in data)": [[8, "data.ConcatedEncodedDs"]], "encodedds (class in data)": [[8, "data.EncodedDs"]], "build_cache() (data.encodedds method)": [[8, "data.EncodedDs.build_cache"]], "clear_cache() (data.concatedencodedds method)": [[8, "data.ConcatedEncodedDs.clear_cache"]], "clear_cache() (data.encodedds method)": [[8, "data.EncodedDs.clear_cache"]], "data": [[8, "module-data"]], "get_column_original_data() (data.concatedencodedds method)": [[8, "data.ConcatedEncodedDs.get_column_original_data"]], "get_column_original_data() (data.encodedds method)": [[8, "data.EncodedDs.get_column_original_data"]], "get_encoded_column_data() (data.concatedencodedds method)": [[8, "data.ConcatedEncodedDs.get_encoded_column_data"]], "get_encoded_column_data() (data.encodedds method)": [[8, "data.EncodedDs.get_encoded_column_data"]], "get_encoded_data() (data.encodedds method)": [[8, "data.EncodedDs.get_encoded_data"]], "timeseries_analyzer() (in module data)": [[8, "data.timeseries_analyzer"]], "transform_timeseries() (in module data)": [[8, "data.transform_timeseries"]], "arrayencoder (class in encoder)": [[9, "encoder.ArrayEncoder"]], "baseencoder (class in encoder)": [[9, "encoder.BaseEncoder"]], "binaryencoder (class in encoder)": [[9, "encoder.BinaryEncoder"]], "catarrayencoder (class in encoder)": [[9, "encoder.CatArrayEncoder"]], "categoricalautoencoder (class in encoder)": [[9, "encoder.CategoricalAutoEncoder"]], "datetimeencoder (class in encoder)": [[9, "encoder.DatetimeEncoder"]], "datetimenormalizerencoder (class in encoder)": [[9, "encoder.DatetimeNormalizerEncoder"]], "img2vecencoder (class in encoder)": [[9, "encoder.Img2VecEncoder"]], "multihotencoder (class in encoder)": [[9, "encoder.MultiHotEncoder"]], "numarrayencoder (class in encoder)": [[9, "encoder.NumArrayEncoder"]], "numericencoder (class in encoder)": [[9, "encoder.NumericEncoder"]], "onehotencoder (class in encoder)": [[9, "encoder.OneHotEncoder"]], "pretrainedlangencoder (class in encoder)": [[9, "encoder.PretrainedLangEncoder"]], "shorttextencoder (class in encoder)": [[9, "encoder.ShortTextEncoder"]], "simplelabelencoder (class in encoder)": [[9, "encoder.SimpleLabelEncoder"]], "timeseriesencoder (class in encoder)": [[9, "encoder.TimeSeriesEncoder"]], "tsarraynumericencoder (class in encoder)": [[9, "encoder.TsArrayNumericEncoder"]], "tscatarrayencoder (class in encoder)": [[9, "encoder.TsCatArrayEncoder"]], "tsnumericencoder (class in encoder)": [[9, "encoder.TsNumericEncoder"]], "vocabularyencoder (class in encoder)": [[9, "encoder.VocabularyEncoder"]], "decode() (encoder.arrayencoder method)": [[9, "encoder.ArrayEncoder.decode"]], "decode() (encoder.baseencoder method)": [[9, "encoder.BaseEncoder.decode"]], "decode() (encoder.binaryencoder method)": [[9, "encoder.BinaryEncoder.decode"]], "decode() (encoder.catarrayencoder method)": [[9, "encoder.CatArrayEncoder.decode"]], "decode() (encoder.categoricalautoencoder method)": [[9, "encoder.CategoricalAutoEncoder.decode"]], "decode() (encoder.datetimeencoder method)": [[9, "encoder.DatetimeEncoder.decode"]], "decode() (encoder.datetimenormalizerencoder method)": [[9, "encoder.DatetimeNormalizerEncoder.decode"]], "decode() (encoder.img2vecencoder method)": [[9, "encoder.Img2VecEncoder.decode"]], "decode() (encoder.multihotencoder method)": [[9, "encoder.MultiHotEncoder.decode"]], "decode() (encoder.numericencoder method)": [[9, "encoder.NumericEncoder.decode"]], "decode() (encoder.onehotencoder method)": [[9, "encoder.OneHotEncoder.decode"]], "decode() (encoder.pretrainedlangencoder method)": [[9, "encoder.PretrainedLangEncoder.decode"]], "decode() (encoder.shorttextencoder method)": [[9, "encoder.ShortTextEncoder.decode"]], "decode() (encoder.simplelabelencoder method)": [[9, "encoder.SimpleLabelEncoder.decode"]], "decode() (encoder.timeseriesencoder method)": [[9, "encoder.TimeSeriesEncoder.decode"]], "decode() (encoder.tsarraynumericencoder method)": [[9, "encoder.TsArrayNumericEncoder.decode"]], "decode() (encoder.tscatarrayencoder method)": [[9, "encoder.TsCatArrayEncoder.decode"]], "decode() (encoder.tsnumericencoder method)": [[9, "encoder.TsNumericEncoder.decode"]], "decode() (encoder.vocabularyencoder method)": [[9, "encoder.VocabularyEncoder.decode"]], "decode_one() (encoder.tsarraynumericencoder method)": [[9, "encoder.TsArrayNumericEncoder.decode_one"]], "decode_one() (encoder.tscatarrayencoder method)": [[9, "encoder.TsCatArrayEncoder.decode_one"]], "decode_probabilities() (encoder.binaryencoder method)": [[9, "encoder.BinaryEncoder.decode_probabilities"]], "decode_probabilities() (encoder.onehotencoder method)": [[9, "encoder.OneHotEncoder.decode_probabilities"]], "encode() (encoder.arrayencoder method)": [[9, "encoder.ArrayEncoder.encode"]], "encode() (encoder.baseencoder method)": [[9, "encoder.BaseEncoder.encode"]], "encode() (encoder.binaryencoder method)": [[9, "encoder.BinaryEncoder.encode"]], "encode() (encoder.categoricalautoencoder method)": [[9, "encoder.CategoricalAutoEncoder.encode"]], "encode() (encoder.datetimeencoder method)": [[9, "encoder.DatetimeEncoder.encode"]], "encode() (encoder.datetimenormalizerencoder method)": [[9, "encoder.DatetimeNormalizerEncoder.encode"]], "encode() (encoder.img2vecencoder method)": [[9, "encoder.Img2VecEncoder.encode"]], "encode() (encoder.multihotencoder method)": [[9, "encoder.MultiHotEncoder.encode"]], "encode() (encoder.numericencoder method)": [[9, "encoder.NumericEncoder.encode"]], "encode() (encoder.onehotencoder method)": [[9, "encoder.OneHotEncoder.encode"]], "encode() (encoder.pretrainedlangencoder method)": [[9, "encoder.PretrainedLangEncoder.encode"]], "encode() (encoder.shorttextencoder method)": [[9, "encoder.ShortTextEncoder.encode"]], "encode() (encoder.simplelabelencoder method)": [[9, "encoder.SimpleLabelEncoder.encode"]], "encode() (encoder.timeseriesencoder method)": [[9, "encoder.TimeSeriesEncoder.encode"]], "encode() (encoder.tsarraynumericencoder method)": [[9, "encoder.TsArrayNumericEncoder.encode"]], "encode() (encoder.tscatarrayencoder method)": [[9, "encoder.TsCatArrayEncoder.encode"]], "encode() (encoder.tsnumericencoder method)": [[9, "encoder.TsNumericEncoder.encode"]], "encode() (encoder.vocabularyencoder method)": [[9, "encoder.VocabularyEncoder.encode"]], "encode_one() (encoder.datetimenormalizerencoder method)": [[9, "encoder.DatetimeNormalizerEncoder.encode_one"]], "encode_one() (encoder.tscatarrayencoder method)": [[9, "encoder.TsCatArrayEncoder.encode_one"]], "encoder": [[9, "module-encoder"]], "is_trainable_encoder (encoder.pretrainedlangencoder attribute)": [[9, "encoder.PretrainedLangEncoder.is_trainable_encoder"]], "prepare() (encoder.arrayencoder method)": [[9, "encoder.ArrayEncoder.prepare"]], "prepare() (encoder.baseencoder method)": [[9, "encoder.BaseEncoder.prepare"]], "prepare() (encoder.binaryencoder method)": [[9, "encoder.BinaryEncoder.prepare"]], "prepare() (encoder.catarrayencoder method)": [[9, "encoder.CatArrayEncoder.prepare"]], "prepare() (encoder.categoricalautoencoder method)": [[9, "encoder.CategoricalAutoEncoder.prepare"]], "prepare() (encoder.datetimeencoder method)": [[9, "encoder.DatetimeEncoder.prepare"]], "prepare() (encoder.datetimenormalizerencoder method)": [[9, "encoder.DatetimeNormalizerEncoder.prepare"]], "prepare() (encoder.img2vecencoder method)": [[9, "encoder.Img2VecEncoder.prepare"]], "prepare() (encoder.multihotencoder method)": [[9, "encoder.MultiHotEncoder.prepare"]], "prepare() (encoder.numericencoder method)": [[9, "encoder.NumericEncoder.prepare"]], "prepare() (encoder.onehotencoder method)": [[9, "encoder.OneHotEncoder.prepare"]], "prepare() (encoder.pretrainedlangencoder method)": [[9, "encoder.PretrainedLangEncoder.prepare"]], "prepare() (encoder.shorttextencoder method)": [[9, "encoder.ShortTextEncoder.prepare"]], "prepare() (encoder.simplelabelencoder method)": [[9, "encoder.SimpleLabelEncoder.prepare"]], "prepare() (encoder.tsarraynumericencoder method)": [[9, "encoder.TsArrayNumericEncoder.prepare"]], "prepare() (encoder.tscatarrayencoder method)": [[9, "encoder.TsCatArrayEncoder.prepare"]], "prepare() (encoder.vocabularyencoder method)": [[9, "encoder.VocabularyEncoder.prepare"]], "to() (encoder.img2vecencoder method)": [[9, "encoder.Img2VecEncoder.to"]], "to() (encoder.pretrainedlangencoder method)": [[9, "encoder.PretrainedLangEncoder.to"]], "baseensemble (class in ensemble)": [[10, "ensemble.BaseEnsemble"]], "bestof (class in ensemble)": [[10, "ensemble.BestOf"]], "embedder (class in ensemble)": [[10, "ensemble.Embedder"]], "identityensemble (class in ensemble)": [[10, "ensemble.IdentityEnsemble"]], "meanensemble (class in ensemble)": [[10, "ensemble.MeanEnsemble"]], "modeensemble (class in ensemble)": [[10, "ensemble.ModeEnsemble"]], "stackedensemble (class in ensemble)": [[10, "ensemble.StackedEnsemble"]], "tsstackedensemble (class in ensemble)": [[10, "ensemble.TsStackedEnsemble"]], "weightedmeanensemble (class in ensemble)": [[10, "ensemble.WeightedMeanEnsemble"]], "ensemble": [[10, "module-ensemble"]], "lightwoodautocast (class in helpers)": [[11, "helpers.LightwoodAutocast"]], "add_tn_num_conf_bounds() (in module helpers)": [[11, "helpers.add_tn_num_conf_bounds"]], "concat_vectors_and_pad() (in module helpers)": [[11, "helpers.concat_vectors_and_pad"]], "get_devices() (in module helpers)": [[11, "helpers.get_devices"]], "helpers": [[11, "module-helpers"]], "is_cuda_compatible() (in module helpers)": [[11, "helpers.is_cuda_compatible"]], "is_none() (in module helpers)": [[11, "helpers.is_none"]], "arimamixer (class in mixer)": [[14, "mixer.ARIMAMixer"]], "basemixer (class in mixer)": [[14, "mixer.BaseMixer"]], "etsmixer (class in mixer)": [[14, "mixer.ETSMixer"]], "neural (class in mixer)": [[14, "mixer.Neural"]], "neuralts (class in mixer)": [[14, "mixer.NeuralTs"]], "prophetmixer (class in mixer)": [[14, "mixer.ProphetMixer"]], "randomforest (class in mixer)": [[14, "mixer.RandomForest"]], "regression (class in mixer)": [[14, "mixer.Regression"]], "sktime (class in mixer)": [[14, "mixer.SkTime"]], "tabtransformermixer (class in mixer)": [[14, "mixer.TabTransformerMixer"]], "unit (class in mixer)": [[14, "mixer.Unit"]], "xgboostarraymixer (class in mixer)": [[14, "mixer.XGBoostArrayMixer"]], "xgboostmixer (class in mixer)": [[14, "mixer.XGBoostMixer"]], "fit() (mixer.basemixer method)": [[14, "mixer.BaseMixer.fit"]], "fit() (mixer.neural method)": [[14, "mixer.Neural.fit"]], "fit() (mixer.neuralts method)": [[14, "mixer.NeuralTs.fit"]], "fit() (mixer.randomforest method)": [[14, "mixer.RandomForest.fit"]], "fit() (mixer.regression method)": [[14, "mixer.Regression.fit"]], "fit() (mixer.sktime method)": [[14, "mixer.SkTime.fit"]], "fit() (mixer.tabtransformermixer method)": [[14, "mixer.TabTransformerMixer.fit"]], "fit() (mixer.unit method)": [[14, "mixer.Unit.fit"]], "fit() (mixer.xgboostarraymixer method)": [[14, "mixer.XGBoostArrayMixer.fit"]], "fit() (mixer.xgboostmixer method)": [[14, "mixer.XGBoostMixer.fit"]], "mixer": [[14, "module-mixer"]], "partial_fit() (mixer.basemixer method)": [[14, "mixer.BaseMixer.partial_fit"]], "partial_fit() (mixer.neural method)": [[14, "mixer.Neural.partial_fit"]], "partial_fit() (mixer.randomforest method)": [[14, "mixer.RandomForest.partial_fit"]], "partial_fit() (mixer.regression method)": [[14, "mixer.Regression.partial_fit"]], "partial_fit() (mixer.sktime method)": [[14, "mixer.SkTime.partial_fit"]], "partial_fit() (mixer.unit method)": [[14, "mixer.Unit.partial_fit"]], "partial_fit() (mixer.xgboostarraymixer method)": [[14, "mixer.XGBoostArrayMixer.partial_fit"]], "partial_fit() (mixer.xgboostmixer method)": [[14, "mixer.XGBoostMixer.partial_fit"]], "supports_proba (mixer.xgboostmixer attribute)": [[14, "mixer.XGBoostMixer.supports_proba"]]}}) \ No newline at end of file diff --git a/tutorials/custom_cleaner/custom_cleaner.html b/tutorials/custom_cleaner/custom_cleaner.html index 95f730e78..03a3df0a2 100644 --- a/tutorials/custom_cleaner/custom_cleaner.html +++ b/tutorials/custom_cleaner/custom_cleaner.html @@ -125,8 +125,8 @@

Date: 2021.10.07
-INFO:lightwood-2845:No torchvision detected, image helpers not supported.
-INFO:lightwood-2845:No torchvision/pillow detected, image encoder not supported
+INFO:lightwood-2730:No torchvision detected, image helpers not supported.
+INFO:lightwood-2730:No torchvision/pillow detected, image encoder not supported
 
@@ -250,20 +250,20 @@

2) Create a JSON-AI default object
-INFO:lightwood-2845:Dropping features: ['url_legal', 'license', 'standard_error']
-INFO:type_infer-2845:Analyzing a sample of 2478
-INFO:type_infer-2845:from a total population of 2834, this is equivalent to 87.4% of your data.
-INFO:type_infer-2845:Infering type for: id
-INFO:type_infer-2845:Doing text detection for column: id
-INFO:type_infer-2845:Column id has data type categorical
-INFO:type_infer-2845:Infering type for: excerpt
-INFO:type_infer-2845:Doing text detection for column: excerpt
-INFO:type_infer-2845:Infering type for: target
-INFO:type_infer-2845:Column target has data type float
-WARNING:type_infer-2845:Column id is an identifier of type "Hash-like identifier"
-INFO:dataprep_ml-2845:Starting statistical analysis
-INFO:dataprep_ml-2845:Dropping features: ['id']
-INFO:dataprep_ml-2845:Finished statistical analysis
+INFO:lightwood-2730:Dropping features: ['url_legal', 'license', 'standard_error']
+INFO:type_infer-2730:Analyzing a sample of 2478
+INFO:type_infer-2730:from a total population of 2834, this is equivalent to 87.4% of your data.
+INFO:type_infer-2730:Infering type for: id
+INFO:type_infer-2730:Doing text detection for column: id
+INFO:type_infer-2730:Column id has data type categorical
+INFO:type_infer-2730:Infering type for: excerpt
+INFO:type_infer-2730:Doing text detection for column: excerpt
+INFO:type_infer-2730:Infering type for: target
+INFO:type_infer-2730:Column target has data type float
+WARNING:type_infer-2730:Column id is an identifier of type "Hash-like identifier"
+INFO:dataprep_ml-2730:Starting statistical analysis
+INFO:dataprep_ml-2730:Dropping features: ['id']
+INFO:dataprep_ml-2730:Finished statistical analysis
 

Lightwood, as it processes the data, will provide the user a few pieces of information.

@@ -351,7 +351,7 @@

2) Create a JSON-AI default object6) Call python to run your code and see your preprocessed outputs
-INFO:dataprep_ml-2845:Starting statistical analysis
-INFO:dataprep_ml-2845:Dropping features: ['id']
-INFO:dataprep_ml-2845:Finished statistical analysis
-DEBUG:lightwood-2845: `analyze_data` runtime: 0.05 seconds
-INFO:dataprep_ml-2845:Cleaning the data
-INFO:dataprep_ml-2845:Dropping features: ['id']
-INFO:lightwood-2845:Cleaning column =excerpt
-INFO:lightwood-2845:Cleaning column =target
-INFO:lightwood-2845:Converted target into strictly non-negative
-DEBUG:lightwood-2845: `preprocess` runtime: 0.08 seconds
+INFO:dataprep_ml-2730:Starting statistical analysis
+INFO:dataprep_ml-2730:Dropping features: ['id']
+INFO:dataprep_ml-2730:Finished statistical analysis
+DEBUG:lightwood-2730: `analyze_data` runtime: 0.05 seconds
+INFO:dataprep_ml-2730:Cleaning the data
+INFO:dataprep_ml-2730:Dropping features: ['id']
+INFO:lightwood-2730:Cleaning column =excerpt
+INFO:lightwood-2730:Cleaning column =target
+INFO:lightwood-2730:Converted target into strictly non-negative
+DEBUG:lightwood-2730: `preprocess` runtime: 0.07 seconds
 
diff --git a/tutorials/custom_cleaner/custom_cleaner.ipynb b/tutorials/custom_cleaner/custom_cleaner.ipynb index 72ccb0439..e2d0321af 100644 --- a/tutorials/custom_cleaner/custom_cleaner.ipynb +++ b/tutorials/custom_cleaner/custom_cleaner.ipynb @@ -31,10 +31,10 @@ "id": "happy-wheat", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:38.314866Z", - "iopub.status.busy": "2024-05-15T12:31:38.314666Z", - "iopub.status.idle": "2024-05-15T12:31:41.066114Z", - "shell.execute_reply": "2024-05-15T12:31:41.065470Z" + "iopub.execute_input": "2024-05-15T12:38:44.614888Z", + "iopub.status.busy": "2024-05-15T12:38:44.614690Z", + "iopub.status.idle": "2024-05-15T12:38:47.421978Z", + "shell.execute_reply": "2024-05-15T12:38:47.421222Z" } }, "outputs": [ @@ -42,14 +42,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2845:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2730:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2845:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2730:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] } ], @@ -87,10 +87,10 @@ "id": "recognized-parish", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:41.069559Z", - "iopub.status.busy": "2024-05-15T12:31:41.068848Z", - "iopub.status.idle": "2024-05-15T12:31:42.003247Z", - "shell.execute_reply": "2024-05-15T12:31:42.002523Z" + "iopub.execute_input": "2024-05-15T12:38:47.425324Z", + "iopub.status.busy": "2024-05-15T12:38:47.424967Z", + "iopub.status.idle": "2024-05-15T12:38:48.351359Z", + "shell.execute_reply": "2024-05-15T12:38:48.350712Z" } }, "outputs": [ @@ -221,10 +221,10 @@ "id": "chicken-truth", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:42.006058Z", - "iopub.status.busy": "2024-05-15T12:31:42.005722Z", - "iopub.status.idle": "2024-05-15T12:31:57.532124Z", - "shell.execute_reply": "2024-05-15T12:31:57.531480Z" + "iopub.execute_input": "2024-05-15T12:38:48.353933Z", + "iopub.status.busy": "2024-05-15T12:38:48.353724Z", + "iopub.status.idle": "2024-05-15T12:39:03.836779Z", + "shell.execute_reply": "2024-05-15T12:39:03.836183Z" } }, "outputs": [ @@ -232,98 +232,98 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2845:Dropping features: ['url_legal', 'license', 'standard_error']\u001b[0m\n" + "\u001b[32mINFO:lightwood-2730:Dropping features: ['url_legal', 'license', 'standard_error']\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Analyzing a sample of 2478\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Analyzing a sample of 2478\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:from a total population of 2834, this is equivalent to 87.4% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:from a total population of 2834, this is equivalent to 87.4% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Infering type for: id\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Infering type for: id\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Doing text detection for column: id\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Doing text detection for column: id\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Column id has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Column id has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Infering type for: excerpt\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Infering type for: excerpt\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Doing text detection for column: excerpt\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Doing text detection for column: excerpt\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Infering type for: target\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Infering type for: target\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2845:Column target has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2730:Column target has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:type_infer-2845:Column id is an identifier of type \"Hash-like identifier\"\u001b[0m\n" + "\u001b[33mWARNING:type_infer-2730:Column id is an identifier of type \"Hash-like identifier\"\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Dropping features: ['id']\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Dropping features: ['id']\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Finished statistical analysis\u001b[0m\n" ] } ], @@ -360,10 +360,10 @@ "id": "designed-condition", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:57.535376Z", - "iopub.status.busy": "2024-05-15T12:31:57.534790Z", - "iopub.status.idle": "2024-05-15T12:31:57.539994Z", - "shell.execute_reply": "2024-05-15T12:31:57.539305Z" + "iopub.execute_input": "2024-05-15T12:39:03.839556Z", + "iopub.status.busy": "2024-05-15T12:39:03.839259Z", + "iopub.status.idle": "2024-05-15T12:39:03.843934Z", + "shell.execute_reply": "2024-05-15T12:39:03.843268Z" } }, "outputs": [ @@ -434,7 +434,7 @@ " \"unbias_target\": true,\n", " \"seconds_per_mixer\": 21384.0,\n", " \"seconds_per_encoder\": 85536.0,\n", - " \"expected_additional_time\": 15.485530853271484,\n", + " \"expected_additional_time\": 15.443372249603271,\n", " \"time_aim\": 259200,\n", " \"target_weights\": null,\n", " \"positive_domain\": false,\n", @@ -518,10 +518,10 @@ "id": "325d8f1b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:57.542555Z", - "iopub.status.busy": "2024-05-15T12:31:57.542241Z", - "iopub.status.idle": "2024-05-15T12:31:57.547712Z", - "shell.execute_reply": "2024-05-15T12:31:57.547064Z" + "iopub.execute_input": "2024-05-15T12:39:03.846644Z", + "iopub.status.busy": "2024-05-15T12:39:03.846253Z", + "iopub.status.idle": "2024-05-15T12:39:03.851463Z", + "shell.execute_reply": "2024-05-15T12:39:03.850848Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "id": "f030f8ca", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:57.550277Z", - "iopub.status.busy": "2024-05-15T12:31:57.549912Z", - "iopub.status.idle": "2024-05-15T12:31:57.553192Z", - "shell.execute_reply": "2024-05-15T12:31:57.552629Z" + "iopub.execute_input": "2024-05-15T12:39:03.853851Z", + "iopub.status.busy": "2024-05-15T12:39:03.853511Z", + "iopub.status.idle": "2024-05-15T12:39:03.856756Z", + "shell.execute_reply": "2024-05-15T12:39:03.856216Z" } }, "outputs": [], @@ -711,10 +711,10 @@ "id": "floating-patent", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:57.555666Z", - "iopub.status.busy": "2024-05-15T12:31:57.555289Z", - "iopub.status.idle": "2024-05-15T12:31:57.904645Z", - "shell.execute_reply": "2024-05-15T12:31:57.903931Z" + "iopub.execute_input": "2024-05-15T12:39:03.859167Z", + "iopub.status.busy": "2024-05-15T12:39:03.858968Z", + "iopub.status.idle": "2024-05-15T12:39:04.214810Z", + "shell.execute_reply": "2024-05-15T12:39:04.214113Z" } }, "outputs": [ @@ -795,7 +795,7 @@ " \"unbias_target\": True,\n", " \"seconds_per_mixer\": 21384.0,\n", " \"seconds_per_encoder\": 85536.0,\n", - " \"expected_additional_time\": 15.485530853271484,\n", + " \"expected_additional_time\": 15.443372249603271,\n", " \"time_aim\": 259200,\n", " \"target_weights\": None,\n", " \"positive_domain\": False,\n", @@ -1452,10 +1452,10 @@ "id": "violent-guard", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:57.907458Z", - "iopub.status.busy": "2024-05-15T12:31:57.907076Z", - "iopub.status.idle": "2024-05-15T12:31:57.915206Z", - "shell.execute_reply": "2024-05-15T12:31:57.914714Z" + "iopub.execute_input": "2024-05-15T12:39:04.217801Z", + "iopub.status.busy": "2024-05-15T12:39:04.217334Z", + "iopub.status.idle": "2024-05-15T12:39:04.225997Z", + "shell.execute_reply": "2024-05-15T12:39:04.225444Z" } }, "outputs": [], @@ -1470,10 +1470,10 @@ "id": "closing-episode", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:57.917761Z", - "iopub.status.busy": "2024-05-15T12:31:57.917396Z", - "iopub.status.idle": "2024-05-15T12:31:58.052073Z", - "shell.execute_reply": "2024-05-15T12:31:58.051450Z" + "iopub.execute_input": "2024-05-15T12:39:04.228433Z", + "iopub.status.busy": "2024-05-15T12:39:04.228041Z", + "iopub.status.idle": "2024-05-15T12:39:04.362314Z", + "shell.execute_reply": "2024-05-15T12:39:04.361709Z" }, "scrolled": false }, @@ -1482,70 +1482,70 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Dropping features: ['id']\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Dropping features: ['id']\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Finished statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2845: `analyze_data` runtime: 0.05 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2730: `analyze_data` runtime: 0.05 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2845:Dropping features: ['id']\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2730:Dropping features: ['id']\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2845:Cleaning column =excerpt\u001b[0m\n" + "\u001b[32mINFO:lightwood-2730:Cleaning column =excerpt\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2845:Cleaning column =target\u001b[0m\n" + "\u001b[32mINFO:lightwood-2730:Cleaning column =target\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2845:Converted target into strictly non-negative\u001b[0m\n" + "\u001b[32mINFO:lightwood-2730:Converted target into strictly non-negative\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2845: `preprocess` runtime: 0.08 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2730: `preprocess` runtime: 0.07 seconds\u001b[0m\n" ] }, { @@ -1635,10 +1635,10 @@ "id": "major-stake", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:58.054538Z", - "iopub.status.busy": "2024-05-15T12:31:58.054334Z", - "iopub.status.idle": "2024-05-15T12:31:58.059138Z", - "shell.execute_reply": "2024-05-15T12:31:58.058503Z" + "iopub.execute_input": "2024-05-15T12:39:04.364948Z", + "iopub.status.busy": "2024-05-15T12:39:04.364536Z", + "iopub.status.idle": "2024-05-15T12:39:04.369332Z", + "shell.execute_reply": "2024-05-15T12:39:04.368673Z" } }, "outputs": [ diff --git a/tutorials/custom_encoder_rulebased/custom_encoder_rulebased.html b/tutorials/custom_encoder_rulebased/custom_encoder_rulebased.html index e5c9982c1..f7cf50556 100644 --- a/tutorials/custom_encoder_rulebased/custom_encoder_rulebased.html +++ b/tutorials/custom_encoder_rulebased/custom_encoder_rulebased.html @@ -126,8 +126,8 @@

Custom Encoder: Rule-Based
-INFO:lightwood-2555:No torchvision detected, image helpers not supported.
-INFO:lightwood-2555:No torchvision/pillow detected, image encoder not supported
+INFO:lightwood-2443:No torchvision detected, image helpers not supported.
+INFO:lightwood-2443:No torchvision/pillow detected, image encoder not supported
 

@@ -275,29 +275,29 @@

2) Generate JSON-AI Syntax
-INFO:type_infer-2555:Analyzing a sample of 6920
-INFO:type_infer-2555:from a total population of 10668, this is equivalent to 64.9% of your data.
-INFO:type_infer-2555:Using 3 processes to deduct types.
-INFO:type_infer-2555:Infering type for: year
-INFO:type_infer-2555:Infering type for: price
-INFO:type_infer-2555:Column year has data type integer
-INFO:type_infer-2555:Column price has data type integer
-INFO:type_infer-2555:Infering type for: transmission
-INFO:type_infer-2555:Infering type for: mileage
-INFO:type_infer-2555:Infering type for: model
-INFO:type_infer-2555:Column mileage has data type integer
-INFO:type_infer-2555:Infering type for: fuelType
-INFO:type_infer-2555:Column transmission has data type categorical
-INFO:type_infer-2555:Infering type for: tax
-INFO:type_infer-2555:Column tax has data type integer
-INFO:type_infer-2555:Infering type for: mpg
-INFO:type_infer-2555:Column mpg has data type float
-INFO:type_infer-2555:Infering type for: engineSize
-INFO:type_infer-2555:Column engineSize has data type float
-INFO:type_infer-2555:Column fuelType has data type categorical
-INFO:type_infer-2555:Column model has data type categorical
-INFO:dataprep_ml-2555:Starting statistical analysis
-INFO:dataprep_ml-2555:Finished statistical analysis
+INFO:type_infer-2443:Analyzing a sample of 6920
+INFO:type_infer-2443:from a total population of 10668, this is equivalent to 64.9% of your data.
+INFO:type_infer-2443:Using 3 processes to deduct types.
+INFO:type_infer-2443:Infering type for: year
+INFO:type_infer-2443:Infering type for: price
+INFO:type_infer-2443:Column year has data type integer
+INFO:type_infer-2443:Column price has data type integer
+INFO:type_infer-2443:Infering type for: transmission
+INFO:type_infer-2443:Infering type for: mileage
+INFO:type_infer-2443:Column mileage has data type integer
+INFO:type_infer-2443:Infering type for: fuelType
+INFO:type_infer-2443:Infering type for: model
+INFO:type_infer-2443:Column fuelType has data type categorical
+INFO:type_infer-2443:Infering type for: tax
+INFO:type_infer-2443:Column tax has data type integer
+INFO:type_infer-2443:Infering type for: mpg
+INFO:type_infer-2443:Column mpg has data type float
+INFO:type_infer-2443:Infering type for: engineSize
+INFO:type_infer-2443:Column engineSize has data type float
+INFO:type_infer-2443:Column transmission has data type categorical
+INFO:type_infer-2443:Column model has data type categorical
+INFO:dataprep_ml-2443:Starting statistical analysis
+INFO:dataprep_ml-2443:Finished statistical analysis
 

Let’s take a look at our JSON-AI and print to file.

@@ -411,7 +411,7 @@

2) Generate JSON-AI Syntax
-INFO:dataprep_ml-2555:Starting statistical analysis
-INFO:dataprep_ml-2555:Finished statistical analysis
-DEBUG:lightwood-2555: `analyze_data` runtime: 0.43 seconds
-INFO:dataprep_ml-2555:Cleaning the data
-DEBUG:lightwood-2555: `preprocess` runtime: 0.13 seconds
-INFO:dataprep_ml-2555:Splitting the data into train/test
-DEBUG:lightwood-2555: `split` runtime: 0.0 seconds
-DEBUG:dataprep_ml-2555:Preparing sequentially...
-DEBUG:dataprep_ml-2555:Preparing encoder for year...
-DEBUG:dataprep_ml-2555:Preparing encoder for mileage...
-DEBUG:dataprep_ml-2555:Preparing encoder for tax...
-DEBUG:dataprep_ml-2555:Preparing encoder for mpg...
-DEBUG:dataprep_ml-2555:Preparing encoder for engineSize...
-INFO:lightwood-2555:Categories Detected = 1
-INFO:lightwood-2555:Categories Detected = 1
-INFO:lightwood-2555:Categories Detected = 1
-DEBUG:lightwood-2555: `prepare` runtime: 0.01 seconds
-INFO:dataprep_ml-2555:Featurizing the data
-DEBUG:lightwood-2555: `featurize` runtime: 0.57 seconds
+INFO:dataprep_ml-2443:Starting statistical analysis
+INFO:dataprep_ml-2443:Finished statistical analysis
+DEBUG:lightwood-2443: `analyze_data` runtime: 0.42 seconds
+INFO:dataprep_ml-2443:Cleaning the data
+DEBUG:lightwood-2443: `preprocess` runtime: 0.13 seconds
+INFO:dataprep_ml-2443:Splitting the data into train/test
+DEBUG:lightwood-2443: `split` runtime: 0.0 seconds
+DEBUG:dataprep_ml-2443:Preparing sequentially...
+DEBUG:dataprep_ml-2443:Preparing encoder for year...
+DEBUG:dataprep_ml-2443:Preparing encoder for mileage...
+DEBUG:dataprep_ml-2443:Preparing encoder for tax...
+DEBUG:dataprep_ml-2443:Preparing encoder for mpg...
+DEBUG:dataprep_ml-2443:Preparing encoder for engineSize...
+INFO:lightwood-2443:Categories Detected = 1
+INFO:lightwood-2443:Categories Detected = 1
+INFO:lightwood-2443:Categories Detected = 1
+DEBUG:lightwood-2443: `prepare` runtime: 0.02 seconds
+INFO:dataprep_ml-2443:Featurizing the data
+DEBUG:lightwood-2443: `featurize` runtime: 0.55 seconds
 

The splitter creates 3 data-splits, a “train”, “dev”, and “test” set. The featurize command from the predictor allows us to convert the cleaned data into features. We can access this as follows:

diff --git a/tutorials/custom_encoder_rulebased/custom_encoder_rulebased.ipynb b/tutorials/custom_encoder_rulebased/custom_encoder_rulebased.ipynb index b8c1aa4b9..8fb88c2df 100644 --- a/tutorials/custom_encoder_rulebased/custom_encoder_rulebased.ipynb +++ b/tutorials/custom_encoder_rulebased/custom_encoder_rulebased.ipynb @@ -43,10 +43,10 @@ "id": "raising-adventure", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:59.516740Z", - "iopub.status.busy": "2024-05-15T12:30:59.516542Z", - "iopub.status.idle": "2024-05-15T12:31:02.311138Z", - "shell.execute_reply": "2024-05-15T12:31:02.310397Z" + "iopub.execute_input": "2024-05-15T12:38:05.532387Z", + "iopub.status.busy": "2024-05-15T12:38:05.531820Z", + "iopub.status.idle": "2024-05-15T12:38:08.368195Z", + "shell.execute_reply": "2024-05-15T12:38:08.367522Z" } }, "outputs": [ @@ -54,14 +54,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2555:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2443:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2555:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2443:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] } ], @@ -93,10 +93,10 @@ "id": "technical-government", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:02.314599Z", - "iopub.status.busy": "2024-05-15T12:31:02.314113Z", - "iopub.status.idle": "2024-05-15T12:31:02.537991Z", - "shell.execute_reply": "2024-05-15T12:31:02.537249Z" + "iopub.execute_input": "2024-05-15T12:38:08.371594Z", + "iopub.status.busy": "2024-05-15T12:38:08.371079Z", + "iopub.status.idle": "2024-05-15T12:38:08.597223Z", + "shell.execute_reply": "2024-05-15T12:38:08.596542Z" } }, "outputs": [ @@ -243,10 +243,10 @@ "id": "absent-maker", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:02.540787Z", - "iopub.status.busy": "2024-05-15T12:31:02.540376Z", - "iopub.status.idle": "2024-05-15T12:31:13.435988Z", - "shell.execute_reply": "2024-05-15T12:31:13.435371Z" + "iopub.execute_input": "2024-05-15T12:38:08.600162Z", + "iopub.status.busy": "2024-05-15T12:38:08.599740Z", + "iopub.status.idle": "2024-05-15T12:38:19.532578Z", + "shell.execute_reply": "2024-05-15T12:38:19.531845Z" } }, "outputs": [ @@ -254,161 +254,161 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Analyzing a sample of 6920\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Analyzing a sample of 6920\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:from a total population of 10668, this is equivalent to 64.9% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:from a total population of 10668, this is equivalent to 64.9% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Using 3 processes to deduct types.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Using 3 processes to deduct types.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: year\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: year\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: price\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: price\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column year has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column year has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column price has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column price has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: transmission\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: transmission\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: mileage\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: mileage\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: model\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column mileage has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column mileage has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: fuelType\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: fuelType\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: model\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column transmission has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column fuelType has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: tax\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: tax\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column tax has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column tax has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: mpg\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: mpg\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column mpg has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column mpg has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Infering type for: engineSize\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Infering type for: engineSize\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column engineSize has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column engineSize has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column fuelType has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column transmission has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2555:Column model has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2443:Column model has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2555:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2443:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2555:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2443:Finished statistical analysis\u001b[0m\n" ] } ], @@ -437,10 +437,10 @@ "id": "coastal-paragraph", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:13.439193Z", - "iopub.status.busy": "2024-05-15T12:31:13.438672Z", - "iopub.status.idle": "2024-05-15T12:31:13.444013Z", - "shell.execute_reply": "2024-05-15T12:31:13.443379Z" + "iopub.execute_input": "2024-05-15T12:38:19.535763Z", + "iopub.status.busy": "2024-05-15T12:38:19.535442Z", + "iopub.status.idle": "2024-05-15T12:38:19.540827Z", + "shell.execute_reply": "2024-05-15T12:38:19.540187Z" } }, "outputs": [ @@ -545,7 +545,7 @@ " \"unbias_target\": true,\n", " \"seconds_per_mixer\": 21384.0,\n", " \"seconds_per_encoder\": 85536.0,\n", - " \"expected_additional_time\": 10.851930856704712,\n", + " \"expected_additional_time\": 10.889316082000732,\n", " \"time_aim\": 259200,\n", " \"target_weights\": null,\n", " \"positive_domain\": false,\n", @@ -643,10 +643,10 @@ "id": "e03db1b0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:13.446814Z", - "iopub.status.busy": "2024-05-15T12:31:13.446417Z", - "iopub.status.idle": "2024-05-15T12:31:13.451666Z", - "shell.execute_reply": "2024-05-15T12:31:13.451027Z" + "iopub.execute_input": "2024-05-15T12:38:19.543477Z", + "iopub.status.busy": "2024-05-15T12:38:19.543104Z", + "iopub.status.idle": "2024-05-15T12:38:19.548319Z", + "shell.execute_reply": "2024-05-15T12:38:19.547714Z" } }, "outputs": [ @@ -766,10 +766,10 @@ "id": "e30866c1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:13.454205Z", - "iopub.status.busy": "2024-05-15T12:31:13.453822Z", - "iopub.status.idle": "2024-05-15T12:31:13.457126Z", - "shell.execute_reply": "2024-05-15T12:31:13.456554Z" + "iopub.execute_input": "2024-05-15T12:38:19.550981Z", + "iopub.status.busy": "2024-05-15T12:38:19.550558Z", + "iopub.status.idle": "2024-05-15T12:38:19.553867Z", + "shell.execute_reply": "2024-05-15T12:38:19.553338Z" } }, "outputs": [], @@ -828,10 +828,10 @@ "id": "elementary-fusion", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:13.459498Z", - "iopub.status.busy": "2024-05-15T12:31:13.459299Z", - "iopub.status.idle": "2024-05-15T12:31:13.462500Z", - "shell.execute_reply": "2024-05-15T12:31:13.461960Z" + "iopub.execute_input": "2024-05-15T12:38:19.556355Z", + "iopub.status.busy": "2024-05-15T12:38:19.556042Z", + "iopub.status.idle": "2024-05-15T12:38:19.559139Z", + "shell.execute_reply": "2024-05-15T12:38:19.558517Z" } }, "outputs": [], @@ -857,10 +857,10 @@ "id": "inappropriate-james", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:13.464989Z", - "iopub.status.busy": "2024-05-15T12:31:13.464584Z", - "iopub.status.idle": "2024-05-15T12:31:13.820565Z", - "shell.execute_reply": "2024-05-15T12:31:13.819924Z" + "iopub.execute_input": "2024-05-15T12:38:19.561533Z", + "iopub.status.busy": "2024-05-15T12:38:19.561170Z", + "iopub.status.idle": "2024-05-15T12:38:19.929081Z", + "shell.execute_reply": "2024-05-15T12:38:19.928368Z" } }, "outputs": [], @@ -891,10 +891,10 @@ "id": "palestinian-harvey", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:13.823560Z", - "iopub.status.busy": "2024-05-15T12:31:13.823333Z", - "iopub.status.idle": "2024-05-15T12:31:14.973079Z", - "shell.execute_reply": "2024-05-15T12:31:14.972381Z" + "iopub.execute_input": "2024-05-15T12:38:19.932374Z", + "iopub.status.busy": "2024-05-15T12:38:19.932028Z", + "iopub.status.idle": "2024-05-15T12:38:21.057588Z", + "shell.execute_reply": "2024-05-15T12:38:21.056913Z" } }, "outputs": [ @@ -902,133 +902,133 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2555:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2443:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2555:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2443:Finished statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2555: `analyze_data` runtime: 0.43 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2443: `analyze_data` runtime: 0.42 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2555:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2443:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2555: `preprocess` runtime: 0.13 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2443: `preprocess` runtime: 0.13 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2555:Splitting the data into train/test\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2443:Splitting the data into train/test\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2555: `split` runtime: 0.0 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2443: `split` runtime: 0.0 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2555:Preparing sequentially...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2443:Preparing sequentially...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2555:Preparing encoder for year...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2443:Preparing encoder for year...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2555:Preparing encoder for mileage...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2443:Preparing encoder for mileage...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2555:Preparing encoder for tax...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2443:Preparing encoder for tax...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2555:Preparing encoder for mpg...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2443:Preparing encoder for mpg...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2555:Preparing encoder for engineSize...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2443:Preparing encoder for engineSize...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2555:Categories Detected = 1\u001b[0m\n" + "\u001b[32mINFO:lightwood-2443:Categories Detected = 1\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2555:Categories Detected = 1\u001b[0m\n" + "\u001b[32mINFO:lightwood-2443:Categories Detected = 1\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2555:Categories Detected = 1\u001b[0m\n" + "\u001b[32mINFO:lightwood-2443:Categories Detected = 1\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2555: `prepare` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2443: `prepare` runtime: 0.02 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2555:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2443:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2555: `featurize` runtime: 0.57 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2443: `featurize` runtime: 0.55 seconds\u001b[0m\n" ] } ], @@ -1063,10 +1063,10 @@ "id": "silent-dealing", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:14.975668Z", - "iopub.status.busy": "2024-05-15T12:31:14.975462Z", - "iopub.status.idle": "2024-05-15T12:31:14.984083Z", - "shell.execute_reply": "2024-05-15T12:31:14.983497Z" + "iopub.execute_input": "2024-05-15T12:38:21.060331Z", + "iopub.status.busy": "2024-05-15T12:38:21.059995Z", + "iopub.status.idle": "2024-05-15T12:38:21.068779Z", + "shell.execute_reply": "2024-05-15T12:38:21.068148Z" } }, "outputs": [ @@ -1168,10 +1168,10 @@ "id": "superior-mobility", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:14.986569Z", - "iopub.status.busy": "2024-05-15T12:31:14.986205Z", - "iopub.status.idle": "2024-05-15T12:31:14.989579Z", - "shell.execute_reply": "2024-05-15T12:31:14.988928Z" + "iopub.execute_input": "2024-05-15T12:38:21.071345Z", + "iopub.status.busy": "2024-05-15T12:38:21.070979Z", + "iopub.status.idle": "2024-05-15T12:38:21.074376Z", + "shell.execute_reply": "2024-05-15T12:38:21.073715Z" } }, "outputs": [ diff --git a/tutorials/custom_explainer/custom_explainer.html b/tutorials/custom_explainer/custom_explainer.html index e52446cd0..d9b727a84 100644 --- a/tutorials/custom_explainer/custom_explainer.html +++ b/tutorials/custom_explainer/custom_explainer.html @@ -118,8 +118,8 @@

Objective
-INFO:lightwood-2634:No torchvision detected, image helpers not supported.
-INFO:lightwood-2634:No torchvision/pillow detected, image encoder not supported
+INFO:lightwood-2523:No torchvision detected, image helpers not supported.
+INFO:lightwood-2523:No torchvision/pillow detected, image encoder not supported
 

Right now, our newly created analysis block doesn’t do much, apart from returning the info and insights (row_insights and global_insights) exactly as it received them from the previous block.

@@ -328,24 +328,24 @@

Step 4: Final test run
-INFO:type_infer-2634:Analyzing a sample of 222
-INFO:type_infer-2634:from a total population of 225, this is equivalent to 98.7% of your data.
-INFO:type_infer-2634:Infering type for: Population
-INFO:type_infer-2634:Column Population has data type integer
-INFO:type_infer-2634:Infering type for: Area (sq. mi.)
-INFO:type_infer-2634:Column Area (sq. mi.) has data type integer
-INFO:type_infer-2634:Infering type for: Pop. Density 
-INFO:type_infer-2634:Column Pop. Density  has data type float
-INFO:type_infer-2634:Infering type for: GDP ($ per capita)
-INFO:type_infer-2634:Column GDP ($ per capita) has data type integer
-INFO:type_infer-2634:Infering type for: Literacy (%)
-INFO:type_infer-2634:Column Literacy (%) has data type float
-INFO:type_infer-2634:Infering type for: Infant mortality 
-INFO:type_infer-2634:Column Infant mortality  has data type float
-INFO:type_infer-2634:Infering type for: Development Index
-INFO:type_infer-2634:Column Development Index has data type categorical
-INFO:dataprep_ml-2634:Starting statistical analysis
-INFO:dataprep_ml-2634:Finished statistical analysis
+INFO:type_infer-2523:Analyzing a sample of 222
+INFO:type_infer-2523:from a total population of 225, this is equivalent to 98.7% of your data.
+INFO:type_infer-2523:Infering type for: Population
+INFO:type_infer-2523:Column Population has data type integer
+INFO:type_infer-2523:Infering type for: Area (sq. mi.)
+INFO:type_infer-2523:Column Area (sq. mi.) has data type integer
+INFO:type_infer-2523:Infering type for: Pop. Density 
+INFO:type_infer-2523:Column Pop. Density  has data type float
+INFO:type_infer-2523:Infering type for: GDP ($ per capita)
+INFO:type_infer-2523:Column GDP ($ per capita) has data type integer
+INFO:type_infer-2523:Infering type for: Literacy (%)
+INFO:type_infer-2523:Column Literacy (%) has data type float
+INFO:type_infer-2523:Infering type for: Infant mortality 
+INFO:type_infer-2523:Column Infant mortality  has data type float
+INFO:type_infer-2523:Infering type for: Development Index
+INFO:type_infer-2523:Column Development Index has data type categorical
+INFO:dataprep_ml-2523:Starting statistical analysis
+INFO:dataprep_ml-2523:Finished statistical analysis
 

We can take a look at the respective Json AI key just to confirm our newly added analysis block is in there:

@@ -385,32 +385,32 @@

Step 4: Final test run
-INFO:dataprep_ml-2634:[Learn phase 1/8] - Statistical analysis
-INFO:dataprep_ml-2634:Starting statistical analysis
-INFO:dataprep_ml-2634:Finished statistical analysis
-DEBUG:lightwood-2634: `analyze_data` runtime: 0.02 seconds
-INFO:dataprep_ml-2634:[Learn phase 2/8] - Data preprocessing
-INFO:dataprep_ml-2634:Cleaning the data
-DEBUG:lightwood-2634: `preprocess` runtime: 0.01 seconds
-INFO:dataprep_ml-2634:[Learn phase 3/8] - Data splitting
-INFO:dataprep_ml-2634:Splitting the data into train/test
-DEBUG:lightwood-2634: `split` runtime: 0.01 seconds
-INFO:dataprep_ml-2634:[Learn phase 4/8] - Preparing encoders
-DEBUG:dataprep_ml-2634:Preparing sequentially...
-DEBUG:dataprep_ml-2634:Preparing encoder for Population...
-DEBUG:dataprep_ml-2634:Preparing encoder for Area (sq. mi.)...
-DEBUG:dataprep_ml-2634:Preparing encoder for Pop. Density ...
-DEBUG:dataprep_ml-2634:Preparing encoder for GDP ($ per capita)...
-DEBUG:dataprep_ml-2634:Preparing encoder for Literacy (%)...
-DEBUG:dataprep_ml-2634:Preparing encoder for Infant mortality ...
-DEBUG:lightwood-2634:Encoding UNKNOWN categories as index 0
-DEBUG:lightwood-2634: `prepare` runtime: 0.01 seconds
-INFO:dataprep_ml-2634:[Learn phase 5/8] - Feature generation
-INFO:dataprep_ml-2634:Featurizing the data
-DEBUG:lightwood-2634: `featurize` runtime: 0.05 seconds
-INFO:dataprep_ml-2634:[Learn phase 6/8] - Mixer training
-INFO:dataprep_ml-2634:Training the mixers
-WARNING:lightwood-2634:XGBoost running on CPU
+INFO:dataprep_ml-2523:[Learn phase 1/8] - Statistical analysis
+INFO:dataprep_ml-2523:Starting statistical analysis
+INFO:dataprep_ml-2523:Finished statistical analysis
+DEBUG:lightwood-2523: `analyze_data` runtime: 0.02 seconds
+INFO:dataprep_ml-2523:[Learn phase 2/8] - Data preprocessing
+INFO:dataprep_ml-2523:Cleaning the data
+DEBUG:lightwood-2523: `preprocess` runtime: 0.01 seconds
+INFO:dataprep_ml-2523:[Learn phase 3/8] - Data splitting
+INFO:dataprep_ml-2523:Splitting the data into train/test
+DEBUG:lightwood-2523: `split` runtime: 0.01 seconds
+INFO:dataprep_ml-2523:[Learn phase 4/8] - Preparing encoders
+DEBUG:dataprep_ml-2523:Preparing sequentially...
+DEBUG:dataprep_ml-2523:Preparing encoder for Population...
+DEBUG:dataprep_ml-2523:Preparing encoder for Area (sq. mi.)...
+DEBUG:dataprep_ml-2523:Preparing encoder for Pop. Density ...
+DEBUG:dataprep_ml-2523:Preparing encoder for GDP ($ per capita)...
+DEBUG:dataprep_ml-2523:Preparing encoder for Literacy (%)...
+DEBUG:dataprep_ml-2523:Preparing encoder for Infant mortality ...
+DEBUG:lightwood-2523:Encoding UNKNOWN categories as index 0
+DEBUG:lightwood-2523: `prepare` runtime: 0.01 seconds
+INFO:dataprep_ml-2523:[Learn phase 5/8] - Feature generation
+INFO:dataprep_ml-2523:Featurizing the data
+DEBUG:lightwood-2523: `featurize` runtime: 0.05 seconds
+INFO:dataprep_ml-2523:[Learn phase 6/8] - Mixer training
+INFO:dataprep_ml-2523:Training the mixers
+WARNING:lightwood-2523:XGBoost running on CPU
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/torch/amp/grad_scaler.py:131: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available.  Disabling.
   warnings.warn(
 
@@ -420,7 +420,7 @@

Step 4: Final test run
-[12:31:21] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1
+[12:38:27] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1
 
@@ -433,573 +433,573 @@

Step 4: Final test runINFO:lightwood-2634:Loss of 18.69619858264923 with learning rate 0.0001 -INFO:lightwood-2634:Loss of 16.93891429901123 with learning rate 0.0005 -INFO:lightwood-2634:Loss of 16.197376608848572 with learning rate 0.001 -INFO:lightwood-2634:Loss of 16.06481909751892 with learning rate 0.002 -INFO:lightwood-2634:Loss of 16.472004413604736 with learning rate 0.003 -INFO:lightwood-2634:Loss of 18.28026556968689 with learning rate 0.005 -INFO:lightwood-2634:Loss of 26.746760368347168 with learning rate 0.01 -INFO:lightwood-2634:Loss of 101.83524441719055 with learning rate 0.05 -INFO:lightwood-2634:Found learning rate of: 0.002 -INFO:lightwood-2634:Loss @ epoch 1: 1.319209337234497 -INFO:lightwood-2634:Loss @ epoch 2: 1.3220206499099731 -INFO:lightwood-2634:Loss @ epoch 3: 1.3063435554504395 -INFO:lightwood-2634:Loss @ epoch 4: 1.2932535409927368 -INFO:lightwood-2634:Loss @ epoch 5: 1.2823516130447388 -INFO:lightwood-2634:Loss @ epoch 6: 1.2705544233322144 -INFO:lightwood-2634:Loss @ epoch 7: 1.2418551445007324 -INFO:lightwood-2634:Loss @ epoch 8: 1.2208324670791626 -INFO:lightwood-2634:Loss @ epoch 9: 1.197828769683838 -INFO:lightwood-2634:Loss @ epoch 10: 1.1781431436538696 -INFO:lightwood-2634:Loss @ epoch 11: 1.161504864692688 -INFO:lightwood-2634:Loss @ epoch 12: 1.1442031860351562 -INFO:lightwood-2634:Loss @ epoch 13: 1.1058541536331177 -INFO:lightwood-2634:Loss @ epoch 14: 1.0935649871826172 -INFO:lightwood-2634:Loss @ epoch 15: 1.0802721977233887 -INFO:lightwood-2634:Loss @ epoch 16: 1.0696258544921875 -INFO:lightwood-2634:Loss @ epoch 17: 1.0607414245605469 -INFO:lightwood-2634:Loss @ epoch 18: 1.0493905544281006 -INFO:lightwood-2634:Loss @ epoch 19: 1.020617961883545 -INFO:lightwood-2634:Loss @ epoch 20: 1.0081787109375 -INFO:lightwood-2634:Loss @ epoch 21: 0.9943330883979797 -INFO:lightwood-2634:Loss @ epoch 22: 0.9842473268508911 -INFO:lightwood-2634:Loss @ epoch 23: 0.9762145280838013 -INFO:lightwood-2634:Loss @ epoch 24: 0.9653865098953247 -INFO:lightwood-2634:Loss @ epoch 25: 0.9380742311477661 -INFO:lightwood-2634:Loss @ epoch 26: 0.9271669387817383 -INFO:lightwood-2634:Loss @ epoch 27: 0.9147073030471802 -INFO:lightwood-2634:Loss @ epoch 28: 0.9064992070198059 -INFO:lightwood-2634:Loss @ epoch 29: 0.900122344493866 -INFO:lightwood-2634:Loss @ epoch 30: 0.8903173208236694 -INFO:lightwood-2634:Loss @ epoch 31: 0.8648637533187866 -INFO:lightwood-2634:Loss @ epoch 32: 0.8549227118492126 -INFO:lightwood-2634:Loss @ epoch 33: 0.8434366583824158 -INFO:lightwood-2634:Loss @ epoch 34: 0.8365358114242554 -INFO:lightwood-2634:Loss @ epoch 35: 0.831310510635376 -INFO:lightwood-2634:Loss @ epoch 36: 0.8222441673278809 -INFO:lightwood-2634:Loss @ epoch 37: 0.7981722950935364 -INFO:lightwood-2634:Loss @ epoch 38: 0.789170503616333 -INFO:lightwood-2634:Loss @ epoch 39: 0.7787192463874817 -INFO:lightwood-2634:Loss @ epoch 40: 0.7730110287666321 -INFO:lightwood-2634:Loss @ epoch 41: 0.7687097787857056 -INFO:lightwood-2634:Loss @ epoch 42: 0.7602015137672424 -INFO:lightwood-2634:Loss @ epoch 43: 0.7373268604278564 -INFO:lightwood-2634:Loss @ epoch 44: 0.7292225956916809 -INFO:lightwood-2634:Loss @ epoch 45: 0.7197889685630798 -INFO:lightwood-2634:Loss @ epoch 46: 0.7151773571968079 -INFO:lightwood-2634:Loss @ epoch 47: 0.7117206454277039 -INFO:lightwood-2634:Loss @ epoch 48: 0.7038285136222839 -INFO:lightwood-2634:Loss @ epoch 49: 0.682073175907135 -INFO:lightwood-2634:Loss @ epoch 50: 0.674643874168396 -INFO:lightwood-2634:Loss @ epoch 51: 0.6659626364707947 -INFO:lightwood-2634:Loss @ epoch 52: 0.6620772480964661 -INFO:lightwood-2634:Loss @ epoch 53: 0.6590715646743774 -INFO:lightwood-2634:Loss @ epoch 54: 0.6515910625457764 -INFO:lightwood-2634:Loss @ epoch 55: 0.6308077573776245 -INFO:lightwood-2634:Loss @ epoch 56: 0.6241987347602844 -INFO:lightwood-2634:Loss @ epoch 57: 0.6163835525512695 -INFO:lightwood-2634:Loss @ epoch 58: 0.6131908297538757 -INFO:lightwood-2634:Loss @ epoch 59: 0.6106155514717102 -INFO:lightwood-2634:Loss @ epoch 60: 0.6036757826805115 -INFO:lightwood-2634:Loss @ epoch 61: 0.5848420262336731 -INFO:lightwood-2634:Loss @ epoch 62: 0.5793871879577637 -INFO:lightwood-2634:Loss @ epoch 63: 0.5726662278175354 -INFO:lightwood-2634:Loss @ epoch 64: 0.5703645348548889 -INFO:lightwood-2634:Loss @ epoch 65: 0.5684641003608704 -INFO:lightwood-2634:Loss @ epoch 66: 0.5622180104255676 -INFO:lightwood-2634:Loss @ epoch 67: 0.5449516773223877 -INFO:lightwood-2634:Loss @ epoch 68: 0.5401747226715088 -INFO:lightwood-2634:Loss @ epoch 69: 0.5341063141822815 -INFO:lightwood-2634:Loss @ epoch 70: 0.5322306752204895 -INFO:lightwood-2634:Loss @ epoch 71: 0.5305425524711609 -INFO:lightwood-2634:Loss @ epoch 72: 0.5246548056602478 -INFO:lightwood-2634:Loss @ epoch 73: 0.5083626508712769 -INFO:lightwood-2634:Loss @ epoch 74: 0.5040708184242249 -INFO:lightwood-2634:Loss @ epoch 75: 0.49863335490226746 -INFO:lightwood-2634:Loss @ epoch 76: 0.49717265367507935 -INFO:lightwood-2634:Loss @ epoch 77: 0.49564701318740845 -INFO:lightwood-2634:Loss @ epoch 78: 0.4900944232940674 -INFO:lightwood-2634:Loss @ epoch 79: 0.47473227977752686 -INFO:lightwood-2634:Loss @ epoch 80: 0.4708785116672516 -INFO:lightwood-2634:Loss @ epoch 81: 0.46578508615493774 -INFO:lightwood-2634:Loss @ epoch 82: 0.4644494950771332 -INFO:lightwood-2634:Loss @ epoch 83: 0.4629424810409546 -INFO:lightwood-2634:Loss @ epoch 84: 0.4576236307621002 -INFO:lightwood-2634:Loss @ epoch 85: 0.44295966625213623 -INFO:lightwood-2634:Loss @ epoch 86: 0.4393518269062042 -INFO:lightwood-2634:Loss @ epoch 87: 0.4346559941768646 -INFO:lightwood-2634:Loss @ epoch 88: 0.43358123302459717 -INFO:lightwood-2634:Loss @ epoch 89: 0.43231165409088135 -INFO:lightwood-2634:Loss @ epoch 90: 0.42753666639328003 -INFO:lightwood-2634:Loss @ epoch 91: 0.41425880789756775 -INFO:lightwood-2634:Loss @ epoch 92: 0.4113253951072693 -INFO:lightwood-2634:Loss @ epoch 93: 0.4074642062187195 -INFO:lightwood-2634:Loss @ epoch 94: 0.40698081254959106 -INFO:lightwood-2634:Loss @ epoch 95: 0.4062195420265198 -INFO:lightwood-2634:Loss @ epoch 96: 0.4020974636077881 -INFO:lightwood-2634:Loss @ epoch 97: 0.3904534876346588 -INFO:lightwood-2634:Loss @ epoch 98: 0.3879585564136505 -INFO:lightwood-2634:Loss @ epoch 99: 0.38447296619415283 -INFO:lightwood-2634:Loss @ epoch 100: 0.3841344118118286 -INFO:lightwood-2634:Loss @ epoch 101: 0.3833732604980469 -INFO:lightwood-2634:Loss @ epoch 102: 0.37956172227859497 -INFO:lightwood-2634:Loss @ epoch 103: 0.36883822083473206 -INFO:lightwood-2634:Loss @ epoch 104: 0.3664571940898895 -INFO:lightwood-2634:Loss @ epoch 105: 0.36335548758506775 -INFO:lightwood-2634:Loss @ epoch 106: 0.36316758394241333 -INFO:lightwood-2634:Loss @ epoch 107: 0.3625164330005646 -INFO:lightwood-2634:Loss @ epoch 108: 0.359012246131897 -INFO:lightwood-2634:Loss @ epoch 109: 0.34912365674972534 -INFO:lightwood-2634:Loss @ epoch 110: 0.34696850180625916 -INFO:lightwood-2634:Loss @ epoch 111: 0.3441202938556671 -INFO:lightwood-2634:Loss @ epoch 112: 0.34398093819618225 -INFO:lightwood-2634:Loss @ epoch 113: 0.3432472050189972 -INFO:lightwood-2634:Loss @ epoch 114: 0.3399496376514435 -INFO:lightwood-2634:Loss @ epoch 115: 0.3308461308479309 -INFO:lightwood-2634:Loss @ epoch 116: 0.3289041221141815 -INFO:lightwood-2634:Loss @ epoch 117: 0.32627207040786743 -INFO:lightwood-2634:Loss @ epoch 118: 0.3261372447013855 -INFO:lightwood-2634:Loss @ epoch 119: 0.32546231150627136 -INFO:lightwood-2634:Loss @ epoch 120: 0.3224080502986908 -INFO:lightwood-2634:Loss @ epoch 121: 0.314008891582489 -INFO:lightwood-2634:Loss @ epoch 122: 0.31220486760139465 -INFO:lightwood-2634:Loss @ epoch 123: 0.3098214566707611 -INFO:lightwood-2634:Loss @ epoch 124: 0.30979809165000916 -INFO:lightwood-2634:Loss @ epoch 125: 0.3090403079986572 -INFO:lightwood-2634:Loss @ epoch 126: 0.30612480640411377 -INFO:lightwood-2634:Loss @ epoch 127: 0.29819032549858093 -INFO:lightwood-2634:Loss @ epoch 128: 0.29648637771606445 -INFO:lightwood-2634:Loss @ epoch 129: 0.2943042516708374 -INFO:lightwood-2634:Loss @ epoch 130: 0.29420480132102966 -INFO:lightwood-2634:Loss @ epoch 131: 0.2934538424015045 -INFO:lightwood-2634:Loss @ epoch 132: 0.2907505929470062 -INFO:lightwood-2634:Loss @ epoch 133: 0.2835786044597626 -INFO:lightwood-2634:Loss @ epoch 134: 0.28203263878822327 -INFO:lightwood-2634:Loss @ epoch 135: 0.2801313102245331 -INFO:lightwood-2634:Loss @ epoch 136: 0.2801584303379059 -INFO:lightwood-2634:Loss @ epoch 137: 0.27946653962135315 -INFO:lightwood-2634:Loss @ epoch 138: 0.2770102620124817 -INFO:lightwood-2634:Loss @ epoch 139: 0.2705138921737671 -INFO:lightwood-2634:Loss @ epoch 140: 0.2689667046070099 -INFO:lightwood-2634:Loss @ epoch 141: 0.26713839173316956 -INFO:lightwood-2634:Loss @ epoch 142: 0.26722976565361023 -INFO:lightwood-2634:Loss @ epoch 143: 0.26659274101257324 -INFO:lightwood-2634:Loss @ epoch 144: 0.26436734199523926 -INFO:lightwood-2634:Loss @ epoch 145: 0.2585783302783966 -INFO:lightwood-2634:Loss @ epoch 146: 0.25718021392822266 -INFO:lightwood-2634:Loss @ epoch 147: 0.25569674372673035 -INFO:lightwood-2634:Loss @ epoch 148: 0.25572293996810913 -INFO:lightwood-2634:Loss @ epoch 149: 0.254925012588501 -INFO:lightwood-2634:Loss @ epoch 150: 0.25273722410202026 -INFO:lightwood-2634:Loss @ epoch 151: 0.24740025401115417 -INFO:lightwood-2634:Loss @ epoch 152: 0.24594709277153015 -INFO:lightwood-2634:Loss @ epoch 153: 0.2445458471775055 -INFO:lightwood-2634:Loss @ epoch 154: 0.2445453554391861 -INFO:lightwood-2634:Loss @ epoch 155: 0.24368290603160858 -INFO:lightwood-2634:Loss @ epoch 156: 0.2416052669286728 -INFO:lightwood-2634:Loss @ epoch 157: 0.23683445155620575 -INFO:lightwood-2634:Loss @ epoch 158: 0.23561015725135803 -INFO:lightwood-2634:Loss @ epoch 159: 0.2342897355556488 -INFO:lightwood-2634:Loss @ epoch 160: 0.2342986762523651 -INFO:lightwood-2634:Loss @ epoch 161: 0.2334001511335373 -INFO:lightwood-2634:Loss @ epoch 162: 0.23141320049762726 -INFO:lightwood-2634:Loss @ epoch 163: 0.22705355286598206 -INFO:lightwood-2634:Loss @ epoch 164: 0.22583813965320587 -INFO:lightwood-2634:Loss @ epoch 165: 0.22455710172653198 -INFO:lightwood-2634:Loss @ epoch 166: 0.2245052307844162 -INFO:lightwood-2634:Loss @ epoch 167: 0.22359803318977356 -INFO:lightwood-2634:Loss @ epoch 168: 0.22173909842967987 -INFO:lightwood-2634:Loss @ epoch 169: 0.2178291231393814 -INFO:lightwood-2634:Loss @ epoch 170: 0.21670299768447876 -INFO:lightwood-2634:Loss @ epoch 171: 0.21559178829193115 -INFO:lightwood-2634:Loss @ epoch 172: 0.21557293832302094 -INFO:lightwood-2634:Loss @ epoch 173: 0.21463343501091003 -INFO:lightwood-2634:Loss @ epoch 174: 0.21291333436965942 -INFO:lightwood-2634:Loss @ epoch 175: 0.20953477919101715 -INFO:lightwood-2634:Loss @ epoch 176: 0.20840951800346375 -INFO:lightwood-2634:Loss @ epoch 177: 0.20733794569969177 -INFO:lightwood-2634:Loss @ epoch 178: 0.20730628073215485 -INFO:lightwood-2634:Loss @ epoch 179: 0.20635393261909485 -INFO:lightwood-2634:Loss @ epoch 180: 0.20470596849918365 -INFO:lightwood-2634:Loss @ epoch 181: 0.2016059160232544 -INFO:lightwood-2634:Loss @ epoch 182: 0.2004680186510086 -INFO:lightwood-2634:Loss @ epoch 183: 0.1995442509651184 -INFO:lightwood-2634:Loss @ epoch 184: 0.1995476931333542 -INFO:lightwood-2634:Loss @ epoch 185: 0.1985597461462021 -INFO:lightwood-2634:Loss @ epoch 186: 0.19704405963420868 -INFO:lightwood-2634:Loss @ epoch 187: 0.19429439306259155 -INFO:lightwood-2634:Loss @ epoch 188: 0.1931215077638626 -INFO:lightwood-2634:Loss @ epoch 189: 0.19224728643894196 -INFO:lightwood-2634:Loss @ epoch 190: 0.1922168731689453 -INFO:lightwood-2634:Loss @ epoch 191: 0.19120150804519653 -INFO:lightwood-2634:Loss @ epoch 192: 0.1897118091583252 -INFO:lightwood-2634:Loss @ epoch 193: 0.187192901968956 -INFO:lightwood-2634:Loss @ epoch 194: 0.18604235351085663 -INFO:lightwood-2634:Loss @ epoch 195: 0.18525990843772888 -INFO:lightwood-2634:Loss @ epoch 196: 0.18517257273197174 -INFO:lightwood-2634:Loss @ epoch 197: 0.1841844767332077 -INFO:lightwood-2634:Loss @ epoch 198: 0.18275843560695648 -INFO:lightwood-2634:Loss @ epoch 199: 0.18052375316619873 -INFO:lightwood-2634:Loss @ epoch 200: 0.1795222908258438 -INFO:lightwood-2634:Loss @ epoch 201: 0.17878693342208862 -INFO:lightwood-2634:Loss @ epoch 202: 0.17881926894187927 -INFO:lightwood-2634:Loss @ epoch 203: 0.17786364257335663 -INFO:lightwood-2634:Loss @ epoch 204: 0.17654098570346832 -INFO:lightwood-2634:Loss @ epoch 205: 0.17458021640777588 -INFO:lightwood-2634:Loss @ epoch 206: 0.17358489334583282 -INFO:lightwood-2634:Loss @ epoch 207: 0.1728101521730423 -INFO:lightwood-2634:Loss @ epoch 208: 0.17278429865837097 -INFO:lightwood-2634:Loss @ epoch 209: 0.17180292308330536 -INFO:lightwood-2634:Loss @ epoch 210: 0.17050613462924957 -INFO:lightwood-2634:Loss @ epoch 211: 0.16873842477798462 -INFO:lightwood-2634:Loss @ epoch 212: 0.1677248477935791 -INFO:lightwood-2634:Loss @ epoch 213: 0.16707710921764374 -INFO:lightwood-2634:Loss @ epoch 214: 0.1671123504638672 -INFO:lightwood-2634:Loss @ epoch 215: 0.16612616181373596 -INFO:lightwood-2634:Loss @ epoch 216: 0.16487975418567657 -INFO:lightwood-2634:Loss @ epoch 217: 0.16339382529258728 -INFO:lightwood-2634:Loss @ epoch 218: 0.1624278575181961 -INFO:lightwood-2634:Loss @ epoch 219: 0.16172048449516296 -INFO:lightwood-2634:Loss @ epoch 220: 0.16165515780448914 -INFO:lightwood-2634:Loss @ epoch 221: 0.16061937808990479 -INFO:lightwood-2634:Loss @ epoch 222: 0.1594206690788269 -INFO:lightwood-2634:Loss @ epoch 223: 0.15802235901355743 -INFO:lightwood-2634:Loss @ epoch 224: 0.15704363584518433 -INFO:lightwood-2634:Loss @ epoch 225: 0.15640243887901306 -INFO:lightwood-2634:Loss @ epoch 226: 0.15635541081428528 -INFO:lightwood-2634:Loss @ epoch 227: 0.15536457300186157 -INFO:lightwood-2634:Loss @ epoch 228: 0.154209703207016 -INFO:lightwood-2634:Loss @ epoch 229: 0.15291643142700195 -INFO:lightwood-2634:Loss @ epoch 230: 0.15191468596458435 -INFO:lightwood-2634:Loss @ epoch 231: 0.15118129551410675 -INFO:lightwood-2634:Loss @ epoch 232: 0.151133194565773 -INFO:lightwood-2634:Loss @ epoch 233: 0.1501670926809311 -INFO:lightwood-2634:Loss @ epoch 234: 0.14912192523479462 -INFO:lightwood-2634:Loss @ epoch 235: 0.1481197327375412 -INFO:lightwood-2634:Loss @ epoch 236: 0.14712536334991455 -INFO:lightwood-2634:Loss @ epoch 237: 0.14660944044589996 -INFO:lightwood-2634:Loss @ epoch 238: 0.14649781584739685 -INFO:lightwood-2634:Loss @ epoch 239: 0.145524799823761 -INFO:lightwood-2634:Loss @ epoch 240: 0.14443959295749664 -INFO:lightwood-2634:Loss @ epoch 241: 0.14341002702713013 -INFO:lightwood-2634:Loss @ epoch 242: 0.14249812066555023 -INFO:lightwood-2634:Loss @ epoch 243: 0.14185366034507751 -INFO:lightwood-2634:Loss @ epoch 244: 0.1419423222541809 -INFO:lightwood-2634:Loss @ epoch 245: 0.1409326195716858 -INFO:lightwood-2634:Loss @ epoch 246: 0.1399424970149994 -INFO:lightwood-2634:Loss @ epoch 247: 0.13920661807060242 -INFO:lightwood-2634:Loss @ epoch 248: 0.13832959532737732 -INFO:lightwood-2634:Loss @ epoch 249: 0.13784818351268768 -INFO:lightwood-2634:Loss @ epoch 250: 0.13769637048244476 -INFO:lightwood-2634:Loss @ epoch 251: 0.1367887407541275 -INFO:lightwood-2634:Loss @ epoch 252: 0.13588252663612366 -INFO:lightwood-2634:Loss @ epoch 253: 0.13521170616149902 -INFO:lightwood-2634:Loss @ epoch 254: 0.13428467512130737 -INFO:lightwood-2634:Loss @ epoch 255: 0.13384407758712769 -INFO:lightwood-2634:Loss @ epoch 256: 0.13372991979122162 -INFO:lightwood-2634:Loss @ epoch 257: 0.13274942338466644 -INFO:lightwood-2634:Loss @ epoch 258: 0.13186557590961456 -INFO:lightwood-2634:Loss @ epoch 259: 0.13135230541229248 -INFO:lightwood-2634:Loss @ epoch 260: 0.13046588003635406 -INFO:lightwood-2634:Loss @ epoch 261: 0.12980172038078308 -INFO:lightwood-2634:Loss @ epoch 262: 0.12982229888439178 -INFO:lightwood-2634:Loss @ epoch 263: 0.12882845103740692 -INFO:lightwood-2634:Loss @ epoch 264: 0.12798714637756348 -INFO:lightwood-2634:Loss @ epoch 265: 0.12758088111877441 -INFO:lightwood-2634:Loss @ epoch 266: 0.12660843133926392 -INFO:lightwood-2634:Loss @ epoch 267: 0.1261577606201172 -INFO:lightwood-2634:Loss @ epoch 268: 0.1260918229818344 -INFO:lightwood-2634:Loss @ epoch 269: 0.12515920400619507 -INFO:lightwood-2634:Loss @ epoch 270: 0.12436933070421219 -INFO:lightwood-2634:Loss @ epoch 271: 0.12405422329902649 -INFO:lightwood-2634:Loss @ epoch 272: 0.12305409461259842 -INFO:lightwood-2634:Loss @ epoch 273: 0.12272939085960388 -INFO:lightwood-2634:Loss @ epoch 274: 0.12267134338617325 -INFO:lightwood-2634:Loss @ epoch 275: 0.12182944267988205 -INFO:lightwood-2634:Loss @ epoch 276: 0.12103450298309326 -INFO:lightwood-2634:Loss @ epoch 277: 0.12083345651626587 -INFO:lightwood-2634:Loss @ epoch 278: 0.11998103559017181 -INFO:lightwood-2634:Loss @ epoch 279: 0.11937755346298218 -INFO:lightwood-2634:Loss @ epoch 280: 0.1195112019777298 -INFO:lightwood-2634:Loss @ epoch 281: 0.1185888797044754 -INFO:lightwood-2634:Loss @ epoch 282: 0.11789504438638687 -INFO:lightwood-2634:Loss @ epoch 283: 0.11783000081777573 -INFO:lightwood-2634:Loss @ epoch 284: 0.11681754887104034 -INFO:lightwood-2634:Loss @ epoch 285: 0.11649196594953537 -INFO:lightwood-2634:Loss @ epoch 286: 0.11648327857255936 -INFO:lightwood-2634:Loss @ epoch 287: 0.11562418192625046 -INFO:lightwood-2634:Loss @ epoch 288: 0.11489420384168625 -INFO:lightwood-2634:Loss @ epoch 289: 0.11485717445611954 -INFO:lightwood-2634:Loss @ epoch 290: 0.11407709866762161 -INFO:lightwood-2634:Loss @ epoch 291: 0.11348505318164825 -INFO:lightwood-2634:Loss @ epoch 292: 0.11358898878097534 -INFO:lightwood-2634:Loss @ epoch 293: 0.11268813163042068 -INFO:lightwood-2634:Loss @ epoch 294: 0.11207651346921921 -INFO:lightwood-2634:Loss @ epoch 295: 0.11220688372850418 -INFO:lightwood-2634:Loss @ epoch 296: 0.11118005961179733 -INFO:lightwood-2634:Loss @ epoch 297: 0.11089354008436203 -INFO:lightwood-2634:Loss @ epoch 298: 0.11088859289884567 -INFO:lightwood-2634:Loss @ epoch 299: 0.1100316271185875 -INFO:lightwood-2634:Loss @ epoch 300: 0.1093800961971283 -INFO:lightwood-2634:Loss @ epoch 301: 0.10955681651830673 -INFO:lightwood-2634:Loss @ epoch 302: 0.10869839787483215 -INFO:lightwood-2634:Loss @ epoch 303: 0.10815789550542831 -INFO:lightwood-2634:Loss @ epoch 304: 0.10832306742668152 -INFO:lightwood-2634:Loss @ epoch 305: 0.10742544382810593 -INFO:lightwood-2634:Loss @ epoch 306: 0.10682710260152817 -INFO:lightwood-2634:Loss @ epoch 307: 0.10698221623897552 -INFO:lightwood-2634:Loss @ epoch 308: 0.10616409033536911 -INFO:lightwood-2634:Loss @ epoch 309: 0.10568025708198547 -INFO:lightwood-2634:Loss @ epoch 310: 0.10574078559875488 -INFO:lightwood-2634:Loss @ epoch 311: 0.10493995994329453 -INFO:lightwood-2634:Loss @ epoch 312: 0.10438455641269684 -INFO:lightwood-2634:Loss @ epoch 313: 0.10449497401714325 -INFO:lightwood-2634:Loss @ epoch 314: 0.10372297465801239 -INFO:lightwood-2634:Loss @ epoch 315: 0.10320515185594559 -INFO:lightwood-2634:Loss @ epoch 316: 0.10330332815647125 -INFO:lightwood-2634:Loss @ epoch 317: 0.10239537805318832 -INFO:lightwood-2634:Loss @ epoch 318: 0.10185065120458603 -INFO:lightwood-2634:Loss @ epoch 319: 0.10217708349227905 -INFO:lightwood-2634:Loss @ epoch 320: 0.10135672241449356 -INFO:lightwood-2634:Loss @ epoch 321: 0.10087659955024719 -INFO:lightwood-2634:Loss @ epoch 322: 0.10087589174509048 -INFO:lightwood-2634:Loss @ epoch 323: 0.10005565732717514 -INFO:lightwood-2634:Loss @ epoch 324: 0.09949999302625656 -INFO:lightwood-2634:Loss @ epoch 325: 0.09970266371965408 -INFO:lightwood-2634:Loss @ epoch 326: 0.09918338060379028 -INFO:lightwood-2634:Loss @ epoch 327: 0.09840800613164902 -INFO:lightwood-2634:Loss @ epoch 328: 0.09882311522960663 -INFO:lightwood-2634:Loss @ epoch 329: 0.09775345772504807 -INFO:lightwood-2634:Loss @ epoch 330: 0.09729817509651184 -INFO:lightwood-2634:Loss @ epoch 331: 0.09763044863939285 -INFO:lightwood-2634:Loss @ epoch 332: 0.0967596173286438 -INFO:lightwood-2634:Loss @ epoch 333: 0.09642492234706879 -INFO:lightwood-2634:Loss @ epoch 334: 0.09656761586666107 -INFO:lightwood-2634:Loss @ epoch 335: 0.09573261439800262 -INFO:lightwood-2634:Loss @ epoch 336: 0.09523642063140869 -INFO:lightwood-2634:Loss @ epoch 337: 0.09568659961223602 -INFO:lightwood-2634:Loss @ epoch 338: 0.09509280323982239 -INFO:lightwood-2634:Loss @ epoch 339: 0.09460369497537613 -INFO:lightwood-2634:Loss @ epoch 340: 0.09476538747549057 -INFO:lightwood-2634:Loss @ epoch 341: 0.09388881921768188 -INFO:lightwood-2634:Loss @ epoch 342: 0.09349637478590012 -INFO:lightwood-2634:Loss @ epoch 343: 0.09398090839385986 -INFO:lightwood-2634:Loss @ epoch 344: 0.09314301609992981 -INFO:lightwood-2634:Loss @ epoch 345: 0.09281699359416962 -INFO:lightwood-2634:Loss @ epoch 346: 0.09290202707052231 -INFO:lightwood-2634:Loss @ epoch 347: 0.09209518879652023 -INFO:lightwood-2634:Loss @ epoch 348: 0.09171803295612335 -INFO:lightwood-2634:Loss @ epoch 349: 0.09221566468477249 -INFO:lightwood-2634:Loss @ epoch 350: 0.09150414168834686 -INFO:lightwood-2634:Loss @ epoch 351: 0.0910501629114151 -INFO:lightwood-2634:Loss @ epoch 352: 0.09118885546922684 -INFO:lightwood-2634:Loss @ epoch 353: 0.09043896198272705 -INFO:lightwood-2634:Loss @ epoch 354: 0.09006913751363754 -INFO:lightwood-2634:Loss @ epoch 355: 0.09049264341592789 -INFO:lightwood-2634:Loss @ epoch 356: 0.0898597463965416 -INFO:lightwood-2634:Loss @ epoch 357: 0.08943390846252441 -INFO:lightwood-2634:Loss @ epoch 358: 0.0896739661693573 -INFO:lightwood-2634:Loss @ epoch 359: 0.08882326632738113 -INFO:lightwood-2634:Loss @ epoch 360: 0.08850156515836716 -INFO:lightwood-2634:Loss @ epoch 361: 0.08897048979997635 -INFO:lightwood-2634:Loss @ epoch 362: 0.08849596232175827 -INFO:lightwood-2634:Loss @ epoch 363: 0.08790712803602219 -INFO:lightwood-2634:Loss @ epoch 364: 0.08821234852075577 -INFO:lightwood-2634:Loss @ epoch 365: 0.08732891082763672 -INFO:lightwood-2634:Loss @ epoch 366: 0.08704856038093567 -INFO:lightwood-2634:Loss @ epoch 367: 0.08765564113855362 -INFO:lightwood-2634:Loss @ epoch 368: 0.08696923404932022 -INFO:lightwood-2634:Loss @ epoch 369: 0.08649873733520508 -INFO:lightwood-2634:Loss @ epoch 370: 0.08676613122224808 -INFO:lightwood-2634:Loss @ epoch 371: 0.08599219471216202 -INFO:lightwood-2634:Loss @ epoch 372: 0.08565033972263336 -INFO:lightwood-2634:Loss @ epoch 373: 0.08618329465389252 -INFO:lightwood-2634:Loss @ epoch 374: 0.08559156954288483 -INFO:lightwood-2634:Loss @ epoch 375: 0.08509930223226547 -INFO:lightwood-2634:Loss @ epoch 376: 0.08543801307678223 -INFO:lightwood-2634:Loss @ epoch 377: 0.084554523229599 -INFO:lightwood-2634:Loss @ epoch 378: 0.08425222337245941 -INFO:lightwood-2634:Loss @ epoch 379: 0.08496475219726562 -INFO:lightwood-2634:Loss @ epoch 380: 0.08428442478179932 -INFO:lightwood-2634:Loss @ epoch 381: 0.08389458060264587 -INFO:lightwood-2634:Loss @ epoch 382: 0.08416417241096497 -INFO:lightwood-2634:Loss @ epoch 383: 0.08331726491451263 -INFO:lightwood-2634:Loss @ epoch 384: 0.08304726332426071 -INFO:lightwood-2634:Loss @ epoch 385: 0.0837259590625763 -INFO:lightwood-2634:Loss @ epoch 386: 0.08301664143800735 -INFO:lightwood-2634:Loss @ epoch 387: 0.08279375731945038 -INFO:lightwood-2634:Loss @ epoch 388: 0.08285657316446304 -INFO:lightwood-2634:Loss @ epoch 389: 0.0822003185749054 -INFO:lightwood-2634:Loss @ epoch 390: 0.08189017325639725 -INFO:lightwood-2634:Loss @ epoch 391: 0.08244460821151733 -INFO:lightwood-2634:Loss @ epoch 392: 0.08176209777593613 -INFO:lightwood-2634:Loss @ epoch 393: 0.08143384009599686 -INFO:lightwood-2634:Loss @ epoch 394: 0.08153267949819565 -INFO:lightwood-2634:Loss @ epoch 395: 0.08074252307415009 -INFO:lightwood-2634:Loss @ epoch 396: 0.0804641842842102 -INFO:lightwood-2634:Loss @ epoch 397: 0.08112648874521255 -INFO:lightwood-2634:Loss @ epoch 398: 0.0804068073630333 -INFO:lightwood-2634:Loss @ epoch 399: 0.08000007271766663 -INFO:lightwood-2634:Loss @ epoch 400: 0.08030638843774796 -INFO:lightwood-2634:Loss @ epoch 401: 0.07946185022592545 -INFO:lightwood-2634:Loss @ epoch 402: 0.07926557213068008 -INFO:lightwood-2634:Loss @ epoch 403: 0.07995376735925674 -INFO:lightwood-2634:Loss @ epoch 404: 0.07914069294929504 -INFO:lightwood-2634:Loss @ epoch 405: 0.07901032269001007 -INFO:lightwood-2634:Loss @ epoch 406: 0.07910943776369095 -INFO:lightwood-2634:Loss @ epoch 407: 0.07840055227279663 -INFO:lightwood-2634:Loss @ epoch 408: 0.07814037799835205 -INFO:lightwood-2634:Loss @ epoch 409: 0.07874786853790283 -INFO:lightwood-2634:Loss @ epoch 410: 0.07819069921970367 -INFO:lightwood-2634:Loss @ epoch 411: 0.07780887931585312 -INFO:lightwood-2634:Loss @ epoch 412: 0.07802116870880127 -INFO:lightwood-2634:Loss @ epoch 413: 0.0772867277264595 -INFO:lightwood-2634:Loss @ epoch 414: 0.07709880918264389 -INFO:lightwood-2634:Loss @ epoch 415: 0.0776868537068367 -INFO:lightwood-2634:Loss @ epoch 416: 0.07716330885887146 -INFO:lightwood-2634:Loss @ epoch 417: 0.07688125967979431 -INFO:lightwood-2634:Loss @ epoch 418: 0.07698465138673782 -INFO:lightwood-2634:Loss @ epoch 419: 0.0762372612953186 -INFO:lightwood-2634:Loss @ epoch 420: 0.07603802531957626 -INFO:lightwood-2634:Loss @ epoch 421: 0.07675285637378693 -INFO:lightwood-2634:Loss @ epoch 422: 0.07623977214097977 -INFO:lightwood-2634:Loss @ epoch 423: 0.07567108422517776 -INFO:lightwood-2634:Loss @ epoch 424: 0.07615751028060913 -INFO:lightwood-2634:Loss @ epoch 425: 0.07526733726263046 -INFO:lightwood-2634:Loss @ epoch 426: 0.07509555667638779 -INFO:lightwood-2634:Loss @ epoch 427: 0.07569493353366852 -INFO:lightwood-2634:Loss @ epoch 428: 0.07537294924259186 -INFO:lightwood-2634:Loss @ epoch 429: 0.07467805594205856 -INFO:lightwood-2634:Loss @ epoch 430: 0.07528648525476456 -INFO:lightwood-2634:Loss @ epoch 431: 0.07435967028141022 -INFO:lightwood-2634:Loss @ epoch 432: 0.07422596961259842 -INFO:lightwood-2634:Loss @ epoch 433: 0.07503972947597504 -INFO:lightwood-2634:Loss @ epoch 434: 0.07434249669313431 -INFO:lightwood-2634:Loss @ epoch 435: 0.07409335672855377 -INFO:lightwood-2634:Loss @ epoch 436: 0.07420685887336731 -INFO:lightwood-2634:Loss @ epoch 437: 0.0735834538936615 -INFO:lightwood-2634:Loss @ epoch 438: 0.07333341240882874 -INFO:lightwood-2634:Loss @ epoch 439: 0.07391082495450974 -INFO:lightwood-2634:Loss @ epoch 440: 0.07348911464214325 -INFO:lightwood-2634:Loss @ epoch 441: 0.07308389991521835 -INFO:lightwood-2634:Loss @ epoch 442: 0.07328886538743973 -INFO:lightwood-2634:Loss @ epoch 443: 0.0725550651550293 -INFO:lightwood-2634:Loss @ epoch 444: 0.07240220904350281 -INFO:lightwood-2634:Loss @ epoch 445: 0.07308465242385864 -INFO:lightwood-2634:Loss @ epoch 446: 0.07288312911987305 -INFO:lightwood-2634:Loss @ epoch 447: 0.0722663402557373 -INFO:lightwood-2634:Loss @ epoch 448: 0.07264856994152069 -INFO:lightwood-2634:Loss @ epoch 449: 0.07182618230581284 -INFO:lightwood-2634:Loss @ epoch 450: 0.07167533785104752 -INFO:lightwood-2634:Loss @ epoch 451: 0.07241341471672058 -INFO:lightwood-2634:Loss @ epoch 452: 0.07208056002855301 -INFO:lightwood-2634:Loss @ epoch 453: 0.07154601812362671 -INFO:lightwood-2634:Loss @ epoch 454: 0.07190731167793274 -INFO:lightwood-2634:Loss @ epoch 455: 0.0710812360048294 -INFO:lightwood-2634:Loss @ epoch 456: 0.07096673548221588 -INFO:lightwood-2634:Loss @ epoch 457: 0.0718337818980217 -INFO:lightwood-2634:Loss @ epoch 458: 0.07134897261857986 -INFO:lightwood-2634:Loss @ epoch 459: 0.07083813846111298 -INFO:lightwood-2634:Loss @ epoch 460: 0.07124733179807663 -INFO:lightwood-2634:Loss @ epoch 461: 0.0705094262957573 -INFO:lightwood-2634:Loss @ epoch 462: 0.07036501169204712 -INFO:lightwood-2634:Loss @ epoch 463: 0.07111788541078568 -INFO:lightwood-2634:Loss @ epoch 464: 0.07069509476423264 -INFO:lightwood-2634:Loss @ epoch 465: 0.07026039808988571 -INFO:lightwood-2634:Loss @ epoch 466: 0.07056906819343567 -INFO:lightwood-2634:Loss @ epoch 467: 0.06981150805950165 -INFO:lightwood-2634:Loss @ epoch 468: 0.06967213749885559 -INFO:lightwood-2634:Loss @ epoch 469: 0.0704450011253357 -INFO:lightwood-2634:Loss @ epoch 470: 0.07002224773168564 -INFO:lightwood-2634:Loss @ epoch 471: 0.06954890489578247 -INFO:lightwood-2634:Loss @ epoch 472: 0.07001929730176926 -INFO:lightwood-2634:Loss @ epoch 473: 0.06918215751647949 -INFO:lightwood-2634:Loss @ epoch 474: 0.06905678659677505 -INFO:lightwood-2634:Loss @ epoch 475: 0.06994140148162842 -INFO:lightwood-2634:Loss @ epoch 476: 0.06957031041383743 -INFO:lightwood-2634:Loss @ epoch 477: 0.06890591233968735 -INFO:lightwood-2634:Loss @ epoch 478: 0.06942413747310638 -INFO:lightwood-2634:Loss @ epoch 479: 0.068662129342556 -INFO:lightwood-2634:Loss @ epoch 480: 0.0685315951704979 -INFO:lightwood-2634:Loss @ epoch 481: 0.06919320672750473 -INFO:lightwood-2634:Loss @ epoch 482: 0.06884051114320755 -INFO:lightwood-2634:Loss @ epoch 483: 0.06852498650550842 -INFO:lightwood-2634:Loss @ epoch 484: 0.06881336867809296 -INFO:lightwood-2634:Loss @ epoch 485: 0.0681278333067894 -INFO:lightwood-2634:Loss @ epoch 486: 0.06801153719425201 -INFO:lightwood-2634:Loss @ epoch 487: 0.0688665509223938 -INFO:lightwood-2634:Loss @ epoch 488: 0.06848578155040741 -INFO:lightwood-2634:Loss @ epoch 489: 0.0680362805724144 -INFO:lightwood-2634:Loss @ epoch 490: 0.0685308426618576 -INFO:lightwood-2634:Loss @ epoch 491: 0.06770123541355133 -INFO:lightwood-2634:Loss @ epoch 492: 0.06760372221469879 -INFO:lightwood-2634:Loss @ epoch 493: 0.06856502592563629 -INFO:lightwood-2634:Loss @ epoch 494: 0.0679614394903183 -INFO:lightwood-2634:Loss @ epoch 495: 0.0675961971282959 -INFO:lightwood-2634:Loss @ epoch 496: 0.06795072555541992 -INFO:lightwood-2634:Loss @ epoch 497: 0.06731095910072327 -INFO:lightwood-2634:Loss @ epoch 498: 0.06714644283056259 -INFO:lightwood-2634:Loss @ epoch 499: 0.06786693632602692 -INFO:lightwood-2634:Loss @ epoch 500: 0.06758256256580353 -INFO:lightwood-2634:Loss @ epoch 501: 0.06698315590620041 -INFO:lightwood-2634:Loss @ epoch 502: 0.06747950613498688 -INFO:lightwood-2634:Loss @ epoch 503: 0.06655343621969223 -INFO:lightwood-2634:Loss @ epoch 504: 0.06652842462062836 -INFO:lightwood-2634:Loss @ epoch 505: 0.06745205074548721 -INFO:lightwood-2634:Loss @ epoch 506: 0.0668550580739975 -INFO:lightwood-2634:Loss @ epoch 507: 0.06666403263807297 -INFO:lightwood-2634:Loss @ epoch 508: 0.06683854013681412 -INFO:lightwood-2634:Loss @ epoch 509: 0.06626935303211212 -INFO:lightwood-2634:Loss @ epoch 510: 0.06613652408123016 -INFO:lightwood-2634:Loss @ epoch 511: 0.06672576069831848 -INFO:lightwood-2634:Loss @ epoch 512: 0.0666651502251625 -INFO:lightwood-2634:Loss @ epoch 513: 0.06582488119602203 -INFO:lightwood-2634:Loss @ epoch 514: 0.06652247160673141 -INFO:lightwood-2634:Loss @ epoch 515: 0.06558185815811157 -INFO:lightwood-2634:Loss @ epoch 516: 0.0655498206615448 -INFO:lightwood-2634:Loss @ epoch 517: 0.06624851375818253 -INFO:lightwood-2634:Loss @ epoch 518: 0.06601088494062424 -INFO:lightwood-2634:Loss @ epoch 519: 0.06545697897672653 -INFO:lightwood-2634:Loss @ epoch 520: 0.0659414529800415 -INFO:lightwood-2634:Loss @ epoch 521: 0.06516807526350021 -INFO:lightwood-2634:Loss @ epoch 522: 0.06501934677362442 -INFO:lightwood-2634:Loss @ epoch 523: 0.06574487686157227 -INFO:lightwood-2634:Loss @ epoch 524: 0.06553597748279572 -INFO:lightwood-2634:Loss @ epoch 525: 0.06504649668931961 -INFO:lightwood-2634:Loss @ epoch 526: 0.06540416181087494 -INFO:lightwood-2634:Loss @ epoch 527: 0.06479271501302719 -INFO:lightwood-2634:Loss @ epoch 528: 0.06469936668872833 -INFO:lightwood-2634:Loss @ epoch 529: 0.0654490739107132 -INFO:lightwood-2634:Loss @ epoch 530: 0.06509881466627121 -INFO:lightwood-2634:Loss @ epoch 531: 0.06460769474506378 -INFO:lightwood-2634:Loss @ epoch 532: 0.06506450474262238 -INFO:lightwood-2634:Loss @ epoch 533: 0.06425388902425766 -INFO:lightwood-2634:Loss @ epoch 534: 0.06419297307729721 -INFO:lightwood-2634:Loss @ epoch 535: 0.06507144123315811 -INFO:lightwood-2634:Loss @ epoch 536: 0.06475593149662018 -INFO:lightwood-2634:Loss @ epoch 537: 0.0640476867556572 -INFO:lightwood-2634:Loss @ epoch 538: 0.06452148407697678 -INFO:lightwood-2634:Loss @ epoch 539: 0.063988097012043 -INFO:lightwood-2634:Loss @ epoch 540: 0.06390102207660675 -INFO:lightwood-2634:Loss @ epoch 541: 0.06427431106567383 -INFO:lightwood-2634:Loss @ epoch 542: 0.06461699306964874 -INFO:lightwood-2634:Loss @ epoch 543: 0.06366197764873505 -INFO:lightwood-2634:Loss @ epoch 544: 0.06439769268035889 -INFO:lightwood-2634:Loss @ epoch 545: 0.06354749947786331 -INFO:lightwood-2634:Loss @ epoch 546: 0.06346575170755386 -INFO:lightwood-2634:Loss @ epoch 547: 0.06415951251983643 -INFO:lightwood-2634:Loss @ epoch 548: 0.06416907906532288 -INFO:lightwood-2634:Loss @ epoch 549: 0.06350232660770416 -INFO:lightwood-2634:Loss @ epoch 1: 0.03389815576374531 -INFO:lightwood-2634:Loss @ epoch 2: 0.033698095567524435 -INFO:lightwood-2634:Loss @ epoch 3: 0.0372611828148365 -INFO:lightwood-2634:Loss @ epoch 4: 0.0382374182343483 -INFO:lightwood-2634:Loss @ epoch 5: 0.03677316829562187 -INFO:lightwood-2634:Loss @ epoch 6: 0.04194173291325569 -INFO:lightwood-2634:Loss @ epoch 7: 0.04046095162630081 -DEBUG:lightwood-2634: `fit_mixer` runtime: 4.6 seconds -INFO:lightwood-2634:Started fitting XGBoost model +INFO:lightwood-2523:Loss of 18.69619858264923 with learning rate 0.0001 +INFO:lightwood-2523:Loss of 16.93891429901123 with learning rate 0.0005 +INFO:lightwood-2523:Loss of 16.197376608848572 with learning rate 0.001 +INFO:lightwood-2523:Loss of 16.06481909751892 with learning rate 0.002 +INFO:lightwood-2523:Loss of 16.472004413604736 with learning rate 0.003 +INFO:lightwood-2523:Loss of 18.28026556968689 with learning rate 0.005 +INFO:lightwood-2523:Loss of 26.746760368347168 with learning rate 0.01 +INFO:lightwood-2523:Loss of 101.83524441719055 with learning rate 0.05 +INFO:lightwood-2523:Found learning rate of: 0.002 +INFO:lightwood-2523:Loss @ epoch 1: 1.319209337234497 +INFO:lightwood-2523:Loss @ epoch 2: 1.3220206499099731 +INFO:lightwood-2523:Loss @ epoch 3: 1.3063435554504395 +INFO:lightwood-2523:Loss @ epoch 4: 1.2932535409927368 +INFO:lightwood-2523:Loss @ epoch 5: 1.2823516130447388 +INFO:lightwood-2523:Loss @ epoch 6: 1.2705544233322144 +INFO:lightwood-2523:Loss @ epoch 7: 1.2418551445007324 +INFO:lightwood-2523:Loss @ epoch 8: 1.2208324670791626 +INFO:lightwood-2523:Loss @ epoch 9: 1.197828769683838 +INFO:lightwood-2523:Loss @ epoch 10: 1.1781431436538696 +INFO:lightwood-2523:Loss @ epoch 11: 1.161504864692688 +INFO:lightwood-2523:Loss @ epoch 12: 1.1442031860351562 +INFO:lightwood-2523:Loss @ epoch 13: 1.1058541536331177 +INFO:lightwood-2523:Loss @ epoch 14: 1.0935649871826172 +INFO:lightwood-2523:Loss @ epoch 15: 1.0802721977233887 +INFO:lightwood-2523:Loss @ epoch 16: 1.0696258544921875 +INFO:lightwood-2523:Loss @ epoch 17: 1.0607414245605469 +INFO:lightwood-2523:Loss @ epoch 18: 1.0493905544281006 +INFO:lightwood-2523:Loss @ epoch 19: 1.020617961883545 +INFO:lightwood-2523:Loss @ epoch 20: 1.0081787109375 +INFO:lightwood-2523:Loss @ epoch 21: 0.9943330883979797 +INFO:lightwood-2523:Loss @ epoch 22: 0.9842473268508911 +INFO:lightwood-2523:Loss @ epoch 23: 0.9762145280838013 +INFO:lightwood-2523:Loss @ epoch 24: 0.9653865098953247 +INFO:lightwood-2523:Loss @ epoch 25: 0.9380742311477661 +INFO:lightwood-2523:Loss @ epoch 26: 0.9271669387817383 +INFO:lightwood-2523:Loss @ epoch 27: 0.9147073030471802 +INFO:lightwood-2523:Loss @ epoch 28: 0.9064992070198059 +INFO:lightwood-2523:Loss @ epoch 29: 0.900122344493866 +INFO:lightwood-2523:Loss @ epoch 30: 0.8903173208236694 +INFO:lightwood-2523:Loss @ epoch 31: 0.8648637533187866 +INFO:lightwood-2523:Loss @ epoch 32: 0.8549227118492126 +INFO:lightwood-2523:Loss @ epoch 33: 0.8434366583824158 +INFO:lightwood-2523:Loss @ epoch 34: 0.8365358114242554 +INFO:lightwood-2523:Loss @ epoch 35: 0.831310510635376 +INFO:lightwood-2523:Loss @ epoch 36: 0.8222441673278809 +INFO:lightwood-2523:Loss @ epoch 37: 0.7981722950935364 +INFO:lightwood-2523:Loss @ epoch 38: 0.789170503616333 +INFO:lightwood-2523:Loss @ epoch 39: 0.7787192463874817 +INFO:lightwood-2523:Loss @ epoch 40: 0.7730110287666321 +INFO:lightwood-2523:Loss @ epoch 41: 0.7687097787857056 +INFO:lightwood-2523:Loss @ epoch 42: 0.7602015137672424 +INFO:lightwood-2523:Loss @ epoch 43: 0.7373268604278564 +INFO:lightwood-2523:Loss @ epoch 44: 0.7292225956916809 +INFO:lightwood-2523:Loss @ epoch 45: 0.7197889685630798 +INFO:lightwood-2523:Loss @ epoch 46: 0.7151773571968079 +INFO:lightwood-2523:Loss @ epoch 47: 0.7117206454277039 +INFO:lightwood-2523:Loss @ epoch 48: 0.7038285136222839 +INFO:lightwood-2523:Loss @ epoch 49: 0.682073175907135 +INFO:lightwood-2523:Loss @ epoch 50: 0.674643874168396 +INFO:lightwood-2523:Loss @ epoch 51: 0.6659626364707947 +INFO:lightwood-2523:Loss @ epoch 52: 0.6620772480964661 +INFO:lightwood-2523:Loss @ epoch 53: 0.6590715646743774 +INFO:lightwood-2523:Loss @ epoch 54: 0.6515910625457764 +INFO:lightwood-2523:Loss @ epoch 55: 0.6308077573776245 +INFO:lightwood-2523:Loss @ epoch 56: 0.6241987347602844 +INFO:lightwood-2523:Loss @ epoch 57: 0.6163835525512695 +INFO:lightwood-2523:Loss @ epoch 58: 0.6131908297538757 +INFO:lightwood-2523:Loss @ epoch 59: 0.6106155514717102 +INFO:lightwood-2523:Loss @ epoch 60: 0.6036757826805115 +INFO:lightwood-2523:Loss @ epoch 61: 0.5848420262336731 +INFO:lightwood-2523:Loss @ epoch 62: 0.5793871879577637 +INFO:lightwood-2523:Loss @ epoch 63: 0.5726662278175354 +INFO:lightwood-2523:Loss @ epoch 64: 0.5703645348548889 +INFO:lightwood-2523:Loss @ epoch 65: 0.5684641003608704 +INFO:lightwood-2523:Loss @ epoch 66: 0.5622180104255676 +INFO:lightwood-2523:Loss @ epoch 67: 0.5449516773223877 +INFO:lightwood-2523:Loss @ epoch 68: 0.5401747226715088 +INFO:lightwood-2523:Loss @ epoch 69: 0.5341063141822815 +INFO:lightwood-2523:Loss @ epoch 70: 0.5322306752204895 +INFO:lightwood-2523:Loss @ epoch 71: 0.5305425524711609 +INFO:lightwood-2523:Loss @ epoch 72: 0.5246548056602478 +INFO:lightwood-2523:Loss @ epoch 73: 0.5083626508712769 +INFO:lightwood-2523:Loss @ epoch 74: 0.5040708184242249 +INFO:lightwood-2523:Loss @ epoch 75: 0.49863335490226746 +INFO:lightwood-2523:Loss @ epoch 76: 0.49717265367507935 +INFO:lightwood-2523:Loss @ epoch 77: 0.49564701318740845 +INFO:lightwood-2523:Loss @ epoch 78: 0.4900944232940674 +INFO:lightwood-2523:Loss @ epoch 79: 0.47473227977752686 +INFO:lightwood-2523:Loss @ epoch 80: 0.4708785116672516 +INFO:lightwood-2523:Loss @ epoch 81: 0.46578508615493774 +INFO:lightwood-2523:Loss @ epoch 82: 0.4644494950771332 +INFO:lightwood-2523:Loss @ epoch 83: 0.4629424810409546 +INFO:lightwood-2523:Loss @ epoch 84: 0.4576236307621002 +INFO:lightwood-2523:Loss @ epoch 85: 0.44295966625213623 +INFO:lightwood-2523:Loss @ epoch 86: 0.4393518269062042 +INFO:lightwood-2523:Loss @ epoch 87: 0.4346559941768646 +INFO:lightwood-2523:Loss @ epoch 88: 0.43358123302459717 +INFO:lightwood-2523:Loss @ epoch 89: 0.43231165409088135 +INFO:lightwood-2523:Loss @ epoch 90: 0.42753666639328003 +INFO:lightwood-2523:Loss @ epoch 91: 0.41425880789756775 +INFO:lightwood-2523:Loss @ epoch 92: 0.4113253951072693 +INFO:lightwood-2523:Loss @ epoch 93: 0.4074642062187195 +INFO:lightwood-2523:Loss @ epoch 94: 0.40698081254959106 +INFO:lightwood-2523:Loss @ epoch 95: 0.4062195420265198 +INFO:lightwood-2523:Loss @ epoch 96: 0.4020974636077881 +INFO:lightwood-2523:Loss @ epoch 97: 0.3904534876346588 +INFO:lightwood-2523:Loss @ epoch 98: 0.3879585564136505 +INFO:lightwood-2523:Loss @ epoch 99: 0.38447296619415283 +INFO:lightwood-2523:Loss @ epoch 100: 0.3841344118118286 +INFO:lightwood-2523:Loss @ epoch 101: 0.3833732604980469 +INFO:lightwood-2523:Loss @ epoch 102: 0.37956172227859497 +INFO:lightwood-2523:Loss @ epoch 103: 0.36883822083473206 +INFO:lightwood-2523:Loss @ epoch 104: 0.3664571940898895 +INFO:lightwood-2523:Loss @ epoch 105: 0.36335548758506775 +INFO:lightwood-2523:Loss @ epoch 106: 0.36316758394241333 +INFO:lightwood-2523:Loss @ epoch 107: 0.3625164330005646 +INFO:lightwood-2523:Loss @ epoch 108: 0.359012246131897 +INFO:lightwood-2523:Loss @ epoch 109: 0.34912365674972534 +INFO:lightwood-2523:Loss @ epoch 110: 0.34696850180625916 +INFO:lightwood-2523:Loss @ epoch 111: 0.3441202938556671 +INFO:lightwood-2523:Loss @ epoch 112: 0.34398093819618225 +INFO:lightwood-2523:Loss @ epoch 113: 0.3432472050189972 +INFO:lightwood-2523:Loss @ epoch 114: 0.3399496376514435 +INFO:lightwood-2523:Loss @ epoch 115: 0.3308461308479309 +INFO:lightwood-2523:Loss @ epoch 116: 0.3289041221141815 +INFO:lightwood-2523:Loss @ epoch 117: 0.32627207040786743 +INFO:lightwood-2523:Loss @ epoch 118: 0.3261372447013855 +INFO:lightwood-2523:Loss @ epoch 119: 0.32546231150627136 +INFO:lightwood-2523:Loss @ epoch 120: 0.3224080502986908 +INFO:lightwood-2523:Loss @ epoch 121: 0.314008891582489 +INFO:lightwood-2523:Loss @ epoch 122: 0.31220486760139465 +INFO:lightwood-2523:Loss @ epoch 123: 0.3098214566707611 +INFO:lightwood-2523:Loss @ epoch 124: 0.30979809165000916 +INFO:lightwood-2523:Loss @ epoch 125: 0.3090403079986572 +INFO:lightwood-2523:Loss @ epoch 126: 0.30612480640411377 +INFO:lightwood-2523:Loss @ epoch 127: 0.29819032549858093 +INFO:lightwood-2523:Loss @ epoch 128: 0.29648637771606445 +INFO:lightwood-2523:Loss @ epoch 129: 0.2943042516708374 +INFO:lightwood-2523:Loss @ epoch 130: 0.29420480132102966 +INFO:lightwood-2523:Loss @ epoch 131: 0.2934538424015045 +INFO:lightwood-2523:Loss @ epoch 132: 0.2907505929470062 +INFO:lightwood-2523:Loss @ epoch 133: 0.2835786044597626 +INFO:lightwood-2523:Loss @ epoch 134: 0.28203263878822327 +INFO:lightwood-2523:Loss @ epoch 135: 0.2801313102245331 +INFO:lightwood-2523:Loss @ epoch 136: 0.2801584303379059 +INFO:lightwood-2523:Loss @ epoch 137: 0.27946653962135315 +INFO:lightwood-2523:Loss @ epoch 138: 0.2770102620124817 +INFO:lightwood-2523:Loss @ epoch 139: 0.2705138921737671 +INFO:lightwood-2523:Loss @ epoch 140: 0.2689667046070099 +INFO:lightwood-2523:Loss @ epoch 141: 0.26713839173316956 +INFO:lightwood-2523:Loss @ epoch 142: 0.26722976565361023 +INFO:lightwood-2523:Loss @ epoch 143: 0.26659274101257324 +INFO:lightwood-2523:Loss @ epoch 144: 0.26436734199523926 +INFO:lightwood-2523:Loss @ epoch 145: 0.2585783302783966 +INFO:lightwood-2523:Loss @ epoch 146: 0.25718021392822266 +INFO:lightwood-2523:Loss @ epoch 147: 0.25569674372673035 +INFO:lightwood-2523:Loss @ epoch 148: 0.25572293996810913 +INFO:lightwood-2523:Loss @ epoch 149: 0.254925012588501 +INFO:lightwood-2523:Loss @ epoch 150: 0.25273722410202026 +INFO:lightwood-2523:Loss @ epoch 151: 0.24740025401115417 +INFO:lightwood-2523:Loss @ epoch 152: 0.24594709277153015 +INFO:lightwood-2523:Loss @ epoch 153: 0.2445458471775055 +INFO:lightwood-2523:Loss @ epoch 154: 0.2445453554391861 +INFO:lightwood-2523:Loss @ epoch 155: 0.24368290603160858 +INFO:lightwood-2523:Loss @ epoch 156: 0.2416052669286728 +INFO:lightwood-2523:Loss @ epoch 157: 0.23683445155620575 +INFO:lightwood-2523:Loss @ epoch 158: 0.23561015725135803 +INFO:lightwood-2523:Loss @ epoch 159: 0.2342897355556488 +INFO:lightwood-2523:Loss @ epoch 160: 0.2342986762523651 +INFO:lightwood-2523:Loss @ epoch 161: 0.2334001511335373 +INFO:lightwood-2523:Loss @ epoch 162: 0.23141320049762726 +INFO:lightwood-2523:Loss @ epoch 163: 0.22705355286598206 +INFO:lightwood-2523:Loss @ epoch 164: 0.22583813965320587 +INFO:lightwood-2523:Loss @ epoch 165: 0.22455710172653198 +INFO:lightwood-2523:Loss @ epoch 166: 0.2245052307844162 +INFO:lightwood-2523:Loss @ epoch 167: 0.22359803318977356 +INFO:lightwood-2523:Loss @ epoch 168: 0.22173909842967987 +INFO:lightwood-2523:Loss @ epoch 169: 0.2178291231393814 +INFO:lightwood-2523:Loss @ epoch 170: 0.21670299768447876 +INFO:lightwood-2523:Loss @ epoch 171: 0.21559178829193115 +INFO:lightwood-2523:Loss @ epoch 172: 0.21557293832302094 +INFO:lightwood-2523:Loss @ epoch 173: 0.21463343501091003 +INFO:lightwood-2523:Loss @ epoch 174: 0.21291333436965942 +INFO:lightwood-2523:Loss @ epoch 175: 0.20953477919101715 +INFO:lightwood-2523:Loss @ epoch 176: 0.20840951800346375 +INFO:lightwood-2523:Loss @ epoch 177: 0.20733794569969177 +INFO:lightwood-2523:Loss @ epoch 178: 0.20730628073215485 +INFO:lightwood-2523:Loss @ epoch 179: 0.20635393261909485 +INFO:lightwood-2523:Loss @ epoch 180: 0.20470596849918365 +INFO:lightwood-2523:Loss @ epoch 181: 0.2016059160232544 +INFO:lightwood-2523:Loss @ epoch 182: 0.2004680186510086 +INFO:lightwood-2523:Loss @ epoch 183: 0.1995442509651184 +INFO:lightwood-2523:Loss @ epoch 184: 0.1995476931333542 +INFO:lightwood-2523:Loss @ epoch 185: 0.1985597461462021 +INFO:lightwood-2523:Loss @ epoch 186: 0.19704405963420868 +INFO:lightwood-2523:Loss @ epoch 187: 0.19429439306259155 +INFO:lightwood-2523:Loss @ epoch 188: 0.1931215077638626 +INFO:lightwood-2523:Loss @ epoch 189: 0.19224728643894196 +INFO:lightwood-2523:Loss @ epoch 190: 0.1922168731689453 +INFO:lightwood-2523:Loss @ epoch 191: 0.19120150804519653 +INFO:lightwood-2523:Loss @ epoch 192: 0.1897118091583252 +INFO:lightwood-2523:Loss @ epoch 193: 0.187192901968956 +INFO:lightwood-2523:Loss @ epoch 194: 0.18604235351085663 +INFO:lightwood-2523:Loss @ epoch 195: 0.18525990843772888 +INFO:lightwood-2523:Loss @ epoch 196: 0.18517257273197174 +INFO:lightwood-2523:Loss @ epoch 197: 0.1841844767332077 +INFO:lightwood-2523:Loss @ epoch 198: 0.18275843560695648 +INFO:lightwood-2523:Loss @ epoch 199: 0.18052375316619873 +INFO:lightwood-2523:Loss @ epoch 200: 0.1795222908258438 +INFO:lightwood-2523:Loss @ epoch 201: 0.17878693342208862 +INFO:lightwood-2523:Loss @ epoch 202: 0.17881926894187927 +INFO:lightwood-2523:Loss @ epoch 203: 0.17786364257335663 +INFO:lightwood-2523:Loss @ epoch 204: 0.17654098570346832 +INFO:lightwood-2523:Loss @ epoch 205: 0.17458021640777588 +INFO:lightwood-2523:Loss @ epoch 206: 0.17358489334583282 +INFO:lightwood-2523:Loss @ epoch 207: 0.1728101521730423 +INFO:lightwood-2523:Loss @ epoch 208: 0.17278429865837097 +INFO:lightwood-2523:Loss @ epoch 209: 0.17180292308330536 +INFO:lightwood-2523:Loss @ epoch 210: 0.17050613462924957 +INFO:lightwood-2523:Loss @ epoch 211: 0.16873842477798462 +INFO:lightwood-2523:Loss @ epoch 212: 0.1677248477935791 +INFO:lightwood-2523:Loss @ epoch 213: 0.16707710921764374 +INFO:lightwood-2523:Loss @ epoch 214: 0.1671123504638672 +INFO:lightwood-2523:Loss @ epoch 215: 0.16612616181373596 +INFO:lightwood-2523:Loss @ epoch 216: 0.16487975418567657 +INFO:lightwood-2523:Loss @ epoch 217: 0.16339382529258728 +INFO:lightwood-2523:Loss @ epoch 218: 0.1624278575181961 +INFO:lightwood-2523:Loss @ epoch 219: 0.16172048449516296 +INFO:lightwood-2523:Loss @ epoch 220: 0.16165515780448914 +INFO:lightwood-2523:Loss @ epoch 221: 0.16061937808990479 +INFO:lightwood-2523:Loss @ epoch 222: 0.1594206690788269 +INFO:lightwood-2523:Loss @ epoch 223: 0.15802235901355743 +INFO:lightwood-2523:Loss @ epoch 224: 0.15704363584518433 +INFO:lightwood-2523:Loss @ epoch 225: 0.15640243887901306 +INFO:lightwood-2523:Loss @ epoch 226: 0.15635541081428528 +INFO:lightwood-2523:Loss @ epoch 227: 0.15536457300186157 +INFO:lightwood-2523:Loss @ epoch 228: 0.154209703207016 +INFO:lightwood-2523:Loss @ epoch 229: 0.15291643142700195 +INFO:lightwood-2523:Loss @ epoch 230: 0.15191468596458435 +INFO:lightwood-2523:Loss @ epoch 231: 0.15118129551410675 +INFO:lightwood-2523:Loss @ epoch 232: 0.151133194565773 +INFO:lightwood-2523:Loss @ epoch 233: 0.1501670926809311 +INFO:lightwood-2523:Loss @ epoch 234: 0.14912192523479462 +INFO:lightwood-2523:Loss @ epoch 235: 0.1481197327375412 +INFO:lightwood-2523:Loss @ epoch 236: 0.14712536334991455 +INFO:lightwood-2523:Loss @ epoch 237: 0.14660944044589996 +INFO:lightwood-2523:Loss @ epoch 238: 0.14649781584739685 +INFO:lightwood-2523:Loss @ epoch 239: 0.145524799823761 +INFO:lightwood-2523:Loss @ epoch 240: 0.14443959295749664 +INFO:lightwood-2523:Loss @ epoch 241: 0.14341002702713013 +INFO:lightwood-2523:Loss @ epoch 242: 0.14249812066555023 +INFO:lightwood-2523:Loss @ epoch 243: 0.14185366034507751 +INFO:lightwood-2523:Loss @ epoch 244: 0.1419423222541809 +INFO:lightwood-2523:Loss @ epoch 245: 0.1409326195716858 +INFO:lightwood-2523:Loss @ epoch 246: 0.1399424970149994 +INFO:lightwood-2523:Loss @ epoch 247: 0.13920661807060242 +INFO:lightwood-2523:Loss @ epoch 248: 0.13832959532737732 +INFO:lightwood-2523:Loss @ epoch 249: 0.13784818351268768 +INFO:lightwood-2523:Loss @ epoch 250: 0.13769637048244476 +INFO:lightwood-2523:Loss @ epoch 251: 0.1367887407541275 +INFO:lightwood-2523:Loss @ epoch 252: 0.13588252663612366 +INFO:lightwood-2523:Loss @ epoch 253: 0.13521170616149902 +INFO:lightwood-2523:Loss @ epoch 254: 0.13428467512130737 +INFO:lightwood-2523:Loss @ epoch 255: 0.13384407758712769 +INFO:lightwood-2523:Loss @ epoch 256: 0.13372991979122162 +INFO:lightwood-2523:Loss @ epoch 257: 0.13274942338466644 +INFO:lightwood-2523:Loss @ epoch 258: 0.13186557590961456 +INFO:lightwood-2523:Loss @ epoch 259: 0.13135230541229248 +INFO:lightwood-2523:Loss @ epoch 260: 0.13046588003635406 +INFO:lightwood-2523:Loss @ epoch 261: 0.12980172038078308 +INFO:lightwood-2523:Loss @ epoch 262: 0.12982229888439178 +INFO:lightwood-2523:Loss @ epoch 263: 0.12882845103740692 +INFO:lightwood-2523:Loss @ epoch 264: 0.12798714637756348 +INFO:lightwood-2523:Loss @ epoch 265: 0.12758088111877441 +INFO:lightwood-2523:Loss @ epoch 266: 0.12660843133926392 +INFO:lightwood-2523:Loss @ epoch 267: 0.1261577606201172 +INFO:lightwood-2523:Loss @ epoch 268: 0.1260918229818344 +INFO:lightwood-2523:Loss @ epoch 269: 0.12515920400619507 +INFO:lightwood-2523:Loss @ epoch 270: 0.12436933070421219 +INFO:lightwood-2523:Loss @ epoch 271: 0.12405422329902649 +INFO:lightwood-2523:Loss @ epoch 272: 0.12305409461259842 +INFO:lightwood-2523:Loss @ epoch 273: 0.12272939085960388 +INFO:lightwood-2523:Loss @ epoch 274: 0.12267134338617325 +INFO:lightwood-2523:Loss @ epoch 275: 0.12182944267988205 +INFO:lightwood-2523:Loss @ epoch 276: 0.12103450298309326 +INFO:lightwood-2523:Loss @ epoch 277: 0.12083345651626587 +INFO:lightwood-2523:Loss @ epoch 278: 0.11998103559017181 +INFO:lightwood-2523:Loss @ epoch 279: 0.11937755346298218 +INFO:lightwood-2523:Loss @ epoch 280: 0.1195112019777298 +INFO:lightwood-2523:Loss @ epoch 281: 0.1185888797044754 +INFO:lightwood-2523:Loss @ epoch 282: 0.11789504438638687 +INFO:lightwood-2523:Loss @ epoch 283: 0.11783000081777573 +INFO:lightwood-2523:Loss @ epoch 284: 0.11681754887104034 +INFO:lightwood-2523:Loss @ epoch 285: 0.11649196594953537 +INFO:lightwood-2523:Loss @ epoch 286: 0.11648327857255936 +INFO:lightwood-2523:Loss @ epoch 287: 0.11562418192625046 +INFO:lightwood-2523:Loss @ epoch 288: 0.11489420384168625 +INFO:lightwood-2523:Loss @ epoch 289: 0.11485717445611954 +INFO:lightwood-2523:Loss @ epoch 290: 0.11407709866762161 +INFO:lightwood-2523:Loss @ epoch 291: 0.11348505318164825 +INFO:lightwood-2523:Loss @ epoch 292: 0.11358898878097534 +INFO:lightwood-2523:Loss @ epoch 293: 0.11268813163042068 +INFO:lightwood-2523:Loss @ epoch 294: 0.11207651346921921 +INFO:lightwood-2523:Loss @ epoch 295: 0.11220688372850418 +INFO:lightwood-2523:Loss @ epoch 296: 0.11118005961179733 +INFO:lightwood-2523:Loss @ epoch 297: 0.11089354008436203 +INFO:lightwood-2523:Loss @ epoch 298: 0.11088859289884567 +INFO:lightwood-2523:Loss @ epoch 299: 0.1100316271185875 +INFO:lightwood-2523:Loss @ epoch 300: 0.1093800961971283 +INFO:lightwood-2523:Loss @ epoch 301: 0.10955681651830673 +INFO:lightwood-2523:Loss @ epoch 302: 0.10869839787483215 +INFO:lightwood-2523:Loss @ epoch 303: 0.10815789550542831 +INFO:lightwood-2523:Loss @ epoch 304: 0.10832306742668152 +INFO:lightwood-2523:Loss @ epoch 305: 0.10742544382810593 +INFO:lightwood-2523:Loss @ epoch 306: 0.10682710260152817 +INFO:lightwood-2523:Loss @ epoch 307: 0.10698221623897552 +INFO:lightwood-2523:Loss @ epoch 308: 0.10616409033536911 +INFO:lightwood-2523:Loss @ epoch 309: 0.10568025708198547 +INFO:lightwood-2523:Loss @ epoch 310: 0.10574078559875488 +INFO:lightwood-2523:Loss @ epoch 311: 0.10493995994329453 +INFO:lightwood-2523:Loss @ epoch 312: 0.10438455641269684 +INFO:lightwood-2523:Loss @ epoch 313: 0.10449497401714325 +INFO:lightwood-2523:Loss @ epoch 314: 0.10372297465801239 +INFO:lightwood-2523:Loss @ epoch 315: 0.10320515185594559 +INFO:lightwood-2523:Loss @ epoch 316: 0.10330332815647125 +INFO:lightwood-2523:Loss @ epoch 317: 0.10239537805318832 +INFO:lightwood-2523:Loss @ epoch 318: 0.10185065120458603 +INFO:lightwood-2523:Loss @ epoch 319: 0.10217708349227905 +INFO:lightwood-2523:Loss @ epoch 320: 0.10135672241449356 +INFO:lightwood-2523:Loss @ epoch 321: 0.10087659955024719 +INFO:lightwood-2523:Loss @ epoch 322: 0.10087589174509048 +INFO:lightwood-2523:Loss @ epoch 323: 0.10005565732717514 +INFO:lightwood-2523:Loss @ epoch 324: 0.09949999302625656 +INFO:lightwood-2523:Loss @ epoch 325: 0.09970266371965408 +INFO:lightwood-2523:Loss @ epoch 326: 0.09918338060379028 +INFO:lightwood-2523:Loss @ epoch 327: 0.09840800613164902 +INFO:lightwood-2523:Loss @ epoch 328: 0.09882311522960663 +INFO:lightwood-2523:Loss @ epoch 329: 0.09775345772504807 +INFO:lightwood-2523:Loss @ epoch 330: 0.09729817509651184 +INFO:lightwood-2523:Loss @ epoch 331: 0.09763044863939285 +INFO:lightwood-2523:Loss @ epoch 332: 0.0967596173286438 +INFO:lightwood-2523:Loss @ epoch 333: 0.09642492234706879 +INFO:lightwood-2523:Loss @ epoch 334: 0.09656761586666107 +INFO:lightwood-2523:Loss @ epoch 335: 0.09573261439800262 +INFO:lightwood-2523:Loss @ epoch 336: 0.09523642063140869 +INFO:lightwood-2523:Loss @ epoch 337: 0.09568659961223602 +INFO:lightwood-2523:Loss @ epoch 338: 0.09509280323982239 +INFO:lightwood-2523:Loss @ epoch 339: 0.09460369497537613 +INFO:lightwood-2523:Loss @ epoch 340: 0.09476538747549057 +INFO:lightwood-2523:Loss @ epoch 341: 0.09388881921768188 +INFO:lightwood-2523:Loss @ epoch 342: 0.09349637478590012 +INFO:lightwood-2523:Loss @ epoch 343: 0.09398090839385986 +INFO:lightwood-2523:Loss @ epoch 344: 0.09314301609992981 +INFO:lightwood-2523:Loss @ epoch 345: 0.09281699359416962 +INFO:lightwood-2523:Loss @ epoch 346: 0.09290202707052231 +INFO:lightwood-2523:Loss @ epoch 347: 0.09209518879652023 +INFO:lightwood-2523:Loss @ epoch 348: 0.09171803295612335 +INFO:lightwood-2523:Loss @ epoch 349: 0.09221566468477249 +INFO:lightwood-2523:Loss @ epoch 350: 0.09150414168834686 +INFO:lightwood-2523:Loss @ epoch 351: 0.0910501629114151 +INFO:lightwood-2523:Loss @ epoch 352: 0.09118885546922684 +INFO:lightwood-2523:Loss @ epoch 353: 0.09043896198272705 +INFO:lightwood-2523:Loss @ epoch 354: 0.09006913751363754 +INFO:lightwood-2523:Loss @ epoch 355: 0.09049264341592789 +INFO:lightwood-2523:Loss @ epoch 356: 0.0898597463965416 +INFO:lightwood-2523:Loss @ epoch 357: 0.08943390846252441 +INFO:lightwood-2523:Loss @ epoch 358: 0.0896739661693573 +INFO:lightwood-2523:Loss @ epoch 359: 0.08882326632738113 +INFO:lightwood-2523:Loss @ epoch 360: 0.08850156515836716 +INFO:lightwood-2523:Loss @ epoch 361: 0.08897048979997635 +INFO:lightwood-2523:Loss @ epoch 362: 0.08849596232175827 +INFO:lightwood-2523:Loss @ epoch 363: 0.08790712803602219 +INFO:lightwood-2523:Loss @ epoch 364: 0.08821234852075577 +INFO:lightwood-2523:Loss @ epoch 365: 0.08732891082763672 +INFO:lightwood-2523:Loss @ epoch 366: 0.08704856038093567 +INFO:lightwood-2523:Loss @ epoch 367: 0.08765564113855362 +INFO:lightwood-2523:Loss @ epoch 368: 0.08696923404932022 +INFO:lightwood-2523:Loss @ epoch 369: 0.08649873733520508 +INFO:lightwood-2523:Loss @ epoch 370: 0.08676613122224808 +INFO:lightwood-2523:Loss @ epoch 371: 0.08599219471216202 +INFO:lightwood-2523:Loss @ epoch 372: 0.08565033972263336 +INFO:lightwood-2523:Loss @ epoch 373: 0.08618329465389252 +INFO:lightwood-2523:Loss @ epoch 374: 0.08559156954288483 +INFO:lightwood-2523:Loss @ epoch 375: 0.08509930223226547 +INFO:lightwood-2523:Loss @ epoch 376: 0.08543801307678223 +INFO:lightwood-2523:Loss @ epoch 377: 0.084554523229599 +INFO:lightwood-2523:Loss @ epoch 378: 0.08425222337245941 +INFO:lightwood-2523:Loss @ epoch 379: 0.08496475219726562 +INFO:lightwood-2523:Loss @ epoch 380: 0.08428442478179932 +INFO:lightwood-2523:Loss @ epoch 381: 0.08389458060264587 +INFO:lightwood-2523:Loss @ epoch 382: 0.08416417241096497 +INFO:lightwood-2523:Loss @ epoch 383: 0.08331726491451263 +INFO:lightwood-2523:Loss @ epoch 384: 0.08304726332426071 +INFO:lightwood-2523:Loss @ epoch 385: 0.0837259590625763 +INFO:lightwood-2523:Loss @ epoch 386: 0.08301664143800735 +INFO:lightwood-2523:Loss @ epoch 387: 0.08279375731945038 +INFO:lightwood-2523:Loss @ epoch 388: 0.08285657316446304 +INFO:lightwood-2523:Loss @ epoch 389: 0.0822003185749054 +INFO:lightwood-2523:Loss @ epoch 390: 0.08189017325639725 +INFO:lightwood-2523:Loss @ epoch 391: 0.08244460821151733 +INFO:lightwood-2523:Loss @ epoch 392: 0.08176209777593613 +INFO:lightwood-2523:Loss @ epoch 393: 0.08143384009599686 +INFO:lightwood-2523:Loss @ epoch 394: 0.08153267949819565 +INFO:lightwood-2523:Loss @ epoch 395: 0.08074252307415009 +INFO:lightwood-2523:Loss @ epoch 396: 0.0804641842842102 +INFO:lightwood-2523:Loss @ epoch 397: 0.08112648874521255 +INFO:lightwood-2523:Loss @ epoch 398: 0.0804068073630333 +INFO:lightwood-2523:Loss @ epoch 399: 0.08000007271766663 +INFO:lightwood-2523:Loss @ epoch 400: 0.08030638843774796 +INFO:lightwood-2523:Loss @ epoch 401: 0.07946185022592545 +INFO:lightwood-2523:Loss @ epoch 402: 0.07926557213068008 +INFO:lightwood-2523:Loss @ epoch 403: 0.07995376735925674 +INFO:lightwood-2523:Loss @ epoch 404: 0.07914069294929504 +INFO:lightwood-2523:Loss @ epoch 405: 0.07901032269001007 +INFO:lightwood-2523:Loss @ epoch 406: 0.07910943776369095 +INFO:lightwood-2523:Loss @ epoch 407: 0.07840055227279663 +INFO:lightwood-2523:Loss @ epoch 408: 0.07814037799835205 +INFO:lightwood-2523:Loss @ epoch 409: 0.07874786853790283 +INFO:lightwood-2523:Loss @ epoch 410: 0.07819069921970367 +INFO:lightwood-2523:Loss @ epoch 411: 0.07780887931585312 +INFO:lightwood-2523:Loss @ epoch 412: 0.07802116870880127 +INFO:lightwood-2523:Loss @ epoch 413: 0.0772867277264595 +INFO:lightwood-2523:Loss @ epoch 414: 0.07709880918264389 +INFO:lightwood-2523:Loss @ epoch 415: 0.0776868537068367 +INFO:lightwood-2523:Loss @ epoch 416: 0.07716330885887146 +INFO:lightwood-2523:Loss @ epoch 417: 0.07688125967979431 +INFO:lightwood-2523:Loss @ epoch 418: 0.07698465138673782 +INFO:lightwood-2523:Loss @ epoch 419: 0.0762372612953186 +INFO:lightwood-2523:Loss @ epoch 420: 0.07603802531957626 +INFO:lightwood-2523:Loss @ epoch 421: 0.07675285637378693 +INFO:lightwood-2523:Loss @ epoch 422: 0.07623977214097977 +INFO:lightwood-2523:Loss @ epoch 423: 0.07567108422517776 +INFO:lightwood-2523:Loss @ epoch 424: 0.07615751028060913 +INFO:lightwood-2523:Loss @ epoch 425: 0.07526733726263046 +INFO:lightwood-2523:Loss @ epoch 426: 0.07509555667638779 +INFO:lightwood-2523:Loss @ epoch 427: 0.07569493353366852 +INFO:lightwood-2523:Loss @ epoch 428: 0.07537294924259186 +INFO:lightwood-2523:Loss @ epoch 429: 0.07467805594205856 +INFO:lightwood-2523:Loss @ epoch 430: 0.07528648525476456 +INFO:lightwood-2523:Loss @ epoch 431: 0.07435967028141022 +INFO:lightwood-2523:Loss @ epoch 432: 0.07422596961259842 +INFO:lightwood-2523:Loss @ epoch 433: 0.07503972947597504 +INFO:lightwood-2523:Loss @ epoch 434: 0.07434249669313431 +INFO:lightwood-2523:Loss @ epoch 435: 0.07409335672855377 +INFO:lightwood-2523:Loss @ epoch 436: 0.07420685887336731 +INFO:lightwood-2523:Loss @ epoch 437: 0.0735834538936615 +INFO:lightwood-2523:Loss @ epoch 438: 0.07333341240882874 +INFO:lightwood-2523:Loss @ epoch 439: 0.07391082495450974 +INFO:lightwood-2523:Loss @ epoch 440: 0.07348911464214325 +INFO:lightwood-2523:Loss @ epoch 441: 0.07308389991521835 +INFO:lightwood-2523:Loss @ epoch 442: 0.07328886538743973 +INFO:lightwood-2523:Loss @ epoch 443: 0.0725550651550293 +INFO:lightwood-2523:Loss @ epoch 444: 0.07240220904350281 +INFO:lightwood-2523:Loss @ epoch 445: 0.07308465242385864 +INFO:lightwood-2523:Loss @ epoch 446: 0.07288312911987305 +INFO:lightwood-2523:Loss @ epoch 447: 0.0722663402557373 +INFO:lightwood-2523:Loss @ epoch 448: 0.07264856994152069 +INFO:lightwood-2523:Loss @ epoch 449: 0.07182618230581284 +INFO:lightwood-2523:Loss @ epoch 450: 0.07167533785104752 +INFO:lightwood-2523:Loss @ epoch 451: 0.07241341471672058 +INFO:lightwood-2523:Loss @ epoch 452: 0.07208056002855301 +INFO:lightwood-2523:Loss @ epoch 453: 0.07154601812362671 +INFO:lightwood-2523:Loss @ epoch 454: 0.07190731167793274 +INFO:lightwood-2523:Loss @ epoch 455: 0.0710812360048294 +INFO:lightwood-2523:Loss @ epoch 456: 0.07096673548221588 +INFO:lightwood-2523:Loss @ epoch 457: 0.0718337818980217 +INFO:lightwood-2523:Loss @ epoch 458: 0.07134897261857986 +INFO:lightwood-2523:Loss @ epoch 459: 0.07083813846111298 +INFO:lightwood-2523:Loss @ epoch 460: 0.07124733179807663 +INFO:lightwood-2523:Loss @ epoch 461: 0.0705094262957573 +INFO:lightwood-2523:Loss @ epoch 462: 0.07036501169204712 +INFO:lightwood-2523:Loss @ epoch 463: 0.07111788541078568 +INFO:lightwood-2523:Loss @ epoch 464: 0.07069509476423264 +INFO:lightwood-2523:Loss @ epoch 465: 0.07026039808988571 +INFO:lightwood-2523:Loss @ epoch 466: 0.07056906819343567 +INFO:lightwood-2523:Loss @ epoch 467: 0.06981150805950165 +INFO:lightwood-2523:Loss @ epoch 468: 0.06967213749885559 +INFO:lightwood-2523:Loss @ epoch 469: 0.0704450011253357 +INFO:lightwood-2523:Loss @ epoch 470: 0.07002224773168564 +INFO:lightwood-2523:Loss @ epoch 471: 0.06954890489578247 +INFO:lightwood-2523:Loss @ epoch 472: 0.07001929730176926 +INFO:lightwood-2523:Loss @ epoch 473: 0.06918215751647949 +INFO:lightwood-2523:Loss @ epoch 474: 0.06905678659677505 +INFO:lightwood-2523:Loss @ epoch 475: 0.06994140148162842 +INFO:lightwood-2523:Loss @ epoch 476: 0.06957031041383743 +INFO:lightwood-2523:Loss @ epoch 477: 0.06890591233968735 +INFO:lightwood-2523:Loss @ epoch 478: 0.06942413747310638 +INFO:lightwood-2523:Loss @ epoch 479: 0.068662129342556 +INFO:lightwood-2523:Loss @ epoch 480: 0.0685315951704979 +INFO:lightwood-2523:Loss @ epoch 481: 0.06919320672750473 +INFO:lightwood-2523:Loss @ epoch 482: 0.06884051114320755 +INFO:lightwood-2523:Loss @ epoch 483: 0.06852498650550842 +INFO:lightwood-2523:Loss @ epoch 484: 0.06881336867809296 +INFO:lightwood-2523:Loss @ epoch 485: 0.0681278333067894 +INFO:lightwood-2523:Loss @ epoch 486: 0.06801153719425201 +INFO:lightwood-2523:Loss @ epoch 487: 0.0688665509223938 +INFO:lightwood-2523:Loss @ epoch 488: 0.06848578155040741 +INFO:lightwood-2523:Loss @ epoch 489: 0.0680362805724144 +INFO:lightwood-2523:Loss @ epoch 490: 0.0685308426618576 +INFO:lightwood-2523:Loss @ epoch 491: 0.06770123541355133 +INFO:lightwood-2523:Loss @ epoch 492: 0.06760372221469879 +INFO:lightwood-2523:Loss @ epoch 493: 0.06856502592563629 +INFO:lightwood-2523:Loss @ epoch 494: 0.0679614394903183 +INFO:lightwood-2523:Loss @ epoch 495: 0.0675961971282959 +INFO:lightwood-2523:Loss @ epoch 496: 0.06795072555541992 +INFO:lightwood-2523:Loss @ epoch 497: 0.06731095910072327 +INFO:lightwood-2523:Loss @ epoch 498: 0.06714644283056259 +INFO:lightwood-2523:Loss @ epoch 499: 0.06786693632602692 +INFO:lightwood-2523:Loss @ epoch 500: 0.06758256256580353 +INFO:lightwood-2523:Loss @ epoch 501: 0.06698315590620041 +INFO:lightwood-2523:Loss @ epoch 502: 0.06747950613498688 +INFO:lightwood-2523:Loss @ epoch 503: 0.06655343621969223 +INFO:lightwood-2523:Loss @ epoch 504: 0.06652842462062836 +INFO:lightwood-2523:Loss @ epoch 505: 0.06745205074548721 +INFO:lightwood-2523:Loss @ epoch 506: 0.0668550580739975 +INFO:lightwood-2523:Loss @ epoch 507: 0.06666403263807297 +INFO:lightwood-2523:Loss @ epoch 508: 0.06683854013681412 +INFO:lightwood-2523:Loss @ epoch 509: 0.06626935303211212 +INFO:lightwood-2523:Loss @ epoch 510: 0.06613652408123016 +INFO:lightwood-2523:Loss @ epoch 511: 0.06672576069831848 +INFO:lightwood-2523:Loss @ epoch 512: 0.0666651502251625 +INFO:lightwood-2523:Loss @ epoch 513: 0.06582488119602203 +INFO:lightwood-2523:Loss @ epoch 514: 0.06652247160673141 +INFO:lightwood-2523:Loss @ epoch 515: 0.06558185815811157 +INFO:lightwood-2523:Loss @ epoch 516: 0.0655498206615448 +INFO:lightwood-2523:Loss @ epoch 517: 0.06624851375818253 +INFO:lightwood-2523:Loss @ epoch 518: 0.06601088494062424 +INFO:lightwood-2523:Loss @ epoch 519: 0.06545697897672653 +INFO:lightwood-2523:Loss @ epoch 520: 0.0659414529800415 +INFO:lightwood-2523:Loss @ epoch 521: 0.06516807526350021 +INFO:lightwood-2523:Loss @ epoch 522: 0.06501934677362442 +INFO:lightwood-2523:Loss @ epoch 523: 0.06574487686157227 +INFO:lightwood-2523:Loss @ epoch 524: 0.06553597748279572 +INFO:lightwood-2523:Loss @ epoch 525: 0.06504649668931961 +INFO:lightwood-2523:Loss @ epoch 526: 0.06540416181087494 +INFO:lightwood-2523:Loss @ epoch 527: 0.06479271501302719 +INFO:lightwood-2523:Loss @ epoch 528: 0.06469936668872833 +INFO:lightwood-2523:Loss @ epoch 529: 0.0654490739107132 +INFO:lightwood-2523:Loss @ epoch 530: 0.06509881466627121 +INFO:lightwood-2523:Loss @ epoch 531: 0.06460769474506378 +INFO:lightwood-2523:Loss @ epoch 532: 0.06506450474262238 +INFO:lightwood-2523:Loss @ epoch 533: 0.06425388902425766 +INFO:lightwood-2523:Loss @ epoch 534: 0.06419297307729721 +INFO:lightwood-2523:Loss @ epoch 535: 0.06507144123315811 +INFO:lightwood-2523:Loss @ epoch 536: 0.06475593149662018 +INFO:lightwood-2523:Loss @ epoch 537: 0.0640476867556572 +INFO:lightwood-2523:Loss @ epoch 538: 0.06452148407697678 +INFO:lightwood-2523:Loss @ epoch 539: 0.063988097012043 +INFO:lightwood-2523:Loss @ epoch 540: 0.06390102207660675 +INFO:lightwood-2523:Loss @ epoch 541: 0.06427431106567383 +INFO:lightwood-2523:Loss @ epoch 542: 0.06461699306964874 +INFO:lightwood-2523:Loss @ epoch 543: 0.06366197764873505 +INFO:lightwood-2523:Loss @ epoch 544: 0.06439769268035889 +INFO:lightwood-2523:Loss @ epoch 545: 0.06354749947786331 +INFO:lightwood-2523:Loss @ epoch 546: 0.06346575170755386 +INFO:lightwood-2523:Loss @ epoch 547: 0.06415951251983643 +INFO:lightwood-2523:Loss @ epoch 548: 0.06416907906532288 +INFO:lightwood-2523:Loss @ epoch 549: 0.06350232660770416 +INFO:lightwood-2523:Loss @ epoch 1: 0.03389815576374531 +INFO:lightwood-2523:Loss @ epoch 2: 0.033698095567524435 +INFO:lightwood-2523:Loss @ epoch 3: 0.0372611828148365 +INFO:lightwood-2523:Loss @ epoch 4: 0.0382374182343483 +INFO:lightwood-2523:Loss @ epoch 5: 0.03677316829562187 +INFO:lightwood-2523:Loss @ epoch 6: 0.04194173291325569 +INFO:lightwood-2523:Loss @ epoch 7: 0.04046095162630081 +DEBUG:lightwood-2523: `fit_mixer` runtime: 4.59 seconds +INFO:lightwood-2523:Started fitting XGBoost model

@@ -1063,45 +1063,45 @@

Step 4: Final test run
-INFO:lightwood-2634:XGBoost mixer does not have a `partial_fit` implementation
-DEBUG:lightwood-2634: `fit_mixer` runtime: 0.05 seconds
-WARNING:dataprep_ml-2634:Exception: Unspported categorical type for regression when training mixer: <lightwood.mixer.regression.Regression object at 0x7fc16cbd3c70>
-INFO:lightwood-2634:Started fitting RandomForest model
-INFO:lightwood-2634:RandomForest based correlation of (train data): 1.0
-INFO:lightwood-2634:RandomForest based correlation of (dev data): 1.0
-DEBUG:lightwood-2634: `fit_mixer` runtime: 0.14 seconds
-INFO:dataprep_ml-2634:Ensembling the mixer
-INFO:lightwood-2634:Mixer: Neural got accuracy: 0.922
-INFO:lightwood-2634:Mixer: XGBoostMixer got accuracy: 1.0
-INFO:lightwood-2634:Mixer: RandomForest got accuracy: 1.0
-INFO:lightwood-2634:Picked best mixer: RandomForest
-DEBUG:lightwood-2634: `fit` runtime: 4.83 seconds
-INFO:dataprep_ml-2634:[Learn phase 7/8] - Ensemble analysis
-INFO:dataprep_ml-2634:Analyzing the ensemble of mixers
-INFO:lightwood-2634:The block ICP is now running its analyze() method
+INFO:lightwood-2523:XGBoost mixer does not have a `partial_fit` implementation
+DEBUG:lightwood-2523: `fit_mixer` runtime: 0.05 seconds
+WARNING:dataprep_ml-2523:Exception: Unspported categorical type for regression when training mixer: <lightwood.mixer.regression.Regression object at 0x7ff43a6c0a90>
+INFO:lightwood-2523:Started fitting RandomForest model
+INFO:lightwood-2523:RandomForest based correlation of (train data): 1.0
+INFO:lightwood-2523:RandomForest based correlation of (dev data): 1.0
+DEBUG:lightwood-2523: `fit_mixer` runtime: 0.13 seconds
+INFO:dataprep_ml-2523:Ensembling the mixer
+INFO:lightwood-2523:Mixer: Neural got accuracy: 0.922
+INFO:lightwood-2523:Mixer: XGBoostMixer got accuracy: 1.0
+INFO:lightwood-2523:Mixer: RandomForest got accuracy: 1.0
+INFO:lightwood-2523:Picked best mixer: RandomForest
+DEBUG:lightwood-2523: `fit` runtime: 4.81 seconds
+INFO:dataprep_ml-2523:[Learn phase 7/8] - Ensemble analysis
+INFO:dataprep_ml-2523:Analyzing the ensemble of mixers
+INFO:lightwood-2523:The block ICP is now running its analyze() method
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/sklearn/preprocessing/_encoders.py:975: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.
   warnings.warn(
-INFO:lightwood-2634:The block ConfStats is now running its analyze() method
-INFO:lightwood-2634:The block AccStats is now running its analyze() method
-INFO:lightwood-2634:The block PermutationFeatureImportance is now running its analyze() method
-INFO:lightwood-2634:[PFI] Using a random sample (1000 rows out of 22).
-INFO:lightwood-2634:[PFI] Set to consider first 10 columns out of 6: ['Population', 'Area (sq. mi.)', 'Pop. Density ', 'GDP ($ per capita)', 'Literacy (%)', 'Infant mortality '].
-INFO:lightwood-2634:The block ModelCorrelationHeatmap is now running its analyze() method
-DEBUG:lightwood-2634: `analyze_ensemble` runtime: 0.2 seconds
-INFO:dataprep_ml-2634:[Learn phase 8/8] - Adjustment on validation requested
-INFO:dataprep_ml-2634:Updating the mixers
+INFO:lightwood-2523:The block ConfStats is now running its analyze() method
+INFO:lightwood-2523:The block AccStats is now running its analyze() method
+INFO:lightwood-2523:The block PermutationFeatureImportance is now running its analyze() method
+INFO:lightwood-2523:[PFI] Using a random sample (1000 rows out of 22).
+INFO:lightwood-2523:[PFI] Set to consider first 10 columns out of 6: ['Population', 'Area (sq. mi.)', 'Pop. Density ', 'GDP ($ per capita)', 'Literacy (%)', 'Infant mortality '].
+INFO:lightwood-2523:The block ModelCorrelationHeatmap is now running its analyze() method
+DEBUG:lightwood-2523: `analyze_ensemble` runtime: 0.21 seconds
+INFO:dataprep_ml-2523:[Learn phase 8/8] - Adjustment on validation requested
+INFO:dataprep_ml-2523:Updating the mixers
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/torch/amp/grad_scaler.py:131: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available.  Disabling.
   warnings.warn(
-INFO:lightwood-2634:Loss @ epoch 1: 0.033697554686417185
-INFO:lightwood-2634:Loss @ epoch 2: 0.033981192080924906
-INFO:lightwood-2634:Loss @ epoch 3: 0.037426896315688886
-INFO:lightwood-2634:Loss @ epoch 4: 0.04428015494098266
-INFO:lightwood-2634:Loss @ epoch 5: 0.061086510928968586
-INFO:lightwood-2634:Loss @ epoch 6: 0.03466159128583968
-INFO:lightwood-2634:Loss @ epoch 7: 0.03769115870818496
-INFO:lightwood-2634:XGBoost mixer does not have a `partial_fit` implementation
-DEBUG:lightwood-2634: `adjust` runtime: 0.06 seconds
-DEBUG:lightwood-2634: `learn` runtime: 5.2 seconds
+INFO:lightwood-2523:Loss @ epoch 1: 0.033697554686417185
+INFO:lightwood-2523:Loss @ epoch 2: 0.033981192080924906
+INFO:lightwood-2523:Loss @ epoch 3: 0.037426896315688886
+INFO:lightwood-2523:Loss @ epoch 4: 0.04428015494098266
+INFO:lightwood-2523:Loss @ epoch 5: 0.061086510928968586
+INFO:lightwood-2523:Loss @ epoch 6: 0.03466159128583968
+INFO:lightwood-2523:Loss @ epoch 7: 0.03769115870818496
+INFO:lightwood-2523:XGBoost mixer does not have a `partial_fit` implementation
+DEBUG:lightwood-2523: `adjust` runtime: 0.06 seconds
+DEBUG:lightwood-2523: `learn` runtime: 5.19 seconds
 

Finally, we can visualize the mixer correlation matrix:

diff --git a/tutorials/custom_explainer/custom_explainer.ipynb b/tutorials/custom_explainer/custom_explainer.ipynb index 2a591918b..51b9eca01 100644 --- a/tutorials/custom_explainer/custom_explainer.ipynb +++ b/tutorials/custom_explainer/custom_explainer.ipynb @@ -30,10 +30,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:18.040567Z", - "iopub.status.busy": "2024-05-15T12:31:18.040367Z", - "iopub.status.idle": "2024-05-15T12:31:20.849208Z", - "shell.execute_reply": "2024-05-15T12:31:20.848432Z" + "iopub.execute_input": "2024-05-15T12:38:24.174629Z", + "iopub.status.busy": "2024-05-15T12:38:24.174420Z", + "iopub.status.idle": "2024-05-15T12:38:27.049213Z", + "shell.execute_reply": "2024-05-15T12:38:27.048475Z" } }, "outputs": [ @@ -41,14 +41,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] }, { @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:20.852043Z", - "iopub.status.busy": "2024-05-15T12:31:20.851597Z", - "iopub.status.idle": "2024-05-15T12:31:20.862285Z", - "shell.execute_reply": "2024-05-15T12:31:20.861787Z" + "iopub.execute_input": "2024-05-15T12:38:27.052314Z", + "iopub.status.busy": "2024-05-15T12:38:27.051670Z", + "iopub.status.idle": "2024-05-15T12:38:27.062358Z", + "shell.execute_reply": "2024-05-15T12:38:27.061815Z" } }, "outputs": [], @@ -116,17 +116,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:20.864582Z", - "iopub.status.busy": "2024-05-15T12:31:20.864386Z", - "iopub.status.idle": "2024-05-15T12:31:20.868451Z", - "shell.execute_reply": "2024-05-15T12:31:20.867794Z" + "iopub.execute_input": "2024-05-15T12:38:27.064834Z", + "iopub.status.busy": "2024-05-15T12:38:27.064464Z", + "iopub.status.idle": "2024-05-15T12:38:27.068750Z", + "shell.execute_reply": "2024-05-15T12:38:27.068172Z" } }, "outputs": [ { "data": { "text/plain": [ - "<__main__.ModelCorrelationHeatmap at 0x7fc16da6f8e0>" + "<__main__.ModelCorrelationHeatmap at 0x7ff43c2f7fd0>" ] }, "execution_count": 3, @@ -152,10 +152,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:20.870934Z", - "iopub.status.busy": "2024-05-15T12:31:20.870625Z", - "iopub.status.idle": "2024-05-15T12:31:20.874327Z", - "shell.execute_reply": "2024-05-15T12:31:20.873715Z" + "iopub.execute_input": "2024-05-15T12:38:27.071262Z", + "iopub.status.busy": "2024-05-15T12:38:27.070912Z", + "iopub.status.idle": "2024-05-15T12:38:27.074715Z", + "shell.execute_reply": "2024-05-15T12:38:27.074047Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:20.876862Z", - "iopub.status.busy": "2024-05-15T12:31:20.876391Z", - "iopub.status.idle": "2024-05-15T12:31:20.880194Z", - "shell.execute_reply": "2024-05-15T12:31:20.879585Z" + "iopub.execute_input": "2024-05-15T12:38:27.077209Z", + "iopub.status.busy": "2024-05-15T12:38:27.076853Z", + "iopub.status.idle": "2024-05-15T12:38:27.080672Z", + "shell.execute_reply": "2024-05-15T12:38:27.080021Z" } }, "outputs": [], @@ -230,10 +230,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:20.882736Z", - "iopub.status.busy": "2024-05-15T12:31:20.882391Z", - "iopub.status.idle": "2024-05-15T12:31:20.886907Z", - "shell.execute_reply": "2024-05-15T12:31:20.886269Z" + "iopub.execute_input": "2024-05-15T12:38:27.083193Z", + "iopub.status.busy": "2024-05-15T12:38:27.082821Z", + "iopub.status.idle": "2024-05-15T12:38:27.087268Z", + "shell.execute_reply": "2024-05-15T12:38:27.086667Z" } }, "outputs": [ @@ -327,10 +327,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:20.889827Z", - "iopub.status.busy": "2024-05-15T12:31:20.889272Z", - "iopub.status.idle": "2024-05-15T12:31:21.057701Z", - "shell.execute_reply": "2024-05-15T12:31:21.057163Z" + "iopub.execute_input": "2024-05-15T12:38:27.089762Z", + "iopub.status.busy": "2024-05-15T12:38:27.089581Z", + "iopub.status.idle": "2024-05-15T12:38:27.268872Z", + "shell.execute_reply": "2024-05-15T12:38:27.268207Z" } }, "outputs": [ @@ -338,126 +338,126 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Analyzing a sample of 222\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Analyzing a sample of 222\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:from a total population of 225, this is equivalent to 98.7% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:from a total population of 225, this is equivalent to 98.7% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Infering type for: Population\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Infering type for: Population\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Column Population has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Column Population has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Infering type for: Area (sq. mi.)\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Infering type for: Area (sq. mi.)\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Column Area (sq. mi.) has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Column Area (sq. mi.) has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Infering type for: Pop. Density \u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Infering type for: Pop. Density \u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Column Pop. Density has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Column Pop. Density has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Infering type for: GDP ($ per capita)\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Infering type for: GDP ($ per capita)\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Column GDP ($ per capita) has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Column GDP ($ per capita) has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Infering type for: Literacy (%)\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Infering type for: Literacy (%)\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Column Literacy (%) has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Column Literacy (%) has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Infering type for: Infant mortality \u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Infering type for: Infant mortality \u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Column Infant mortality has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Column Infant mortality has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Infering type for: Development Index\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Infering type for: Development Index\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2634:Column Development Index has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2523:Column Development Index has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Finished statistical analysis\u001b[0m\n" ] } ], @@ -498,10 +498,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:21.060354Z", - "iopub.status.busy": "2024-05-15T12:31:21.059889Z", - "iopub.status.idle": "2024-05-15T12:31:21.064194Z", - "shell.execute_reply": "2024-05-15T12:31:21.063539Z" + "iopub.execute_input": "2024-05-15T12:38:27.271840Z", + "iopub.status.busy": "2024-05-15T12:38:27.271355Z", + "iopub.status.idle": "2024-05-15T12:38:27.275829Z", + "shell.execute_reply": "2024-05-15T12:38:27.275222Z" } }, "outputs": [ @@ -532,10 +532,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:21.066779Z", - "iopub.status.busy": "2024-05-15T12:31:21.066406Z", - "iopub.status.idle": "2024-05-15T12:31:26.612292Z", - "shell.execute_reply": "2024-05-15T12:31:26.611639Z" + "iopub.execute_input": "2024-05-15T12:38:27.278438Z", + "iopub.status.busy": "2024-05-15T12:38:27.277985Z", + "iopub.status.idle": "2024-05-15T12:38:32.815207Z", + "shell.execute_reply": "2024-05-15T12:38:32.814580Z" }, "scrolled": false }, @@ -544,182 +544,182 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Finished statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `analyze_data` runtime: 0.02 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `analyze_data` runtime: 0.02 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `preprocess` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `preprocess` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 3/8] - Data splitting\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 3/8] - Data splitting\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Splitting the data into train/test\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Splitting the data into train/test\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `split` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `split` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2634:Preparing sequentially...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2523:Preparing sequentially...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2634:Preparing encoder for Population...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2523:Preparing encoder for Population...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2634:Preparing encoder for Area (sq. mi.)...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2523:Preparing encoder for Area (sq. mi.)...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2634:Preparing encoder for Pop. Density ...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2523:Preparing encoder for Pop. Density ...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2634:Preparing encoder for GDP ($ per capita)...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2523:Preparing encoder for GDP ($ per capita)...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2634:Preparing encoder for Literacy (%)...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2523:Preparing encoder for Literacy (%)...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2634:Preparing encoder for Infant mortality ...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2523:Preparing encoder for Infant mortality ...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634:Encoding UNKNOWN categories as index 0\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523:Encoding UNKNOWN categories as index 0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `prepare` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `prepare` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 5/8] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 5/8] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `featurize` runtime: 0.05 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `featurize` runtime: 0.05 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 6/8] - Mixer training\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 6/8] - Mixer training\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Training the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Training the mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2634:XGBoost running on CPU\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2523:XGBoost running on CPU\u001b[0m\n" ] }, { @@ -734,7 +734,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[12:31:21] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n" + "[12:38:27] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n" ] }, { @@ -746,3969 +746,3969 @@ "Consider using one of the following signatures instead:\n", "\taddcmul_(Tensor tensor1, Tensor tensor2, *, Number value) (Triggered internally at ../torch/csrc/utils/python_arg_parser.cpp:1578.)\n", " exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)\n", - "\u001b[32mINFO:lightwood-2634:Loss of 18.69619858264923 with learning rate 0.0001\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 18.69619858264923 with learning rate 0.0001\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss of 16.93891429901123 with learning rate 0.0005\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 16.93891429901123 with learning rate 0.0005\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss of 16.197376608848572 with learning rate 0.001\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 16.197376608848572 with learning rate 0.001\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss of 16.06481909751892 with learning rate 0.002\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 16.06481909751892 with learning rate 0.002\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss of 16.472004413604736 with learning rate 0.003\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 16.472004413604736 with learning rate 0.003\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss of 18.28026556968689 with learning rate 0.005\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 18.28026556968689 with learning rate 0.005\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss of 26.746760368347168 with learning rate 0.01\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 26.746760368347168 with learning rate 0.01\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss of 101.83524441719055 with learning rate 0.05\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss of 101.83524441719055 with learning rate 0.05\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Found learning rate of: 0.002\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Found learning rate of: 0.002\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 1: 1.319209337234497\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 1: 1.319209337234497\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 2: 1.3220206499099731\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 2: 1.3220206499099731\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 3: 1.3063435554504395\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 3: 1.3063435554504395\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 4: 1.2932535409927368\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 4: 1.2932535409927368\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 5: 1.2823516130447388\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 5: 1.2823516130447388\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 6: 1.2705544233322144\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 6: 1.2705544233322144\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 7: 1.2418551445007324\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 7: 1.2418551445007324\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 8: 1.2208324670791626\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 8: 1.2208324670791626\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 9: 1.197828769683838\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 9: 1.197828769683838\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 10: 1.1781431436538696\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 10: 1.1781431436538696\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 11: 1.161504864692688\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 11: 1.161504864692688\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 12: 1.1442031860351562\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 12: 1.1442031860351562\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 13: 1.1058541536331177\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 13: 1.1058541536331177\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 14: 1.0935649871826172\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 14: 1.0935649871826172\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 15: 1.0802721977233887\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 15: 1.0802721977233887\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 16: 1.0696258544921875\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 16: 1.0696258544921875\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 17: 1.0607414245605469\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 17: 1.0607414245605469\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 18: 1.0493905544281006\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 18: 1.0493905544281006\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 19: 1.020617961883545\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 19: 1.020617961883545\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 20: 1.0081787109375\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 20: 1.0081787109375\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 21: 0.9943330883979797\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 21: 0.9943330883979797\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 22: 0.9842473268508911\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 22: 0.9842473268508911\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 23: 0.9762145280838013\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 23: 0.9762145280838013\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 24: 0.9653865098953247\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 24: 0.9653865098953247\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 25: 0.9380742311477661\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 25: 0.9380742311477661\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 26: 0.9271669387817383\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 26: 0.9271669387817383\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 27: 0.9147073030471802\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 27: 0.9147073030471802\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 28: 0.9064992070198059\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 28: 0.9064992070198059\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 29: 0.900122344493866\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 29: 0.900122344493866\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 30: 0.8903173208236694\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 30: 0.8903173208236694\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 31: 0.8648637533187866\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 31: 0.8648637533187866\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 32: 0.8549227118492126\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 32: 0.8549227118492126\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 33: 0.8434366583824158\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 33: 0.8434366583824158\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 34: 0.8365358114242554\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 34: 0.8365358114242554\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 35: 0.831310510635376\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 35: 0.831310510635376\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 36: 0.8222441673278809\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 36: 0.8222441673278809\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 37: 0.7981722950935364\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 37: 0.7981722950935364\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 38: 0.789170503616333\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 38: 0.789170503616333\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 39: 0.7787192463874817\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 39: 0.7787192463874817\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 40: 0.7730110287666321\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 40: 0.7730110287666321\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 41: 0.7687097787857056\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 41: 0.7687097787857056\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 42: 0.7602015137672424\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 42: 0.7602015137672424\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 43: 0.7373268604278564\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 43: 0.7373268604278564\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 44: 0.7292225956916809\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 44: 0.7292225956916809\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 45: 0.7197889685630798\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 45: 0.7197889685630798\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 46: 0.7151773571968079\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 46: 0.7151773571968079\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 47: 0.7117206454277039\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 47: 0.7117206454277039\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 48: 0.7038285136222839\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 48: 0.7038285136222839\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 49: 0.682073175907135\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 49: 0.682073175907135\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 50: 0.674643874168396\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 50: 0.674643874168396\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 51: 0.6659626364707947\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 51: 0.6659626364707947\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 52: 0.6620772480964661\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 52: 0.6620772480964661\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 53: 0.6590715646743774\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 53: 0.6590715646743774\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 54: 0.6515910625457764\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 54: 0.6515910625457764\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 55: 0.6308077573776245\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 55: 0.6308077573776245\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 56: 0.6241987347602844\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 56: 0.6241987347602844\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 57: 0.6163835525512695\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 57: 0.6163835525512695\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 58: 0.6131908297538757\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 58: 0.6131908297538757\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 59: 0.6106155514717102\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 59: 0.6106155514717102\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 60: 0.6036757826805115\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 60: 0.6036757826805115\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 61: 0.5848420262336731\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 61: 0.5848420262336731\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 62: 0.5793871879577637\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 62: 0.5793871879577637\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 63: 0.5726662278175354\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 63: 0.5726662278175354\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 64: 0.5703645348548889\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 64: 0.5703645348548889\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 65: 0.5684641003608704\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 65: 0.5684641003608704\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 66: 0.5622180104255676\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 66: 0.5622180104255676\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 67: 0.5449516773223877\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 67: 0.5449516773223877\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 68: 0.5401747226715088\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 68: 0.5401747226715088\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 69: 0.5341063141822815\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 69: 0.5341063141822815\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 70: 0.5322306752204895\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 70: 0.5322306752204895\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 71: 0.5305425524711609\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 71: 0.5305425524711609\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 72: 0.5246548056602478\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 72: 0.5246548056602478\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 73: 0.5083626508712769\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 73: 0.5083626508712769\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 74: 0.5040708184242249\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 74: 0.5040708184242249\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 75: 0.49863335490226746\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 75: 0.49863335490226746\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 76: 0.49717265367507935\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 76: 0.49717265367507935\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 77: 0.49564701318740845\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 77: 0.49564701318740845\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 78: 0.4900944232940674\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 78: 0.4900944232940674\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 79: 0.47473227977752686\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 79: 0.47473227977752686\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 80: 0.4708785116672516\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 80: 0.4708785116672516\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 81: 0.46578508615493774\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 81: 0.46578508615493774\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 82: 0.4644494950771332\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 82: 0.4644494950771332\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 83: 0.4629424810409546\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 83: 0.4629424810409546\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 84: 0.4576236307621002\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 84: 0.4576236307621002\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 85: 0.44295966625213623\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 85: 0.44295966625213623\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 86: 0.4393518269062042\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 86: 0.4393518269062042\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 87: 0.4346559941768646\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 87: 0.4346559941768646\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 88: 0.43358123302459717\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 88: 0.43358123302459717\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 89: 0.43231165409088135\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 89: 0.43231165409088135\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 90: 0.42753666639328003\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 90: 0.42753666639328003\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 91: 0.41425880789756775\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 91: 0.41425880789756775\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 92: 0.4113253951072693\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 92: 0.4113253951072693\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 93: 0.4074642062187195\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 93: 0.4074642062187195\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 94: 0.40698081254959106\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 94: 0.40698081254959106\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 95: 0.4062195420265198\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 95: 0.4062195420265198\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 96: 0.4020974636077881\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 96: 0.4020974636077881\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 97: 0.3904534876346588\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 97: 0.3904534876346588\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 98: 0.3879585564136505\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 98: 0.3879585564136505\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 99: 0.38447296619415283\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 99: 0.38447296619415283\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 100: 0.3841344118118286\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 100: 0.3841344118118286\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 101: 0.3833732604980469\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 101: 0.3833732604980469\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 102: 0.37956172227859497\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 102: 0.37956172227859497\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 103: 0.36883822083473206\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 103: 0.36883822083473206\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 104: 0.3664571940898895\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 104: 0.3664571940898895\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 105: 0.36335548758506775\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 105: 0.36335548758506775\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 106: 0.36316758394241333\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 106: 0.36316758394241333\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 107: 0.3625164330005646\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 107: 0.3625164330005646\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 108: 0.359012246131897\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 108: 0.359012246131897\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 109: 0.34912365674972534\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 109: 0.34912365674972534\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 110: 0.34696850180625916\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 110: 0.34696850180625916\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 111: 0.3441202938556671\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 111: 0.3441202938556671\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 112: 0.34398093819618225\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 112: 0.34398093819618225\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 113: 0.3432472050189972\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 113: 0.3432472050189972\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 114: 0.3399496376514435\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 114: 0.3399496376514435\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 115: 0.3308461308479309\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 115: 0.3308461308479309\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 116: 0.3289041221141815\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 116: 0.3289041221141815\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 117: 0.32627207040786743\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 117: 0.32627207040786743\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 118: 0.3261372447013855\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 118: 0.3261372447013855\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 119: 0.32546231150627136\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 119: 0.32546231150627136\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 120: 0.3224080502986908\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 120: 0.3224080502986908\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 121: 0.314008891582489\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 121: 0.314008891582489\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 122: 0.31220486760139465\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 122: 0.31220486760139465\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 123: 0.3098214566707611\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 123: 0.3098214566707611\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 124: 0.30979809165000916\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 124: 0.30979809165000916\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 125: 0.3090403079986572\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 125: 0.3090403079986572\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 126: 0.30612480640411377\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 126: 0.30612480640411377\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 127: 0.29819032549858093\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 127: 0.29819032549858093\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 128: 0.29648637771606445\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 128: 0.29648637771606445\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 129: 0.2943042516708374\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 129: 0.2943042516708374\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 130: 0.29420480132102966\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 130: 0.29420480132102966\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 131: 0.2934538424015045\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 131: 0.2934538424015045\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 132: 0.2907505929470062\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 132: 0.2907505929470062\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 133: 0.2835786044597626\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 133: 0.2835786044597626\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 134: 0.28203263878822327\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 134: 0.28203263878822327\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 135: 0.2801313102245331\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 135: 0.2801313102245331\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 136: 0.2801584303379059\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 136: 0.2801584303379059\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 137: 0.27946653962135315\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 137: 0.27946653962135315\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 138: 0.2770102620124817\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 138: 0.2770102620124817\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 139: 0.2705138921737671\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 139: 0.2705138921737671\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 140: 0.2689667046070099\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 140: 0.2689667046070099\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 141: 0.26713839173316956\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 141: 0.26713839173316956\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 142: 0.26722976565361023\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 142: 0.26722976565361023\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 143: 0.26659274101257324\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 143: 0.26659274101257324\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 144: 0.26436734199523926\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 144: 0.26436734199523926\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 145: 0.2585783302783966\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 145: 0.2585783302783966\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 146: 0.25718021392822266\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 146: 0.25718021392822266\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 147: 0.25569674372673035\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 147: 0.25569674372673035\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 148: 0.25572293996810913\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 148: 0.25572293996810913\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 149: 0.254925012588501\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 149: 0.254925012588501\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 150: 0.25273722410202026\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 150: 0.25273722410202026\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 151: 0.24740025401115417\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 151: 0.24740025401115417\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 152: 0.24594709277153015\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 152: 0.24594709277153015\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 153: 0.2445458471775055\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 153: 0.2445458471775055\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 154: 0.2445453554391861\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 154: 0.2445453554391861\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 155: 0.24368290603160858\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 155: 0.24368290603160858\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 156: 0.2416052669286728\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 156: 0.2416052669286728\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 157: 0.23683445155620575\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 157: 0.23683445155620575\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 158: 0.23561015725135803\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 158: 0.23561015725135803\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 159: 0.2342897355556488\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 159: 0.2342897355556488\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 160: 0.2342986762523651\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 160: 0.2342986762523651\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 161: 0.2334001511335373\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 161: 0.2334001511335373\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 162: 0.23141320049762726\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 162: 0.23141320049762726\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 163: 0.22705355286598206\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 163: 0.22705355286598206\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 164: 0.22583813965320587\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 164: 0.22583813965320587\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 165: 0.22455710172653198\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 165: 0.22455710172653198\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 166: 0.2245052307844162\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 166: 0.2245052307844162\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 167: 0.22359803318977356\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 167: 0.22359803318977356\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 168: 0.22173909842967987\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 168: 0.22173909842967987\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 169: 0.2178291231393814\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 169: 0.2178291231393814\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 170: 0.21670299768447876\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 170: 0.21670299768447876\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 171: 0.21559178829193115\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 171: 0.21559178829193115\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 172: 0.21557293832302094\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 172: 0.21557293832302094\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 173: 0.21463343501091003\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 173: 0.21463343501091003\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 174: 0.21291333436965942\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 174: 0.21291333436965942\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 175: 0.20953477919101715\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 175: 0.20953477919101715\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 176: 0.20840951800346375\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 176: 0.20840951800346375\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 177: 0.20733794569969177\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 177: 0.20733794569969177\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 178: 0.20730628073215485\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 178: 0.20730628073215485\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 179: 0.20635393261909485\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 179: 0.20635393261909485\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 180: 0.20470596849918365\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 180: 0.20470596849918365\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 181: 0.2016059160232544\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 181: 0.2016059160232544\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 182: 0.2004680186510086\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 182: 0.2004680186510086\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 183: 0.1995442509651184\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 183: 0.1995442509651184\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 184: 0.1995476931333542\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 184: 0.1995476931333542\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 185: 0.1985597461462021\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 185: 0.1985597461462021\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 186: 0.19704405963420868\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 186: 0.19704405963420868\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 187: 0.19429439306259155\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 187: 0.19429439306259155\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 188: 0.1931215077638626\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 188: 0.1931215077638626\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 189: 0.19224728643894196\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 189: 0.19224728643894196\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 190: 0.1922168731689453\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 190: 0.1922168731689453\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 191: 0.19120150804519653\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 191: 0.19120150804519653\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 192: 0.1897118091583252\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 192: 0.1897118091583252\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 193: 0.187192901968956\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 193: 0.187192901968956\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 194: 0.18604235351085663\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 194: 0.18604235351085663\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 195: 0.18525990843772888\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 195: 0.18525990843772888\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 196: 0.18517257273197174\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 196: 0.18517257273197174\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 197: 0.1841844767332077\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 197: 0.1841844767332077\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 198: 0.18275843560695648\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 198: 0.18275843560695648\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 199: 0.18052375316619873\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 199: 0.18052375316619873\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 200: 0.1795222908258438\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 200: 0.1795222908258438\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 201: 0.17878693342208862\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 201: 0.17878693342208862\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 202: 0.17881926894187927\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 202: 0.17881926894187927\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 203: 0.17786364257335663\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 203: 0.17786364257335663\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 204: 0.17654098570346832\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 204: 0.17654098570346832\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 205: 0.17458021640777588\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 205: 0.17458021640777588\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 206: 0.17358489334583282\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 206: 0.17358489334583282\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 207: 0.1728101521730423\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 207: 0.1728101521730423\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 208: 0.17278429865837097\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 208: 0.17278429865837097\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 209: 0.17180292308330536\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 209: 0.17180292308330536\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 210: 0.17050613462924957\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 210: 0.17050613462924957\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 211: 0.16873842477798462\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 211: 0.16873842477798462\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 212: 0.1677248477935791\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 212: 0.1677248477935791\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 213: 0.16707710921764374\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 213: 0.16707710921764374\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 214: 0.1671123504638672\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 214: 0.1671123504638672\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 215: 0.16612616181373596\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 215: 0.16612616181373596\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 216: 0.16487975418567657\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 216: 0.16487975418567657\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 217: 0.16339382529258728\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 217: 0.16339382529258728\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 218: 0.1624278575181961\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 218: 0.1624278575181961\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 219: 0.16172048449516296\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 219: 0.16172048449516296\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 220: 0.16165515780448914\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 220: 0.16165515780448914\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 221: 0.16061937808990479\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 221: 0.16061937808990479\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 222: 0.1594206690788269\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 222: 0.1594206690788269\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 223: 0.15802235901355743\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 223: 0.15802235901355743\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 224: 0.15704363584518433\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 224: 0.15704363584518433\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 225: 0.15640243887901306\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 225: 0.15640243887901306\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 226: 0.15635541081428528\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 226: 0.15635541081428528\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 227: 0.15536457300186157\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 227: 0.15536457300186157\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 228: 0.154209703207016\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 228: 0.154209703207016\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 229: 0.15291643142700195\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 229: 0.15291643142700195\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 230: 0.15191468596458435\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 230: 0.15191468596458435\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 231: 0.15118129551410675\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 231: 0.15118129551410675\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 232: 0.151133194565773\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 232: 0.151133194565773\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 233: 0.1501670926809311\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 233: 0.1501670926809311\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 234: 0.14912192523479462\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 234: 0.14912192523479462\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 235: 0.1481197327375412\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 235: 0.1481197327375412\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 236: 0.14712536334991455\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 236: 0.14712536334991455\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 237: 0.14660944044589996\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 237: 0.14660944044589996\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 238: 0.14649781584739685\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 238: 0.14649781584739685\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 239: 0.145524799823761\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 239: 0.145524799823761\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 240: 0.14443959295749664\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 240: 0.14443959295749664\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 241: 0.14341002702713013\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 241: 0.14341002702713013\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 242: 0.14249812066555023\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 242: 0.14249812066555023\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 243: 0.14185366034507751\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 243: 0.14185366034507751\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 244: 0.1419423222541809\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 244: 0.1419423222541809\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 245: 0.1409326195716858\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 245: 0.1409326195716858\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 246: 0.1399424970149994\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 246: 0.1399424970149994\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 247: 0.13920661807060242\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 247: 0.13920661807060242\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 248: 0.13832959532737732\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 248: 0.13832959532737732\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 249: 0.13784818351268768\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 249: 0.13784818351268768\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 250: 0.13769637048244476\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 250: 0.13769637048244476\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 251: 0.1367887407541275\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 251: 0.1367887407541275\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 252: 0.13588252663612366\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 252: 0.13588252663612366\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 253: 0.13521170616149902\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 253: 0.13521170616149902\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 254: 0.13428467512130737\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 254: 0.13428467512130737\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 255: 0.13384407758712769\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 255: 0.13384407758712769\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 256: 0.13372991979122162\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 256: 0.13372991979122162\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 257: 0.13274942338466644\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 257: 0.13274942338466644\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 258: 0.13186557590961456\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 258: 0.13186557590961456\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 259: 0.13135230541229248\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 259: 0.13135230541229248\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 260: 0.13046588003635406\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 260: 0.13046588003635406\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 261: 0.12980172038078308\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 261: 0.12980172038078308\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 262: 0.12982229888439178\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 262: 0.12982229888439178\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 263: 0.12882845103740692\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 263: 0.12882845103740692\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 264: 0.12798714637756348\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 264: 0.12798714637756348\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 265: 0.12758088111877441\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 265: 0.12758088111877441\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 266: 0.12660843133926392\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 266: 0.12660843133926392\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 267: 0.1261577606201172\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 267: 0.1261577606201172\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 268: 0.1260918229818344\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 268: 0.1260918229818344\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 269: 0.12515920400619507\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 269: 0.12515920400619507\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 270: 0.12436933070421219\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 270: 0.12436933070421219\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 271: 0.12405422329902649\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 271: 0.12405422329902649\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 272: 0.12305409461259842\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 272: 0.12305409461259842\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 273: 0.12272939085960388\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 273: 0.12272939085960388\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 274: 0.12267134338617325\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 274: 0.12267134338617325\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 275: 0.12182944267988205\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 275: 0.12182944267988205\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 276: 0.12103450298309326\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 276: 0.12103450298309326\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 277: 0.12083345651626587\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 277: 0.12083345651626587\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 278: 0.11998103559017181\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 278: 0.11998103559017181\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 279: 0.11937755346298218\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 279: 0.11937755346298218\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 280: 0.1195112019777298\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 280: 0.1195112019777298\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 281: 0.1185888797044754\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 281: 0.1185888797044754\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 282: 0.11789504438638687\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 282: 0.11789504438638687\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 283: 0.11783000081777573\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 283: 0.11783000081777573\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 284: 0.11681754887104034\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 284: 0.11681754887104034\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 285: 0.11649196594953537\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 285: 0.11649196594953537\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 286: 0.11648327857255936\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 286: 0.11648327857255936\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 287: 0.11562418192625046\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 287: 0.11562418192625046\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 288: 0.11489420384168625\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 288: 0.11489420384168625\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 289: 0.11485717445611954\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 289: 0.11485717445611954\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 290: 0.11407709866762161\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 290: 0.11407709866762161\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 291: 0.11348505318164825\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 291: 0.11348505318164825\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 292: 0.11358898878097534\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 292: 0.11358898878097534\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 293: 0.11268813163042068\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 293: 0.11268813163042068\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 294: 0.11207651346921921\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 294: 0.11207651346921921\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 295: 0.11220688372850418\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 295: 0.11220688372850418\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 296: 0.11118005961179733\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 296: 0.11118005961179733\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 297: 0.11089354008436203\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 297: 0.11089354008436203\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 298: 0.11088859289884567\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 298: 0.11088859289884567\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 299: 0.1100316271185875\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 299: 0.1100316271185875\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 300: 0.1093800961971283\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 300: 0.1093800961971283\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 301: 0.10955681651830673\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 301: 0.10955681651830673\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 302: 0.10869839787483215\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 302: 0.10869839787483215\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 303: 0.10815789550542831\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 303: 0.10815789550542831\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 304: 0.10832306742668152\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 304: 0.10832306742668152\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 305: 0.10742544382810593\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 305: 0.10742544382810593\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 306: 0.10682710260152817\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 306: 0.10682710260152817\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 307: 0.10698221623897552\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 307: 0.10698221623897552\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 308: 0.10616409033536911\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 308: 0.10616409033536911\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 309: 0.10568025708198547\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 309: 0.10568025708198547\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 310: 0.10574078559875488\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 310: 0.10574078559875488\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 311: 0.10493995994329453\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 311: 0.10493995994329453\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 312: 0.10438455641269684\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 312: 0.10438455641269684\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 313: 0.10449497401714325\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 313: 0.10449497401714325\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 314: 0.10372297465801239\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 314: 0.10372297465801239\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 315: 0.10320515185594559\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 315: 0.10320515185594559\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 316: 0.10330332815647125\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 316: 0.10330332815647125\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 317: 0.10239537805318832\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 317: 0.10239537805318832\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 318: 0.10185065120458603\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 318: 0.10185065120458603\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 319: 0.10217708349227905\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 319: 0.10217708349227905\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 320: 0.10135672241449356\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 320: 0.10135672241449356\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 321: 0.10087659955024719\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 321: 0.10087659955024719\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 322: 0.10087589174509048\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 322: 0.10087589174509048\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 323: 0.10005565732717514\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 323: 0.10005565732717514\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 324: 0.09949999302625656\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 324: 0.09949999302625656\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 325: 0.09970266371965408\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 325: 0.09970266371965408\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 326: 0.09918338060379028\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 326: 0.09918338060379028\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 327: 0.09840800613164902\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 327: 0.09840800613164902\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 328: 0.09882311522960663\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 328: 0.09882311522960663\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 329: 0.09775345772504807\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 329: 0.09775345772504807\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 330: 0.09729817509651184\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 330: 0.09729817509651184\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 331: 0.09763044863939285\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 331: 0.09763044863939285\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 332: 0.0967596173286438\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 332: 0.0967596173286438\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 333: 0.09642492234706879\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 333: 0.09642492234706879\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 334: 0.09656761586666107\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 334: 0.09656761586666107\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 335: 0.09573261439800262\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 335: 0.09573261439800262\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 336: 0.09523642063140869\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 336: 0.09523642063140869\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 337: 0.09568659961223602\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 337: 0.09568659961223602\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 338: 0.09509280323982239\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 338: 0.09509280323982239\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 339: 0.09460369497537613\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 339: 0.09460369497537613\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 340: 0.09476538747549057\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 340: 0.09476538747549057\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 341: 0.09388881921768188\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 341: 0.09388881921768188\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 342: 0.09349637478590012\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 342: 0.09349637478590012\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 343: 0.09398090839385986\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 343: 0.09398090839385986\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 344: 0.09314301609992981\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 344: 0.09314301609992981\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 345: 0.09281699359416962\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 345: 0.09281699359416962\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 346: 0.09290202707052231\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 346: 0.09290202707052231\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 347: 0.09209518879652023\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 347: 0.09209518879652023\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 348: 0.09171803295612335\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 348: 0.09171803295612335\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 349: 0.09221566468477249\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 349: 0.09221566468477249\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 350: 0.09150414168834686\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 350: 0.09150414168834686\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 351: 0.0910501629114151\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 351: 0.0910501629114151\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 352: 0.09118885546922684\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 352: 0.09118885546922684\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 353: 0.09043896198272705\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 353: 0.09043896198272705\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 354: 0.09006913751363754\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 354: 0.09006913751363754\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 355: 0.09049264341592789\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 355: 0.09049264341592789\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 356: 0.0898597463965416\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 356: 0.0898597463965416\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 357: 0.08943390846252441\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 357: 0.08943390846252441\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 358: 0.0896739661693573\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 358: 0.0896739661693573\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 359: 0.08882326632738113\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 359: 0.08882326632738113\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 360: 0.08850156515836716\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 360: 0.08850156515836716\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 361: 0.08897048979997635\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 361: 0.08897048979997635\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 362: 0.08849596232175827\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 362: 0.08849596232175827\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 363: 0.08790712803602219\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 363: 0.08790712803602219\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 364: 0.08821234852075577\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 364: 0.08821234852075577\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 365: 0.08732891082763672\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 365: 0.08732891082763672\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 366: 0.08704856038093567\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 366: 0.08704856038093567\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 367: 0.08765564113855362\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 367: 0.08765564113855362\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 368: 0.08696923404932022\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 368: 0.08696923404932022\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 369: 0.08649873733520508\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 369: 0.08649873733520508\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 370: 0.08676613122224808\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 370: 0.08676613122224808\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 371: 0.08599219471216202\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 371: 0.08599219471216202\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 372: 0.08565033972263336\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 372: 0.08565033972263336\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 373: 0.08618329465389252\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 373: 0.08618329465389252\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 374: 0.08559156954288483\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 374: 0.08559156954288483\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 375: 0.08509930223226547\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 375: 0.08509930223226547\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 376: 0.08543801307678223\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 376: 0.08543801307678223\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 377: 0.084554523229599\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 377: 0.084554523229599\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 378: 0.08425222337245941\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 378: 0.08425222337245941\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 379: 0.08496475219726562\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 379: 0.08496475219726562\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 380: 0.08428442478179932\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 380: 0.08428442478179932\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 381: 0.08389458060264587\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 381: 0.08389458060264587\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 382: 0.08416417241096497\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 382: 0.08416417241096497\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 383: 0.08331726491451263\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 383: 0.08331726491451263\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 384: 0.08304726332426071\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 384: 0.08304726332426071\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 385: 0.0837259590625763\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 385: 0.0837259590625763\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 386: 0.08301664143800735\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 386: 0.08301664143800735\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 387: 0.08279375731945038\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 387: 0.08279375731945038\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 388: 0.08285657316446304\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 388: 0.08285657316446304\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 389: 0.0822003185749054\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 389: 0.0822003185749054\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 390: 0.08189017325639725\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 390: 0.08189017325639725\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 391: 0.08244460821151733\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 391: 0.08244460821151733\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 392: 0.08176209777593613\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 392: 0.08176209777593613\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 393: 0.08143384009599686\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 393: 0.08143384009599686\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 394: 0.08153267949819565\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 394: 0.08153267949819565\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 395: 0.08074252307415009\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 395: 0.08074252307415009\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 396: 0.0804641842842102\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 396: 0.0804641842842102\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 397: 0.08112648874521255\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 397: 0.08112648874521255\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 398: 0.0804068073630333\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 398: 0.0804068073630333\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 399: 0.08000007271766663\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 399: 0.08000007271766663\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 400: 0.08030638843774796\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 400: 0.08030638843774796\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 401: 0.07946185022592545\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 401: 0.07946185022592545\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 402: 0.07926557213068008\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 402: 0.07926557213068008\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 403: 0.07995376735925674\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 403: 0.07995376735925674\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 404: 0.07914069294929504\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 404: 0.07914069294929504\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 405: 0.07901032269001007\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 405: 0.07901032269001007\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 406: 0.07910943776369095\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 406: 0.07910943776369095\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 407: 0.07840055227279663\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 407: 0.07840055227279663\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 408: 0.07814037799835205\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 408: 0.07814037799835205\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 409: 0.07874786853790283\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 409: 0.07874786853790283\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 410: 0.07819069921970367\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 410: 0.07819069921970367\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 411: 0.07780887931585312\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 411: 0.07780887931585312\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 412: 0.07802116870880127\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 412: 0.07802116870880127\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 413: 0.0772867277264595\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 413: 0.0772867277264595\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 414: 0.07709880918264389\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 414: 0.07709880918264389\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 415: 0.0776868537068367\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 415: 0.0776868537068367\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 416: 0.07716330885887146\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 416: 0.07716330885887146\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 417: 0.07688125967979431\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 417: 0.07688125967979431\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 418: 0.07698465138673782\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 418: 0.07698465138673782\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 419: 0.0762372612953186\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 419: 0.0762372612953186\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 420: 0.07603802531957626\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 420: 0.07603802531957626\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 421: 0.07675285637378693\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 421: 0.07675285637378693\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 422: 0.07623977214097977\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 422: 0.07623977214097977\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 423: 0.07567108422517776\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 423: 0.07567108422517776\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 424: 0.07615751028060913\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 424: 0.07615751028060913\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 425: 0.07526733726263046\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 425: 0.07526733726263046\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 426: 0.07509555667638779\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 426: 0.07509555667638779\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 427: 0.07569493353366852\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 427: 0.07569493353366852\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 428: 0.07537294924259186\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 428: 0.07537294924259186\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 429: 0.07467805594205856\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 429: 0.07467805594205856\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 430: 0.07528648525476456\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 430: 0.07528648525476456\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 431: 0.07435967028141022\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 431: 0.07435967028141022\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 432: 0.07422596961259842\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 432: 0.07422596961259842\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 433: 0.07503972947597504\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 433: 0.07503972947597504\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 434: 0.07434249669313431\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 434: 0.07434249669313431\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 435: 0.07409335672855377\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 435: 0.07409335672855377\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 436: 0.07420685887336731\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 436: 0.07420685887336731\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 437: 0.0735834538936615\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 437: 0.0735834538936615\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 438: 0.07333341240882874\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 438: 0.07333341240882874\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 439: 0.07391082495450974\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 439: 0.07391082495450974\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 440: 0.07348911464214325\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 440: 0.07348911464214325\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 441: 0.07308389991521835\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 441: 0.07308389991521835\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 442: 0.07328886538743973\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 442: 0.07328886538743973\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 443: 0.0725550651550293\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 443: 0.0725550651550293\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 444: 0.07240220904350281\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 444: 0.07240220904350281\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 445: 0.07308465242385864\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 445: 0.07308465242385864\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 446: 0.07288312911987305\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 446: 0.07288312911987305\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 447: 0.0722663402557373\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 447: 0.0722663402557373\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 448: 0.07264856994152069\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 448: 0.07264856994152069\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 449: 0.07182618230581284\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 449: 0.07182618230581284\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 450: 0.07167533785104752\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 450: 0.07167533785104752\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 451: 0.07241341471672058\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 451: 0.07241341471672058\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 452: 0.07208056002855301\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 452: 0.07208056002855301\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 453: 0.07154601812362671\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 453: 0.07154601812362671\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 454: 0.07190731167793274\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 454: 0.07190731167793274\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 455: 0.0710812360048294\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 455: 0.0710812360048294\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 456: 0.07096673548221588\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 456: 0.07096673548221588\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 457: 0.0718337818980217\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 457: 0.0718337818980217\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 458: 0.07134897261857986\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 458: 0.07134897261857986\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 459: 0.07083813846111298\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 459: 0.07083813846111298\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 460: 0.07124733179807663\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 460: 0.07124733179807663\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 461: 0.0705094262957573\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 461: 0.0705094262957573\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 462: 0.07036501169204712\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 462: 0.07036501169204712\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 463: 0.07111788541078568\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 463: 0.07111788541078568\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 464: 0.07069509476423264\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 464: 0.07069509476423264\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 465: 0.07026039808988571\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 465: 0.07026039808988571\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 466: 0.07056906819343567\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 466: 0.07056906819343567\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 467: 0.06981150805950165\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 467: 0.06981150805950165\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 468: 0.06967213749885559\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 468: 0.06967213749885559\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 469: 0.0704450011253357\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 469: 0.0704450011253357\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 470: 0.07002224773168564\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 470: 0.07002224773168564\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 471: 0.06954890489578247\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 471: 0.06954890489578247\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 472: 0.07001929730176926\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 472: 0.07001929730176926\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 473: 0.06918215751647949\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 473: 0.06918215751647949\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 474: 0.06905678659677505\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 474: 0.06905678659677505\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 475: 0.06994140148162842\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 475: 0.06994140148162842\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 476: 0.06957031041383743\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 476: 0.06957031041383743\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 477: 0.06890591233968735\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 477: 0.06890591233968735\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 478: 0.06942413747310638\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 478: 0.06942413747310638\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 479: 0.068662129342556\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 479: 0.068662129342556\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 480: 0.0685315951704979\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 480: 0.0685315951704979\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 481: 0.06919320672750473\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 481: 0.06919320672750473\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 482: 0.06884051114320755\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 482: 0.06884051114320755\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 483: 0.06852498650550842\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 483: 0.06852498650550842\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 484: 0.06881336867809296\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 484: 0.06881336867809296\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 485: 0.0681278333067894\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 485: 0.0681278333067894\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 486: 0.06801153719425201\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 486: 0.06801153719425201\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 487: 0.0688665509223938\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 487: 0.0688665509223938\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 488: 0.06848578155040741\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 488: 0.06848578155040741\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 489: 0.0680362805724144\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 489: 0.0680362805724144\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 490: 0.0685308426618576\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 490: 0.0685308426618576\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 491: 0.06770123541355133\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 491: 0.06770123541355133\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 492: 0.06760372221469879\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 492: 0.06760372221469879\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 493: 0.06856502592563629\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 493: 0.06856502592563629\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 494: 0.0679614394903183\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 494: 0.0679614394903183\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 495: 0.0675961971282959\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 495: 0.0675961971282959\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 496: 0.06795072555541992\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 496: 0.06795072555541992\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 497: 0.06731095910072327\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 497: 0.06731095910072327\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 498: 0.06714644283056259\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 498: 0.06714644283056259\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 499: 0.06786693632602692\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 499: 0.06786693632602692\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 500: 0.06758256256580353\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 500: 0.06758256256580353\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 501: 0.06698315590620041\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 501: 0.06698315590620041\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 502: 0.06747950613498688\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 502: 0.06747950613498688\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 503: 0.06655343621969223\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 503: 0.06655343621969223\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 504: 0.06652842462062836\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 504: 0.06652842462062836\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 505: 0.06745205074548721\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 505: 0.06745205074548721\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 506: 0.0668550580739975\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 506: 0.0668550580739975\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 507: 0.06666403263807297\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 507: 0.06666403263807297\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 508: 0.06683854013681412\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 508: 0.06683854013681412\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 509: 0.06626935303211212\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 509: 0.06626935303211212\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 510: 0.06613652408123016\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 510: 0.06613652408123016\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 511: 0.06672576069831848\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 511: 0.06672576069831848\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 512: 0.0666651502251625\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 512: 0.0666651502251625\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 513: 0.06582488119602203\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 513: 0.06582488119602203\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 514: 0.06652247160673141\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 514: 0.06652247160673141\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 515: 0.06558185815811157\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 515: 0.06558185815811157\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 516: 0.0655498206615448\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 516: 0.0655498206615448\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 517: 0.06624851375818253\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 517: 0.06624851375818253\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 518: 0.06601088494062424\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 518: 0.06601088494062424\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 519: 0.06545697897672653\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 519: 0.06545697897672653\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 520: 0.0659414529800415\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 520: 0.0659414529800415\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 521: 0.06516807526350021\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 521: 0.06516807526350021\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 522: 0.06501934677362442\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 522: 0.06501934677362442\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 523: 0.06574487686157227\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 523: 0.06574487686157227\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 524: 0.06553597748279572\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 524: 0.06553597748279572\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 525: 0.06504649668931961\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 525: 0.06504649668931961\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 526: 0.06540416181087494\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 526: 0.06540416181087494\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 527: 0.06479271501302719\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 527: 0.06479271501302719\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 528: 0.06469936668872833\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 528: 0.06469936668872833\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 529: 0.0654490739107132\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 529: 0.0654490739107132\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 530: 0.06509881466627121\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 530: 0.06509881466627121\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 531: 0.06460769474506378\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 531: 0.06460769474506378\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 532: 0.06506450474262238\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 532: 0.06506450474262238\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 533: 0.06425388902425766\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 533: 0.06425388902425766\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 534: 0.06419297307729721\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 534: 0.06419297307729721\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 535: 0.06507144123315811\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 535: 0.06507144123315811\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 536: 0.06475593149662018\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 536: 0.06475593149662018\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 537: 0.0640476867556572\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 537: 0.0640476867556572\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 538: 0.06452148407697678\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 538: 0.06452148407697678\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 539: 0.063988097012043\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 539: 0.063988097012043\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 540: 0.06390102207660675\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 540: 0.06390102207660675\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 541: 0.06427431106567383\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 541: 0.06427431106567383\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 542: 0.06461699306964874\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 542: 0.06461699306964874\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 543: 0.06366197764873505\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 543: 0.06366197764873505\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 544: 0.06439769268035889\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 544: 0.06439769268035889\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 545: 0.06354749947786331\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 545: 0.06354749947786331\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 546: 0.06346575170755386\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 546: 0.06346575170755386\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 547: 0.06415951251983643\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 547: 0.06415951251983643\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 548: 0.06416907906532288\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 548: 0.06416907906532288\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 549: 0.06350232660770416\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 549: 0.06350232660770416\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 1: 0.03389815576374531\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 1: 0.03389815576374531\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 2: 0.033698095567524435\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 2: 0.033698095567524435\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 3: 0.0372611828148365\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 3: 0.0372611828148365\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 4: 0.0382374182343483\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 4: 0.0382374182343483\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 5: 0.03677316829562187\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 5: 0.03677316829562187\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 6: 0.04194173291325569\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 6: 0.04194173291325569\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 7: 0.04046095162630081\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 7: 0.04046095162630081\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `fit_mixer` runtime: 4.6 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `fit_mixer` runtime: 4.59 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Started fitting XGBoost model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Started fitting XGBoost model\u001b[0m\n" ] }, { @@ -4722,14 +4722,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:A single GBM iteration takes 0.1 seconds\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:A single GBM iteration takes 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Training XGBoost with 131 iterations given 16.483366186618806 seconds constraint\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Training XGBoost with 131 iterations given 16.483406192064287 seconds constraint\u001b[0m\n" ] }, { @@ -4960,112 +4960,112 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `fit_mixer` runtime: 0.05 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `fit_mixer` runtime: 0.05 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:dataprep_ml-2634:Exception: Unspported categorical type for regression when training mixer: \u001b[0m\n" + "\u001b[33mWARNING:dataprep_ml-2523:Exception: Unspported categorical type for regression when training mixer: \u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Started fitting RandomForest model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Started fitting RandomForest model\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:RandomForest based correlation of (train data): 1.0\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:RandomForest based correlation of (train data): 1.0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:RandomForest based correlation of (dev data): 1.0\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:RandomForest based correlation of (dev data): 1.0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `fit_mixer` runtime: 0.14 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `fit_mixer` runtime: 0.13 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Ensembling the mixer\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Ensembling the mixer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Mixer: Neural got accuracy: 0.922\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Mixer: Neural got accuracy: 0.922\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Mixer: XGBoostMixer got accuracy: 1.0\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Mixer: XGBoostMixer got accuracy: 1.0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Mixer: RandomForest got accuracy: 1.0\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Mixer: RandomForest got accuracy: 1.0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Picked best mixer: RandomForest\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Picked best mixer: RandomForest\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `fit` runtime: 4.83 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `fit` runtime: 4.81 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Analyzing the ensemble of mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Analyzing the ensemble of mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:The block ICP is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:The block ICP is now running its analyze() method\u001b[0m\n" ] }, { @@ -5074,63 +5074,63 @@ "text": [ "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/sklearn/preprocessing/_encoders.py:975: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.\n", " warnings.warn(\n", - "\u001b[32mINFO:lightwood-2634:The block ConfStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:The block ConfStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:The block AccStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:The block AccStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:[PFI] Using a random sample (1000 rows out of 22).\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:[PFI] Using a random sample (1000 rows out of 22).\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:[PFI] Set to consider first 10 columns out of 6: ['Population', 'Area (sq. mi.)', 'Pop. Density ', 'GDP ($ per capita)', 'Literacy (%)', 'Infant mortality '].\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:[PFI] Set to consider first 10 columns out of 6: ['Population', 'Area (sq. mi.)', 'Pop. Density ', 'GDP ($ per capita)', 'Literacy (%)', 'Infant mortality '].\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:The block ModelCorrelationHeatmap is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:The block ModelCorrelationHeatmap is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `analyze_ensemble` runtime: 0.2 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `analyze_ensemble` runtime: 0.21 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2634:Updating the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2523:Updating the mixers\u001b[0m\n" ] }, { @@ -5145,70 +5145,70 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 1: 0.033697554686417185\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 1: 0.033697554686417185\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 2: 0.033981192080924906\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 2: 0.033981192080924906\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 3: 0.037426896315688886\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 3: 0.037426896315688886\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 4: 0.04428015494098266\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 4: 0.04428015494098266\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 5: 0.061086510928968586\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 5: 0.061086510928968586\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 6: 0.03466159128583968\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 6: 0.03466159128583968\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:Loss @ epoch 7: 0.03769115870818496\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:Loss @ epoch 7: 0.03769115870818496\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2634:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2523:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `adjust` runtime: 0.06 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `adjust` runtime: 0.06 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2634: `learn` runtime: 5.2 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2523: `learn` runtime: 5.19 seconds\u001b[0m\n" ] } ], @@ -5233,10 +5233,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:26.615040Z", - "iopub.status.busy": "2024-05-15T12:31:26.614829Z", - "iopub.status.idle": "2024-05-15T12:31:27.123113Z", - "shell.execute_reply": "2024-05-15T12:31:27.122477Z" + "iopub.execute_input": "2024-05-15T12:38:32.818054Z", + "iopub.status.busy": "2024-05-15T12:38:32.817644Z", + "iopub.status.idle": "2024-05-15T12:38:33.321743Z", + "shell.execute_reply": "2024-05-15T12:38:33.321104Z" } }, "outputs": [ diff --git a/tutorials/custom_mixer/custom_mixer.html b/tutorials/custom_mixer/custom_mixer.html index 7f35d5d0f..9e70d1435 100644 --- a/tutorials/custom_mixer/custom_mixer.html +++ b/tutorials/custom_mixer/custom_mixer.html @@ -210,40 +210,40 @@

Step 3: Using our mixer
-INFO:lightwood-2525:No torchvision detected, image helpers not supported.
-INFO:lightwood-2525:No torchvision/pillow detected, image encoder not supported
-INFO:type_infer-2525:Analyzing a sample of 298
-INFO:type_infer-2525:from a total population of 303, this is equivalent to 98.3% of your data.
-INFO:type_infer-2525:Infering type for: age
-INFO:type_infer-2525:Column age has data type integer
-INFO:type_infer-2525:Infering type for: sex
-INFO:type_infer-2525:Column sex has data type binary
-INFO:type_infer-2525:Infering type for: cp
-INFO:type_infer-2525:Column cp has data type categorical
-INFO:type_infer-2525:Infering type for: trestbps
-INFO:type_infer-2525:Column trestbps has data type integer
-INFO:type_infer-2525:Infering type for: chol
-INFO:type_infer-2525:Column chol has data type integer
-INFO:type_infer-2525:Infering type for: fbs
-INFO:type_infer-2525:Column fbs has data type binary
-INFO:type_infer-2525:Infering type for: restecg
-INFO:type_infer-2525:Column restecg has data type categorical
-INFO:type_infer-2525:Infering type for: thalach
-INFO:type_infer-2525:Column thalach has data type integer
-INFO:type_infer-2525:Infering type for: exang
-INFO:type_infer-2525:Column exang has data type binary
-INFO:type_infer-2525:Infering type for: oldpeak
-INFO:type_infer-2525:Column oldpeak has data type float
-INFO:type_infer-2525:Infering type for: slope
-INFO:type_infer-2525:Column slope has data type categorical
-INFO:type_infer-2525:Infering type for: ca
-INFO:type_infer-2525:Column ca has data type categorical
-INFO:type_infer-2525:Infering type for: thal
-INFO:type_infer-2525:Column thal has data type categorical
-INFO:type_infer-2525:Infering type for: target
-INFO:type_infer-2525:Column target has data type binary
-INFO:dataprep_ml-2525:Starting statistical analysis
-INFO:dataprep_ml-2525:Finished statistical analysis
+INFO:lightwood-2414:No torchvision detected, image helpers not supported.
+INFO:lightwood-2414:No torchvision/pillow detected, image encoder not supported
+INFO:type_infer-2414:Analyzing a sample of 298
+INFO:type_infer-2414:from a total population of 303, this is equivalent to 98.3% of your data.
+INFO:type_infer-2414:Infering type for: age
+INFO:type_infer-2414:Column age has data type integer
+INFO:type_infer-2414:Infering type for: sex
+INFO:type_infer-2414:Column sex has data type binary
+INFO:type_infer-2414:Infering type for: cp
+INFO:type_infer-2414:Column cp has data type categorical
+INFO:type_infer-2414:Infering type for: trestbps
+INFO:type_infer-2414:Column trestbps has data type integer
+INFO:type_infer-2414:Infering type for: chol
+INFO:type_infer-2414:Column chol has data type integer
+INFO:type_infer-2414:Infering type for: fbs
+INFO:type_infer-2414:Column fbs has data type binary
+INFO:type_infer-2414:Infering type for: restecg
+INFO:type_infer-2414:Column restecg has data type categorical
+INFO:type_infer-2414:Infering type for: thalach
+INFO:type_infer-2414:Column thalach has data type integer
+INFO:type_infer-2414:Infering type for: exang
+INFO:type_infer-2414:Column exang has data type binary
+INFO:type_infer-2414:Infering type for: oldpeak
+INFO:type_infer-2414:Column oldpeak has data type float
+INFO:type_infer-2414:Infering type for: slope
+INFO:type_infer-2414:Column slope has data type categorical
+INFO:type_infer-2414:Infering type for: ca
+INFO:type_infer-2414:Column ca has data type categorical
+INFO:type_infer-2414:Infering type for: thal
+INFO:type_infer-2414:Column thal has data type categorical
+INFO:type_infer-2414:Infering type for: target
+INFO:type_infer-2414:Column target has data type binary
+INFO:dataprep_ml-2414:Starting statistical analysis
+INFO:dataprep_ml-2414:Finished statistical analysis
 
@@ -371,7 +371,7 @@

Step 3: Using our mixerStep 3: Using our mixer
-INFO:dataprep_ml-2525:[Learn phase 1/8] - Statistical analysis
-INFO:dataprep_ml-2525:Starting statistical analysis
-INFO:dataprep_ml-2525:Finished statistical analysis
-DEBUG:lightwood-2525: `analyze_data` runtime: 0.03 seconds
-INFO:dataprep_ml-2525:[Learn phase 2/8] - Data preprocessing
-INFO:dataprep_ml-2525:Cleaning the data
-DEBUG:lightwood-2525: `preprocess` runtime: 0.01 seconds
-INFO:dataprep_ml-2525:[Learn phase 3/8] - Data splitting
-INFO:dataprep_ml-2525:Splitting the data into train/test
-DEBUG:lightwood-2525: `split` runtime: 0.01 seconds
-INFO:dataprep_ml-2525:[Learn phase 4/8] - Preparing encoders
-DEBUG:dataprep_ml-2525:Preparing sequentially...
-DEBUG:dataprep_ml-2525:Preparing encoder for age...
-DEBUG:dataprep_ml-2525:Preparing encoder for sex...
-DEBUG:dataprep_ml-2525:Preparing encoder for cp...
-DEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0
-DEBUG:dataprep_ml-2525:Preparing encoder for trestbps...
-DEBUG:dataprep_ml-2525:Preparing encoder for chol...
-DEBUG:dataprep_ml-2525:Preparing encoder for fbs...
-DEBUG:dataprep_ml-2525:Preparing encoder for restecg...
-DEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0
-DEBUG:dataprep_ml-2525:Preparing encoder for thalach...
-DEBUG:dataprep_ml-2525:Preparing encoder for exang...
-DEBUG:dataprep_ml-2525:Preparing encoder for oldpeak...
-DEBUG:dataprep_ml-2525:Preparing encoder for slope...
-DEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0
-DEBUG:dataprep_ml-2525:Preparing encoder for ca...
-DEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0
-DEBUG:dataprep_ml-2525:Preparing encoder for thal...
-DEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0
-DEBUG:lightwood-2525: `prepare` runtime: 0.02 seconds
-INFO:dataprep_ml-2525:[Learn phase 5/8] - Feature generation
-INFO:dataprep_ml-2525:Featurizing the data
-DEBUG:lightwood-2525: `featurize` runtime: 0.1 seconds
-INFO:dataprep_ml-2525:[Learn phase 6/8] - Mixer training
-INFO:dataprep_ml-2525:Training the mixers
-DEBUG:lightwood-2525: `fit_mixer` runtime: 0.12 seconds
-INFO:dataprep_ml-2525:Ensembling the mixer
-INFO:lightwood-2525:Mixer: RandomForestMixer got accuracy: 0.798
-INFO:lightwood-2525:Picked best mixer: RandomForestMixer
-DEBUG:lightwood-2525: `fit` runtime: 0.13 seconds
-INFO:dataprep_ml-2525:[Learn phase 7/8] - Ensemble analysis
-INFO:dataprep_ml-2525:Analyzing the ensemble of mixers
-INFO:lightwood-2525:The block ICP is now running its analyze() method
+INFO:dataprep_ml-2414:[Learn phase 1/8] - Statistical analysis
+INFO:dataprep_ml-2414:Starting statistical analysis
+INFO:dataprep_ml-2414:Finished statistical analysis
+DEBUG:lightwood-2414: `analyze_data` runtime: 0.03 seconds
+INFO:dataprep_ml-2414:[Learn phase 2/8] - Data preprocessing
+INFO:dataprep_ml-2414:Cleaning the data
+DEBUG:lightwood-2414: `preprocess` runtime: 0.01 seconds
+INFO:dataprep_ml-2414:[Learn phase 3/8] - Data splitting
+INFO:dataprep_ml-2414:Splitting the data into train/test
+DEBUG:lightwood-2414: `split` runtime: 0.01 seconds
+INFO:dataprep_ml-2414:[Learn phase 4/8] - Preparing encoders
+DEBUG:dataprep_ml-2414:Preparing sequentially...
+DEBUG:dataprep_ml-2414:Preparing encoder for age...
+DEBUG:dataprep_ml-2414:Preparing encoder for sex...
+DEBUG:dataprep_ml-2414:Preparing encoder for cp...
+DEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0
+DEBUG:dataprep_ml-2414:Preparing encoder for trestbps...
+DEBUG:dataprep_ml-2414:Preparing encoder for chol...
+DEBUG:dataprep_ml-2414:Preparing encoder for fbs...
+DEBUG:dataprep_ml-2414:Preparing encoder for restecg...
+DEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0
+DEBUG:dataprep_ml-2414:Preparing encoder for thalach...
+DEBUG:dataprep_ml-2414:Preparing encoder for exang...
+DEBUG:dataprep_ml-2414:Preparing encoder for oldpeak...
+DEBUG:dataprep_ml-2414:Preparing encoder for slope...
+DEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0
+DEBUG:dataprep_ml-2414:Preparing encoder for ca...
+DEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0
+DEBUG:dataprep_ml-2414:Preparing encoder for thal...
+DEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0
+DEBUG:lightwood-2414: `prepare` runtime: 0.02 seconds
+INFO:dataprep_ml-2414:[Learn phase 5/8] - Feature generation
+INFO:dataprep_ml-2414:Featurizing the data
+DEBUG:lightwood-2414: `featurize` runtime: 0.09 seconds
+INFO:dataprep_ml-2414:[Learn phase 6/8] - Mixer training
+INFO:dataprep_ml-2414:Training the mixers
+DEBUG:lightwood-2414: `fit_mixer` runtime: 0.12 seconds
+INFO:dataprep_ml-2414:Ensembling the mixer
+INFO:lightwood-2414:Mixer: RandomForestMixer got accuracy: 0.798
+INFO:lightwood-2414:Picked best mixer: RandomForestMixer
+DEBUG:lightwood-2414: `fit` runtime: 0.13 seconds
+INFO:dataprep_ml-2414:[Learn phase 7/8] - Ensemble analysis
+INFO:dataprep_ml-2414:Analyzing the ensemble of mixers
+INFO:lightwood-2414:The block ICP is now running its analyze() method
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/sklearn/preprocessing/_encoders.py:975: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.
   warnings.warn(
-INFO:lightwood-2525:The block ConfStats is now running its analyze() method
-INFO:lightwood-2525:The block AccStats is now running its analyze() method
-INFO:lightwood-2525:The block PermutationFeatureImportance is now running its analyze() method
-INFO:lightwood-2525:[PFI] Using a random sample (1000 rows out of 31).
-INFO:lightwood-2525:[PFI] Set to consider first 10 columns out of 10: ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak'].
+INFO:lightwood-2414:The block ConfStats is now running its analyze() method
+INFO:lightwood-2414:The block AccStats is now running its analyze() method
+INFO:lightwood-2414:The block PermutationFeatureImportance is now running its analyze() method
+INFO:lightwood-2414:[PFI] Using a random sample (1000 rows out of 31).
+INFO:lightwood-2414:[PFI] Set to consider first 10 columns out of 10: ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak'].
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/sklearn/metrics/_classification.py:2399: UserWarning: y_pred contains classes not in y_true
   warnings.warn("y_pred contains classes not in y_true")
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/sklearn/metrics/_classification.py:2399: UserWarning: y_pred contains classes not in y_true
   warnings.warn("y_pred contains classes not in y_true")
-DEBUG:lightwood-2525: `analyze_ensemble` runtime: 0.27 seconds
-INFO:dataprep_ml-2525:[Learn phase 8/8] - Adjustment on validation requested
-INFO:dataprep_ml-2525:Updating the mixers
-DEBUG:lightwood-2525: `adjust` runtime: 0.04 seconds
-DEBUG:lightwood-2525: `learn` runtime: 0.62 seconds
+DEBUG:lightwood-2414: `analyze_ensemble` runtime: 0.27 seconds
+INFO:dataprep_ml-2414:[Learn phase 8/8] - Adjustment on validation requested
+INFO:dataprep_ml-2414:Updating the mixers
+DEBUG:lightwood-2414: `adjust` runtime: 0.04 seconds
+DEBUG:lightwood-2414: `learn` runtime: 0.61 seconds
 

Finally, we can use the trained predictor to make some predictions, or save it to a pickle for later use

@@ -531,11 +531,11 @@

Step 3: Using our mixer
-INFO:dataprep_ml-2525:[Predict phase 1/4] - Data preprocessing
-INFO:dataprep_ml-2525:Cleaning the data
-DEBUG:lightwood-2525: `preprocess` runtime: 0.01 seconds
-INFO:dataprep_ml-2525:[Predict phase 2/4] - Feature generation
-INFO:dataprep_ml-2525:Featurizing the data
+INFO:dataprep_ml-2414:[Predict phase 1/4] - Data preprocessing
+INFO:dataprep_ml-2414:Cleaning the data
+DEBUG:lightwood-2414: `preprocess` runtime: 0.01 seconds
+INFO:dataprep_ml-2414:[Predict phase 2/4] - Feature generation
+INFO:dataprep_ml-2414:Featurizing the data
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/numpy/lib/function_base.py:2455: RuntimeWarning: invalid value encountered in _none_fn (vectorized)
   outputs = ufunc(*inputs)
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/numpy/lib/function_base.py:2455: RuntimeWarning: invalid value encountered in _none_fn (vectorized)
@@ -552,19 +552,19 @@ 

Step 3: Using our mixerDEBUG:lightwood-2525: `featurize` runtime: 0.02 seconds -INFO:dataprep_ml-2525:[Predict phase 3/4] - Calling ensemble -DEBUG:lightwood-2525: `_timed_call` runtime: 0.01 seconds -INFO:dataprep_ml-2525:[Predict phase 4/4] - Analyzing output -INFO:lightwood-2525:The block ICP is now running its explain() method -INFO:lightwood-2525:The block ConfStats is now running its explain() method -INFO:lightwood-2525:ConfStats.explain() has not been implemented, no modifications will be done to the data insights. -INFO:lightwood-2525:The block AccStats is now running its explain() method -INFO:lightwood-2525:AccStats.explain() has not been implemented, no modifications will be done to the data insights. -INFO:lightwood-2525:The block PermutationFeatureImportance is now running its explain() method -INFO:lightwood-2525:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights. -DEBUG:lightwood-2525: `explain` runtime: 0.01 seconds -DEBUG:lightwood-2525: `predict` runtime: 0.06 seconds +DEBUG:lightwood-2414: `featurize` runtime: 0.02 seconds +INFO:dataprep_ml-2414:[Predict phase 3/4] - Calling ensemble +DEBUG:lightwood-2414: `_timed_call` runtime: 0.01 seconds +INFO:dataprep_ml-2414:[Predict phase 4/4] - Analyzing output +INFO:lightwood-2414:The block ICP is now running its explain() method +INFO:lightwood-2414:The block ConfStats is now running its explain() method +INFO:lightwood-2414:ConfStats.explain() has not been implemented, no modifications will be done to the data insights. +INFO:lightwood-2414:The block AccStats is now running its explain() method +INFO:lightwood-2414:AccStats.explain() has not been implemented, no modifications will be done to the data insights. +INFO:lightwood-2414:The block PermutationFeatureImportance is now running its explain() method +INFO:lightwood-2414:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights. +DEBUG:lightwood-2414: `explain` runtime: 0.01 seconds +DEBUG:lightwood-2414: `predict` runtime: 0.05 seconds

diff --git a/tutorials/custom_mixer/custom_mixer.ipynb b/tutorials/custom_mixer/custom_mixer.ipynb index 83bb2e0e1..c3dacff27 100644 --- a/tutorials/custom_mixer/custom_mixer.ipynb +++ b/tutorials/custom_mixer/custom_mixer.ipynb @@ -46,10 +46,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:52.389121Z", - "iopub.status.busy": "2024-05-15T12:30:52.388896Z", - "iopub.status.idle": "2024-05-15T12:30:52.397395Z", - "shell.execute_reply": "2024-05-15T12:30:52.396710Z" + "iopub.execute_input": "2024-05-15T12:37:58.233387Z", + "iopub.status.busy": "2024-05-15T12:37:58.232873Z", + "iopub.status.idle": "2024-05-15T12:37:58.241919Z", + "shell.execute_reply": "2024-05-15T12:37:58.241302Z" } }, "outputs": [ @@ -133,10 +133,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:52.433000Z", - "iopub.status.busy": "2024-05-15T12:30:52.432734Z", - "iopub.status.idle": "2024-05-15T12:30:55.473584Z", - "shell.execute_reply": "2024-05-15T12:30:55.472895Z" + "iopub.execute_input": "2024-05-15T12:37:58.280767Z", + "iopub.status.busy": "2024-05-15T12:37:58.280464Z", + "iopub.status.idle": "2024-05-15T12:38:01.332205Z", + "shell.execute_reply": "2024-05-15T12:38:01.331516Z" } }, "outputs": [ @@ -144,238 +144,238 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Analyzing a sample of 298\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Analyzing a sample of 298\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:from a total population of 303, this is equivalent to 98.3% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:from a total population of 303, this is equivalent to 98.3% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: age\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: age\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column age has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column age has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: sex\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: sex\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column sex has data type binary\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column sex has data type binary\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: cp\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: cp\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column cp has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column cp has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: trestbps\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: trestbps\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column trestbps has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column trestbps has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: chol\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: chol\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column chol has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column chol has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: fbs\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: fbs\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column fbs has data type binary\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column fbs has data type binary\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: restecg\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: restecg\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column restecg has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column restecg has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: thalach\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: thalach\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column thalach has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column thalach has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: exang\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: exang\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column exang has data type binary\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column exang has data type binary\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: oldpeak\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: oldpeak\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column oldpeak has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column oldpeak has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: slope\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: slope\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column slope has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column slope has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: ca\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: ca\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column ca has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column ca has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: thal\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: thal\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column thal has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column thal has data type categorical\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Infering type for: target\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Infering type for: target\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2525:Column target has data type binary\u001b[0m\n" + "\u001b[32mINFO:type_infer-2414:Column target has data type binary\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Finished statistical analysis\u001b[0m\n" ] }, { @@ -502,7 +502,7 @@ " \"unbias_target\": true,\n", " \"seconds_per_mixer\": 42768.0,\n", " \"seconds_per_encoder\": null,\n", - " \"expected_additional_time\": 0.07092165946960449,\n", + " \"expected_additional_time\": 0.07208943367004395,\n", " \"time_aim\": 259200,\n", " \"target_weights\": null,\n", " \"positive_domain\": false,\n", @@ -571,10 +571,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:55.476427Z", - "iopub.status.busy": "2024-05-15T12:30:55.475939Z", - "iopub.status.idle": "2024-05-15T12:30:55.479383Z", - "shell.execute_reply": "2024-05-15T12:30:55.478798Z" + "iopub.execute_input": "2024-05-15T12:38:01.334897Z", + "iopub.status.busy": "2024-05-15T12:38:01.334489Z", + "iopub.status.idle": "2024-05-15T12:38:01.337884Z", + "shell.execute_reply": "2024-05-15T12:38:01.337281Z" } }, "outputs": [], @@ -603,10 +603,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:55.481884Z", - "iopub.status.busy": "2024-05-15T12:30:55.481529Z", - "iopub.status.idle": "2024-05-15T12:30:55.818438Z", - "shell.execute_reply": "2024-05-15T12:30:55.817741Z" + "iopub.execute_input": "2024-05-15T12:38:01.340400Z", + "iopub.status.busy": "2024-05-15T12:38:01.339924Z", + "iopub.status.idle": "2024-05-15T12:38:01.687957Z", + "shell.execute_reply": "2024-05-15T12:38:01.687306Z" } }, "outputs": [], @@ -622,10 +622,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:55.821486Z", - "iopub.status.busy": "2024-05-15T12:30:55.821229Z", - "iopub.status.idle": "2024-05-15T12:30:56.441907Z", - "shell.execute_reply": "2024-05-15T12:30:56.441224Z" + "iopub.execute_input": "2024-05-15T12:38:01.691070Z", + "iopub.status.busy": "2024-05-15T12:38:01.690625Z", + "iopub.status.idle": "2024-05-15T12:38:02.309441Z", + "shell.execute_reply": "2024-05-15T12:38:02.308885Z" } }, "outputs": [ @@ -633,308 +633,308 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Finished statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `analyze_data` runtime: 0.03 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `analyze_data` runtime: 0.03 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `preprocess` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `preprocess` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 3/8] - Data splitting\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 3/8] - Data splitting\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Splitting the data into train/test\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Splitting the data into train/test\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `split` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `split` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing sequentially...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing sequentially...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for age...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for age...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for sex...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for sex...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for cp...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for cp...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for trestbps...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for trestbps...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for chol...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for chol...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for fbs...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for fbs...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for restecg...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for restecg...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for thalach...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for thalach...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for exang...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for exang...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for oldpeak...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for oldpeak...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for slope...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for slope...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for ca...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for ca...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2525:Preparing encoder for thal...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2414:Preparing encoder for thal...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525:Encoding UNKNOWN categories as index 0\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414:Encoding UNKNOWN categories as index 0\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `prepare` runtime: 0.02 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `prepare` runtime: 0.02 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 5/8] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 5/8] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `featurize` runtime: 0.1 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `featurize` runtime: 0.09 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 6/8] - Mixer training\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 6/8] - Mixer training\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Training the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Training the mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `fit_mixer` runtime: 0.12 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `fit_mixer` runtime: 0.12 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Ensembling the mixer\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Ensembling the mixer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:Mixer: RandomForestMixer got accuracy: 0.798\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:Mixer: RandomForestMixer got accuracy: 0.798\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:Picked best mixer: RandomForestMixer\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:Picked best mixer: RandomForestMixer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `fit` runtime: 0.13 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `fit` runtime: 0.13 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Analyzing the ensemble of mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Analyzing the ensemble of mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:The block ICP is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block ICP is now running its analyze() method\u001b[0m\n" ] }, { @@ -943,35 +943,35 @@ "text": [ "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/sklearn/preprocessing/_encoders.py:975: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.\n", " warnings.warn(\n", - "\u001b[32mINFO:lightwood-2525:The block ConfStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block ConfStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:The block AccStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block AccStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:[PFI] Using a random sample (1000 rows out of 31).\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:[PFI] Using a random sample (1000 rows out of 31).\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:[PFI] Set to consider first 10 columns out of 10: ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak'].\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:[PFI] Set to consider first 10 columns out of 10: ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak'].\u001b[0m\n" ] }, { @@ -994,35 +994,35 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `analyze_ensemble` runtime: 0.27 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `analyze_ensemble` runtime: 0.27 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Updating the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Updating the mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `adjust` runtime: 0.04 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `adjust` runtime: 0.04 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `learn` runtime: 0.62 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `learn` runtime: 0.61 seconds\u001b[0m\n" ] } ], @@ -1042,10 +1042,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:56.444798Z", - "iopub.status.busy": "2024-05-15T12:30:56.444349Z", - "iopub.status.idle": "2024-05-15T12:30:56.568845Z", - "shell.execute_reply": "2024-05-15T12:30:56.568168Z" + "iopub.execute_input": "2024-05-15T12:38:02.312200Z", + "iopub.status.busy": "2024-05-15T12:38:02.311838Z", + "iopub.status.idle": "2024-05-15T12:38:02.432975Z", + "shell.execute_reply": "2024-05-15T12:38:02.432362Z" } }, "outputs": [ @@ -1053,35 +1053,35 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `preprocess` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `preprocess` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Predict phase 2/4] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Predict phase 2/4] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:Featurizing the data\u001b[0m\n" ] }, { @@ -1104,91 +1104,91 @@ " outputs = ufunc(*inputs)\n", "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/numpy/lib/function_base.py:2455: RuntimeWarning: invalid value encountered in _none_fn (vectorized)\n", " outputs = ufunc(*inputs)\n", - "\u001b[37mDEBUG:lightwood-2525: `featurize` runtime: 0.02 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `featurize` runtime: 0.02 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `_timed_call` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `_timed_call` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2525:[Predict phase 4/4] - Analyzing output\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2414:[Predict phase 4/4] - Analyzing output\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:The block ICP is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block ICP is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:The block ConfStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block ConfStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:The block AccStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block AccStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2525:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2414:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `explain` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `explain` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2525: `predict` runtime: 0.06 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2414: `predict` runtime: 0.05 seconds\u001b[0m\n" ] }, { diff --git a/tutorials/custom_splitter/custom_splitter.html b/tutorials/custom_splitter/custom_splitter.html index ddfcc5170..44c6ae9b0 100644 --- a/tutorials/custom_splitter/custom_splitter.html +++ b/tutorials/custom_splitter/custom_splitter.html @@ -129,8 +129,8 @@

Date: 2021.10.07
-INFO:lightwood-2259:No torchvision detected, image helpers not supported.
-INFO:lightwood-2259:No torchvision/pillow detected, image encoder not supported
+INFO:lightwood-2197:No torchvision detected, image helpers not supported.
+INFO:lightwood-2197:No torchvision/pillow detected, image encoder not supported
 

@@ -376,73 +376,73 @@

2) Create a JSON-AI default object
-INFO:type_infer-2259:Analyzing a sample of 18424
-INFO:type_infer-2259:from a total population of 284807, this is equivalent to 6.5% of your data.
-INFO:type_infer-2259:Using 3 processes to deduct types.
-INFO:type_infer-2259:Infering type for: Time
-INFO:type_infer-2259:Infering type for: V3
-INFO:type_infer-2259:Infering type for: V6
-INFO:type_infer-2259:Column Time has data type integer
-INFO:type_infer-2259:Infering type for: V1
-INFO:type_infer-2259:Column V3 has data type float
-INFO:type_infer-2259:Infering type for: V4
-INFO:type_infer-2259:Column V6 has data type float
-INFO:type_infer-2259:Column V4 has data type float
-INFO:type_infer-2259:Infering type for: V7
-INFO:type_infer-2259:Infering type for: V5
-INFO:type_infer-2259:Column V1 has data type float
-INFO:type_infer-2259:Infering type for: V2
-INFO:type_infer-2259:Column V5 has data type float
-INFO:type_infer-2259:Infering type for: V9
-INFO:type_infer-2259:Column V7 has data type float
-INFO:type_infer-2259:Infering type for: V8
-INFO:type_infer-2259:Column V9 has data type float
-INFO:type_infer-2259:Infering type for: V10
-INFO:type_infer-2259:Column V2 has data type float
-INFO:type_infer-2259:Infering type for: V12
-INFO:type_infer-2259:Column V8 has data type float
-INFO:type_infer-2259:Infering type for: V15
-INFO:type_infer-2259:Column V10 has data type float
-INFO:type_infer-2259:Infering type for: V11
-INFO:type_infer-2259:Column V12 has data type float
-INFO:type_infer-2259:Infering type for: V13
-INFO:type_infer-2259:Column V13 has data type float
-INFO:type_infer-2259:Infering type for: V14
-INFO:type_infer-2259:Column V15 has data type float
-INFO:type_infer-2259:Column V11 has data type float
-INFO:type_infer-2259:Infering type for: V16
-INFO:type_infer-2259:Infering type for: V18
-INFO:type_infer-2259:Column V14 has data type float
-INFO:type_infer-2259:Infering type for: V21
-INFO:type_infer-2259:Column V16 has data type float
-INFO:type_infer-2259:Infering type for: V17
-INFO:type_infer-2259:Column V18 has data type float
-INFO:type_infer-2259:Infering type for: V19
-INFO:type_infer-2259:Column V21 has data type float
-INFO:type_infer-2259:Infering type for: V22
-INFO:type_infer-2259:Column V17 has data type float
-INFO:type_infer-2259:Infering type for: V24
-INFO:type_infer-2259:Column V19 has data type float
-INFO:type_infer-2259:Infering type for: V20
-INFO:type_infer-2259:Column V22 has data type float
-INFO:type_infer-2259:Infering type for: V23
-INFO:type_infer-2259:Column V24 has data type float
-INFO:type_infer-2259:Infering type for: V25
-INFO:type_infer-2259:Column V23 has data type float
-INFO:type_infer-2259:Infering type for: V27
-INFO:type_infer-2259:Column V20 has data type float
-INFO:type_infer-2259:Infering type for: Class
-INFO:type_infer-2259:Column V25 has data type float
-INFO:type_infer-2259:Infering type for: V26
-INFO:type_infer-2259:Column Class has data type binary
-INFO:type_infer-2259:Column V27 has data type float
-INFO:type_infer-2259:Infering type for: V28
-INFO:type_infer-2259:Column V26 has data type float
-INFO:type_infer-2259:Column V28 has data type float
-INFO:type_infer-2259:Infering type for: Amount
-INFO:type_infer-2259:Column Amount has data type float
-INFO:dataprep_ml-2259:Starting statistical analysis
-INFO:dataprep_ml-2259:Finished statistical analysis
+INFO:type_infer-2197:Analyzing a sample of 18424
+INFO:type_infer-2197:from a total population of 284807, this is equivalent to 6.5% of your data.
+INFO:type_infer-2197:Using 3 processes to deduct types.
+INFO:type_infer-2197:Infering type for: Time
+INFO:type_infer-2197:Infering type for: V3
+INFO:type_infer-2197:Infering type for: V6
+INFO:type_infer-2197:Column Time has data type integer
+INFO:type_infer-2197:Infering type for: V1
+INFO:type_infer-2197:Column V3 has data type float
+INFO:type_infer-2197:Infering type for: V4
+INFO:type_infer-2197:Column V6 has data type float
+INFO:type_infer-2197:Infering type for: V7
+INFO:type_infer-2197:Column V1 has data type float
+INFO:type_infer-2197:Infering type for: V2
+INFO:type_infer-2197:Column V4 has data type float
+INFO:type_infer-2197:Infering type for: V5
+INFO:type_infer-2197:Column V7 has data type float
+INFO:type_infer-2197:Infering type for: V8
+INFO:type_infer-2197:Column V2 has data type float
+INFO:type_infer-2197:Infering type for: V9
+INFO:type_infer-2197:Column V5 has data type float
+INFO:type_infer-2197:Infering type for: V12
+INFO:type_infer-2197:Column V8 has data type float
+INFO:type_infer-2197:Infering type for: V15
+INFO:type_infer-2197:Column V9 has data type float
+INFO:type_infer-2197:Infering type for: V10
+INFO:type_infer-2197:Column V15 has data type float
+INFO:type_infer-2197:Infering type for: V16
+INFO:type_infer-2197:Column V12 has data type float
+INFO:type_infer-2197:Infering type for: V13
+INFO:type_infer-2197:Column V13 has data type float
+INFO:type_infer-2197:Infering type for: V14
+INFO:type_infer-2197:Column V10 has data type float
+INFO:type_infer-2197:Infering type for: V11
+INFO:type_infer-2197:Column V16 has data type float
+INFO:type_infer-2197:Infering type for: V17
+INFO:type_infer-2197:Column V14 has data type float
+INFO:type_infer-2197:Infering type for: V18
+INFO:type_infer-2197:Column V11 has data type float
+INFO:type_infer-2197:Infering type for: V21
+INFO:type_infer-2197:Column V17 has data type float
+INFO:type_infer-2197:Column V18 has data type float
+INFO:type_infer-2197:Infering type for: V19
+INFO:type_infer-2197:Infering type for: V24
+INFO:type_infer-2197:Column V19 has data type float
+INFO:type_infer-2197:Infering type for: V20
+INFO:type_infer-2197:Column V21 has data type float
+INFO:type_infer-2197:Infering type for: V22
+INFO:type_infer-2197:Column V24 has data type float
+INFO:type_infer-2197:Infering type for: V25
+INFO:type_infer-2197:Column V20 has data type float
+INFO:type_infer-2197:Infering type for: V27
+INFO:type_infer-2197:Column V22 has data type float
+INFO:type_infer-2197:Infering type for: V23
+INFO:type_infer-2197:Column V27 has data type float
+INFO:type_infer-2197:Infering type for: V28
+INFO:type_infer-2197:Column V25 has data type float
+INFO:type_infer-2197:Infering type for: V26
+INFO:type_infer-2197:Column V28 has data type float
+INFO:type_infer-2197:Infering type for: Amount
+INFO:type_infer-2197:Column V23 has data type float
+INFO:type_infer-2197:Infering type for: Class
+INFO:type_infer-2197:Column V26 has data type float
+INFO:type_infer-2197:Column Amount has data type float
+INFO:type_infer-2197:Column Class has data type binary
+INFO:dataprep_ml-2197:Starting statistical analysis
+INFO:dataprep_ml-2197:Finished statistical analysis
 

Lightwood looks at each of the many columns and indicates they are mostly float, with exception of “Class” which is binary.

@@ -672,7 +672,7 @@

5) Generate Python code representing your ML pipeline6) Call python to run your code and see your preprocessed outputs
-INFO:dataprep_ml-2259:Cleaning the data
-DEBUG:lightwood-2259: `preprocess` runtime: 18.54 seconds
-INFO:dataprep_ml-2259:Splitting the data into train/test
-DEBUG:lightwood-2259: `split` runtime: 1.62 seconds
+INFO:dataprep_ml-2197:Cleaning the data
+DEBUG:lightwood-2197: `preprocess` runtime: 18.56 seconds
+INFO:dataprep_ml-2197:Splitting the data into train/test
+DEBUG:lightwood-2197: `split` runtime: 1.77 seconds
 
diff --git a/tutorials/custom_splitter/custom_splitter.ipynb b/tutorials/custom_splitter/custom_splitter.ipynb index 4c9029b63..cbbf9a8d5 100644 --- a/tutorials/custom_splitter/custom_splitter.ipynb +++ b/tutorials/custom_splitter/custom_splitter.ipynb @@ -28,10 +28,10 @@ "id": "interim-discussion", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:29:04.352246Z", - "iopub.status.busy": "2024-05-15T12:29:04.351721Z", - "iopub.status.idle": "2024-05-15T12:29:13.307917Z", - "shell.execute_reply": "2024-05-15T12:29:13.307226Z" + "iopub.execute_input": "2024-05-15T12:36:11.731772Z", + "iopub.status.busy": "2024-05-15T12:36:11.731340Z", + "iopub.status.idle": "2024-05-15T12:36:18.394584Z", + "shell.execute_reply": "2024-05-15T12:36:18.393802Z" } }, "outputs": [ @@ -39,14 +39,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2259:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2197:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2259:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2197:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] } ], @@ -87,10 +87,10 @@ "id": "foreign-orchestra", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:29:13.311274Z", - "iopub.status.busy": "2024-05-15T12:29:13.310750Z", - "iopub.status.idle": "2024-05-15T12:29:18.428236Z", - "shell.execute_reply": "2024-05-15T12:29:18.427494Z" + "iopub.execute_input": "2024-05-15T12:36:18.397974Z", + "iopub.status.busy": "2024-05-15T12:36:18.397631Z", + "iopub.status.idle": "2024-05-15T12:36:23.491475Z", + "shell.execute_reply": "2024-05-15T12:36:23.490796Z" } }, "outputs": [ @@ -316,10 +316,10 @@ "id": "cathedral-mills", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:29:18.431216Z", - "iopub.status.busy": "2024-05-15T12:29:18.430796Z", - "iopub.status.idle": "2024-05-15T12:29:18.786310Z", - "shell.execute_reply": "2024-05-15T12:29:18.785723Z" + "iopub.execute_input": "2024-05-15T12:36:23.494300Z", + "iopub.status.busy": "2024-05-15T12:36:23.494042Z", + "iopub.status.idle": "2024-05-15T12:36:23.854824Z", + "shell.execute_reply": "2024-05-15T12:36:23.854148Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "medieval-zambia", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:29:18.789121Z", - "iopub.status.busy": "2024-05-15T12:29:18.788667Z", - "iopub.status.idle": "2024-05-15T12:30:27.330359Z", - "shell.execute_reply": "2024-05-15T12:30:27.329696Z" + "iopub.execute_input": "2024-05-15T12:36:23.857705Z", + "iopub.status.busy": "2024-05-15T12:36:23.857253Z", + "iopub.status.idle": "2024-05-15T12:37:32.751150Z", + "shell.execute_reply": "2024-05-15T12:37:32.750449Z" } }, "outputs": [ @@ -385,469 +385,469 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Analyzing a sample of 18424\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Analyzing a sample of 18424\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:from a total population of 284807, this is equivalent to 6.5% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:from a total population of 284807, this is equivalent to 6.5% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Using 3 processes to deduct types.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Using 3 processes to deduct types.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: Time\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: Time\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V3\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V3\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V6\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V6\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column Time has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column Time has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V1\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V1\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V3 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V3 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V4\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V4\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V6 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V6 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V4 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V7\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V7\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V1 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V5\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V2\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V1 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V4 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V2\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V5\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V5 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V7 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V9\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V8\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V7 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V2 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V8\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V9\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V9 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V5 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V10\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V12\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V2 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V8 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V12\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V15\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V8 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V9 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V15\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V10\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V10 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V15 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V11\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V16\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V12 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V12 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V13\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V13\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V13 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V13 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V14\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V14\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V15 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V10 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V11 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V11\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V16\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V16 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V18\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V17\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V14 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V14 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V21\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V18\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V16 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V11 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V17\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V21\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V18 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V17 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V19\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V18 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V21 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V19\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V22\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V24\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V17 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V19 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V24\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V20\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V19 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V21 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V20\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V22\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V22 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V24 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V23\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V25\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V24 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V20 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V25\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V27\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V23 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V22 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V27\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V23\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V20 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V27 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: Class\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V28\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V25 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V25 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V26\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: V26\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column Class has data type binary\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V28 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V27 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: Amount\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: V28\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V23 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V26 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Infering type for: Class\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column V28 has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column V26 has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Infering type for: Amount\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column Amount has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2259:Column Amount has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2197:Column Class has data type binary\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2259:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2197:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2259:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2197:Finished statistical analysis\u001b[0m\n" ] } ], @@ -901,10 +901,10 @@ "id": "4411ee53", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:27.333499Z", - "iopub.status.busy": "2024-05-15T12:30:27.333282Z", - "iopub.status.idle": "2024-05-15T12:30:27.338468Z", - "shell.execute_reply": "2024-05-15T12:30:27.337924Z" + "iopub.execute_input": "2024-05-15T12:37:32.754539Z", + "iopub.status.busy": "2024-05-15T12:37:32.754103Z", + "iopub.status.idle": "2024-05-15T12:37:32.759217Z", + "shell.execute_reply": "2024-05-15T12:37:32.758527Z" } }, "outputs": [ @@ -996,10 +996,10 @@ "id": "34092d12", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:27.340823Z", - "iopub.status.busy": "2024-05-15T12:30:27.340587Z", - "iopub.status.idle": "2024-05-15T12:30:27.343872Z", - "shell.execute_reply": "2024-05-15T12:30:27.343379Z" + "iopub.execute_input": "2024-05-15T12:37:32.761863Z", + "iopub.status.busy": "2024-05-15T12:37:32.761475Z", + "iopub.status.idle": "2024-05-15T12:37:32.764800Z", + "shell.execute_reply": "2024-05-15T12:37:32.764192Z" } }, "outputs": [], @@ -1055,10 +1055,10 @@ "id": "alleged-concentrate", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:27.346334Z", - "iopub.status.busy": "2024-05-15T12:30:27.346133Z", - "iopub.status.idle": "2024-05-15T12:30:27.581484Z", - "shell.execute_reply": "2024-05-15T12:30:27.580794Z" + "iopub.execute_input": "2024-05-15T12:37:32.767542Z", + "iopub.status.busy": "2024-05-15T12:37:32.767181Z", + "iopub.status.idle": "2024-05-15T12:37:33.006726Z", + "shell.execute_reply": "2024-05-15T12:37:33.005918Z" } }, "outputs": [ @@ -1139,7 +1139,7 @@ " \"unbias_target\": True,\n", " \"seconds_per_mixer\": 42768.0,\n", " \"seconds_per_encoder\": None,\n", - " \"expected_additional_time\": 68.51064419746399,\n", + " \"expected_additional_time\": 68.86109614372253,\n", " \"time_aim\": 259200,\n", " \"target_weights\": None,\n", " \"positive_domain\": False,\n", @@ -1905,10 +1905,10 @@ "id": "organic-london", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:27.583960Z", - "iopub.status.busy": "2024-05-15T12:30:27.583758Z", - "iopub.status.idle": "2024-05-15T12:30:27.591554Z", - "shell.execute_reply": "2024-05-15T12:30:27.591054Z" + "iopub.execute_input": "2024-05-15T12:37:33.009564Z", + "iopub.status.busy": "2024-05-15T12:37:33.009352Z", + "iopub.status.idle": "2024-05-15T12:37:33.017259Z", + "shell.execute_reply": "2024-05-15T12:37:33.016750Z" } }, "outputs": [], @@ -1923,10 +1923,10 @@ "id": "fabulous-prime", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:27.594015Z", - "iopub.status.busy": "2024-05-15T12:30:27.593641Z", - "iopub.status.idle": "2024-05-15T12:30:47.763538Z", - "shell.execute_reply": "2024-05-15T12:30:47.762831Z" + "iopub.execute_input": "2024-05-15T12:37:33.020087Z", + "iopub.status.busy": "2024-05-15T12:37:33.019578Z", + "iopub.status.idle": "2024-05-15T12:37:53.359194Z", + "shell.execute_reply": "2024-05-15T12:37:53.358511Z" } }, "outputs": [ @@ -1934,28 +1934,28 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2259:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2197:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2259: `preprocess` runtime: 18.54 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2197: `preprocess` runtime: 18.56 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2259:Splitting the data into train/test\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2197:Splitting the data into train/test\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2259: `split` runtime: 1.62 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2197: `split` runtime: 1.77 seconds\u001b[0m\n" ] } ], @@ -1971,10 +1971,10 @@ "id": "suspended-biography", "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:30:47.766563Z", - "iopub.status.busy": "2024-05-15T12:30:47.766019Z", - "iopub.status.idle": "2024-05-15T12:30:49.244243Z", - "shell.execute_reply": "2024-05-15T12:30:49.243541Z" + "iopub.execute_input": "2024-05-15T12:37:53.362317Z", + "iopub.status.busy": "2024-05-15T12:37:53.361876Z", + "iopub.status.idle": "2024-05-15T12:37:54.934620Z", + "shell.execute_reply": "2024-05-15T12:37:54.933895Z" } }, "outputs": [ diff --git a/tutorials/tutorial_data_analysis/tutorial_data_analysis.html b/tutorials/tutorial_data_analysis/tutorial_data_analysis.html index 039a19ba7..b89aea199 100644 --- a/tutorials/tutorial_data_analysis/tutorial_data_analysis.html +++ b/tutorials/tutorial_data_analysis/tutorial_data_analysis.html @@ -222,8 +222,8 @@

Step 1: load the dataset and define the predictive task
-INFO:lightwood-2916:No torchvision detected, image helpers not supported.
-INFO:lightwood-2916:No torchvision/pillow detected, image encoder not supported
+INFO:lightwood-2866:No torchvision detected, image helpers not supported.
+INFO:lightwood-2866:No torchvision/pillow detected, image encoder not supported
 

Let’s see how this object has been populated. ProblemDefinition is a Python dataclass, so it comes with some convenient tools to achieve this:

@@ -283,22 +283,22 @@

Step 1: load the dataset and define the predictive task
-INFO:type_infer-2916:Analyzing a sample of 222
-INFO:type_infer-2916:from a total population of 225, this is equivalent to 98.7% of your data.
-INFO:type_infer-2916:Infering type for: Population
-INFO:type_infer-2916:Column Population has data type integer
-INFO:type_infer-2916:Infering type for: Area (sq. mi.)
-INFO:type_infer-2916:Column Area (sq. mi.) has data type integer
-INFO:type_infer-2916:Infering type for: Pop. Density 
-INFO:type_infer-2916:Column Pop. Density  has data type float
-INFO:type_infer-2916:Infering type for: GDP ($ per capita)
-INFO:type_infer-2916:Column GDP ($ per capita) has data type integer
-INFO:type_infer-2916:Infering type for: Literacy (%)
-INFO:type_infer-2916:Column Literacy (%) has data type float
-INFO:type_infer-2916:Infering type for: Infant mortality 
-INFO:type_infer-2916:Column Infant mortality  has data type float
-INFO:type_infer-2916:Infering type for: Development Index
-INFO:type_infer-2916:Column Development Index has data type categorical
+INFO:type_infer-2866:Analyzing a sample of 222
+INFO:type_infer-2866:from a total population of 225, this is equivalent to 98.7% of your data.
+INFO:type_infer-2866:Infering type for: Population
+INFO:type_infer-2866:Column Population has data type integer
+INFO:type_infer-2866:Infering type for: Area (sq. mi.)
+INFO:type_infer-2866:Column Area (sq. mi.) has data type integer
+INFO:type_infer-2866:Infering type for: Pop. Density 
+INFO:type_infer-2866:Column Pop. Density  has data type float
+INFO:type_infer-2866:Infering type for: GDP ($ per capita)
+INFO:type_infer-2866:Column GDP ($ per capita) has data type integer
+INFO:type_infer-2866:Infering type for: Literacy (%)
+INFO:type_infer-2866:Column Literacy (%) has data type float
+INFO:type_infer-2866:Infering type for: Infant mortality 
+INFO:type_infer-2866:Column Infant mortality  has data type float
+INFO:type_infer-2866:Infering type for: Development Index
+INFO:type_infer-2866:Column Development Index has data type categorical
 

diff --git a/tutorials/tutorial_data_analysis/tutorial_data_analysis.ipynb b/tutorials/tutorial_data_analysis/tutorial_data_analysis.ipynb index d0872ea95..e2897726b 100644 --- a/tutorials/tutorial_data_analysis/tutorial_data_analysis.ipynb +++ b/tutorials/tutorial_data_analysis/tutorial_data_analysis.ipynb @@ -35,10 +35,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:14.309394Z", - "iopub.status.busy": "2024-05-15T12:32:14.309198Z", - "iopub.status.idle": "2024-05-15T12:32:14.629441Z", - "shell.execute_reply": "2024-05-15T12:32:14.628730Z" + "iopub.execute_input": "2024-05-15T12:39:20.516178Z", + "iopub.status.busy": "2024-05-15T12:39:20.515976Z", + "iopub.status.idle": "2024-05-15T12:39:20.842577Z", + "shell.execute_reply": "2024-05-15T12:39:20.841884Z" } }, "outputs": [ @@ -175,10 +175,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:14.667078Z", - "iopub.status.busy": "2024-05-15T12:32:14.666676Z", - "iopub.status.idle": "2024-05-15T12:32:17.186059Z", - "shell.execute_reply": "2024-05-15T12:32:17.185340Z" + "iopub.execute_input": "2024-05-15T12:39:20.882091Z", + "iopub.status.busy": "2024-05-15T12:39:20.881616Z", + "iopub.status.idle": "2024-05-15T12:39:23.423280Z", + "shell.execute_reply": "2024-05-15T12:39:23.422573Z" } }, "outputs": [ @@ -186,14 +186,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2916:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2866:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2916:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2866:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] } ], @@ -215,10 +215,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.189281Z", - "iopub.status.busy": "2024-05-15T12:32:17.188770Z", - "iopub.status.idle": "2024-05-15T12:32:17.193969Z", - "shell.execute_reply": "2024-05-15T12:32:17.193389Z" + "iopub.execute_input": "2024-05-15T12:39:23.426512Z", + "iopub.status.busy": "2024-05-15T12:39:23.426163Z", + "iopub.status.idle": "2024-05-15T12:39:23.431505Z", + "shell.execute_reply": "2024-05-15T12:39:23.430893Z" } }, "outputs": [ @@ -270,10 +270,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.196483Z", - "iopub.status.busy": "2024-05-15T12:32:17.196106Z", - "iopub.status.idle": "2024-05-15T12:32:17.219249Z", - "shell.execute_reply": "2024-05-15T12:32:17.218661Z" + "iopub.execute_input": "2024-05-15T12:39:23.434201Z", + "iopub.status.busy": "2024-05-15T12:39:23.433737Z", + "iopub.status.idle": "2024-05-15T12:39:23.459713Z", + "shell.execute_reply": "2024-05-15T12:39:23.459082Z" } }, "outputs": [ @@ -281,112 +281,112 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Analyzing a sample of 222\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Analyzing a sample of 222\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:from a total population of 225, this is equivalent to 98.7% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:from a total population of 225, this is equivalent to 98.7% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Infering type for: Population\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Infering type for: Population\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Column Population has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Column Population has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Infering type for: Area (sq. mi.)\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Infering type for: Area (sq. mi.)\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Column Area (sq. mi.) has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Column Area (sq. mi.) has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Infering type for: Pop. Density \u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Infering type for: Pop. Density \u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Column Pop. Density has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Column Pop. Density has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Infering type for: GDP ($ per capita)\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Infering type for: GDP ($ per capita)\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Column GDP ($ per capita) has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Column GDP ($ per capita) has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Infering type for: Literacy (%)\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Infering type for: Literacy (%)\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Column Literacy (%) has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Column Literacy (%) has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Infering type for: Infant mortality \u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Infering type for: Infant mortality \u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Column Infant mortality has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Column Infant mortality has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Infering type for: Development Index\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Infering type for: Development Index\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2916:Column Development Index has data type categorical\u001b[0m\n" + "\u001b[32mINFO:type_infer-2866:Column Development Index has data type categorical\u001b[0m\n" ] }, { @@ -421,10 +421,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.221782Z", - "iopub.status.busy": "2024-05-15T12:32:17.221448Z", - "iopub.status.idle": "2024-05-15T12:32:17.225621Z", - "shell.execute_reply": "2024-05-15T12:32:17.224989Z" + "iopub.execute_input": "2024-05-15T12:39:23.462354Z", + "iopub.status.busy": "2024-05-15T12:39:23.461965Z", + "iopub.status.idle": "2024-05-15T12:39:23.466294Z", + "shell.execute_reply": "2024-05-15T12:39:23.465608Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.228143Z", - "iopub.status.busy": "2024-05-15T12:32:17.227783Z", - "iopub.status.idle": "2024-05-15T12:32:17.253950Z", - "shell.execute_reply": "2024-05-15T12:32:17.253307Z" + "iopub.execute_input": "2024-05-15T12:39:23.468886Z", + "iopub.status.busy": "2024-05-15T12:39:23.468511Z", + "iopub.status.idle": "2024-05-15T12:39:23.495336Z", + "shell.execute_reply": "2024-05-15T12:39:23.494690Z" } }, "outputs": [ @@ -485,14 +485,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2916:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2866:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2916:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2866:Finished statistical analysis\u001b[0m\n" ] } ], @@ -520,10 +520,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.256430Z", - "iopub.status.busy": "2024-05-15T12:32:17.256226Z", - "iopub.status.idle": "2024-05-15T12:32:17.260696Z", - "shell.execute_reply": "2024-05-15T12:32:17.260064Z" + "iopub.execute_input": "2024-05-15T12:39:23.497946Z", + "iopub.status.busy": "2024-05-15T12:39:23.497565Z", + "iopub.status.idle": "2024-05-15T12:39:23.502155Z", + "shell.execute_reply": "2024-05-15T12:39:23.501523Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.263203Z", - "iopub.status.busy": "2024-05-15T12:32:17.262837Z", - "iopub.status.idle": "2024-05-15T12:32:17.266857Z", - "shell.execute_reply": "2024-05-15T12:32:17.266234Z" + "iopub.execute_input": "2024-05-15T12:39:23.504893Z", + "iopub.status.busy": "2024-05-15T12:39:23.504449Z", + "iopub.status.idle": "2024-05-15T12:39:23.509018Z", + "shell.execute_reply": "2024-05-15T12:39:23.508474Z" } }, "outputs": [ @@ -612,10 +612,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.269479Z", - "iopub.status.busy": "2024-05-15T12:32:17.269087Z", - "iopub.status.idle": "2024-05-15T12:32:17.273721Z", - "shell.execute_reply": "2024-05-15T12:32:17.273107Z" + "iopub.execute_input": "2024-05-15T12:39:23.511601Z", + "iopub.status.busy": "2024-05-15T12:39:23.511209Z", + "iopub.status.idle": "2024-05-15T12:39:23.515862Z", + "shell.execute_reply": "2024-05-15T12:39:23.515270Z" }, "scrolled": false }, @@ -673,10 +673,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.276269Z", - "iopub.status.busy": "2024-05-15T12:32:17.275813Z", - "iopub.status.idle": "2024-05-15T12:32:17.279893Z", - "shell.execute_reply": "2024-05-15T12:32:17.279315Z" + "iopub.execute_input": "2024-05-15T12:39:23.518414Z", + "iopub.status.busy": "2024-05-15T12:39:23.517941Z", + "iopub.status.idle": "2024-05-15T12:39:23.522169Z", + "shell.execute_reply": "2024-05-15T12:39:23.521501Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.282178Z", - "iopub.status.busy": "2024-05-15T12:32:17.281977Z", - "iopub.status.idle": "2024-05-15T12:32:17.286732Z", - "shell.execute_reply": "2024-05-15T12:32:17.286148Z" + "iopub.execute_input": "2024-05-15T12:39:23.524471Z", + "iopub.status.busy": "2024-05-15T12:39:23.524270Z", + "iopub.status.idle": "2024-05-15T12:39:23.529133Z", + "shell.execute_reply": "2024-05-15T12:39:23.528566Z" }, "scrolled": false }, @@ -786,10 +786,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.289214Z", - "iopub.status.busy": "2024-05-15T12:32:17.288834Z", - "iopub.status.idle": "2024-05-15T12:32:17.292779Z", - "shell.execute_reply": "2024-05-15T12:32:17.292139Z" + "iopub.execute_input": "2024-05-15T12:39:23.531603Z", + "iopub.status.busy": "2024-05-15T12:39:23.531233Z", + "iopub.status.idle": "2024-05-15T12:39:23.535243Z", + "shell.execute_reply": "2024-05-15T12:39:23.534589Z" } }, "outputs": [ @@ -841,10 +841,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:17.295205Z", - "iopub.status.busy": "2024-05-15T12:32:17.294842Z", - "iopub.status.idle": "2024-05-15T12:32:19.947038Z", - "shell.execute_reply": "2024-05-15T12:32:19.946304Z" + "iopub.execute_input": "2024-05-15T12:39:23.537775Z", + "iopub.status.busy": "2024-05-15T12:39:23.537413Z", + "iopub.status.idle": "2024-05-15T12:39:26.181488Z", + "shell.execute_reply": "2024-05-15T12:39:26.180780Z" }, "scrolled": false }, diff --git a/tutorials/tutorial_time_series/tutorial_time_series.html b/tutorials/tutorial_time_series/tutorial_time_series.html index 8bba3be74..3ed0f400d 100644 --- a/tutorials/tutorial_time_series/tutorial_time_series.html +++ b/tutorials/tutorial_time_series/tutorial_time_series.html @@ -216,8 +216,8 @@

Define the predictive task
-INFO:lightwood-2872:No torchvision detected, image helpers not supported.
-INFO:lightwood-2872:No torchvision/pillow detected, image encoder not supported
+INFO:lightwood-2821:No torchvision detected, image helpers not supported.
+INFO:lightwood-2821:No torchvision/pillow detected, image encoder not supported
 
@@ -316,35 +316,35 @@

Train
-INFO:dataprep_ml-2872:[Learn phase 1/8] - Statistical analysis
-INFO:dataprep_ml-2872:Starting statistical analysis
+INFO:dataprep_ml-2821:[Learn phase 1/8] - Statistical analysis
+INFO:dataprep_ml-2821:Starting statistical analysis
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/dataprep_ml/cleaners.py:163: UserWarning: The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.
   result = pd.to_datetime(element,
-INFO:dataprep_ml-2872:Finished statistical analysis
-DEBUG:lightwood-2872: `analyze_data` runtime: 0.06 seconds
-INFO:dataprep_ml-2872:[Learn phase 2/8] - Data preprocessing
-INFO:dataprep_ml-2872:Cleaning the data
+INFO:dataprep_ml-2821:Finished statistical analysis
+DEBUG:lightwood-2821: `analyze_data` runtime: 0.06 seconds
+INFO:dataprep_ml-2821:[Learn phase 2/8] - Data preprocessing
+INFO:dataprep_ml-2821:Cleaning the data
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/dataprep_ml/cleaners.py:163: UserWarning: The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.
   result = pd.to_datetime(element,
-INFO:dataprep_ml-2872:Transforming timeseries data
-DEBUG:lightwood-2872: `preprocess` runtime: 0.09 seconds
-INFO:dataprep_ml-2872:[Learn phase 3/8] - Data splitting
-INFO:dataprep_ml-2872:Splitting the data into train/test
-DEBUG:lightwood-2872: `split` runtime: 0.0 seconds
-INFO:dataprep_ml-2872:[Learn phase 4/8] - Preparing encoders
-DEBUG:dataprep_ml-2872:Preparing sequentially...
-DEBUG:lightwood-2872: `prepare` runtime: 0.05 seconds
-INFO:dataprep_ml-2872:[Learn phase 5/8] - Feature generation
-INFO:dataprep_ml-2872:Featurizing the data
-DEBUG:lightwood-2872: `featurize` runtime: 0.05 seconds
-INFO:dataprep_ml-2872:[Learn phase 6/8] - Mixer training
-INFO:dataprep_ml-2872:Training the mixers
-WARNING:lightwood-2872:XGBoost running on CPU
-WARNING:lightwood-2872:XGBoost running on CPU
-WARNING:lightwood-2872:XGBoost running on CPU
-WARNING:lightwood-2872:XGBoost running on CPU
-WARNING:lightwood-2872:XGBoost running on CPU
-WARNING:lightwood-2872:XGBoost running on CPU
+INFO:dataprep_ml-2821:Transforming timeseries data
+DEBUG:lightwood-2821: `preprocess` runtime: 0.09 seconds
+INFO:dataprep_ml-2821:[Learn phase 3/8] - Data splitting
+INFO:dataprep_ml-2821:Splitting the data into train/test
+DEBUG:lightwood-2821: `split` runtime: 0.0 seconds
+INFO:dataprep_ml-2821:[Learn phase 4/8] - Preparing encoders
+DEBUG:dataprep_ml-2821:Preparing sequentially...
+DEBUG:lightwood-2821: `prepare` runtime: 0.05 seconds
+INFO:dataprep_ml-2821:[Learn phase 5/8] - Feature generation
+INFO:dataprep_ml-2821:Featurizing the data
+DEBUG:lightwood-2821: `featurize` runtime: 0.04 seconds
+INFO:dataprep_ml-2821:[Learn phase 6/8] - Mixer training
+INFO:dataprep_ml-2821:Training the mixers
+WARNING:lightwood-2821:XGBoost running on CPU
+WARNING:lightwood-2821:XGBoost running on CPU
+WARNING:lightwood-2821:XGBoost running on CPU
+WARNING:lightwood-2821:XGBoost running on CPU
+WARNING:lightwood-2821:XGBoost running on CPU
+WARNING:lightwood-2821:XGBoost running on CPU
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/torch/amp/grad_scaler.py:131: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available.  Disabling.
   warnings.warn(
 
@@ -354,12 +354,12 @@

Train
-[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1
-[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1
-[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1
-[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1
-[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1
-[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1
+[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1
+[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1
+[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1
+[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1
+[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1
+[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1
 
@@ -372,30 +372,30 @@

Train Consider using one of the following signatures instead: addcmul_(Tensor tensor1, Tensor tensor2, *, Number value) (Triggered internally at ../torch/csrc/utils/python_arg_parser.cpp:1578.) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) -INFO:lightwood-2872:Loss of 9.051180630922318 with learning rate 0.0001 -INFO:lightwood-2872:Loss of 9.014871209859848 with learning rate 0.0005 -INFO:lightwood-2872:Loss of 8.969509482383728 with learning rate 0.001 -INFO:lightwood-2872:Loss of 8.879052013158798 with learning rate 0.002 -INFO:lightwood-2872:Loss of 8.788950502872467 with learning rate 0.003 -INFO:lightwood-2872:Loss of 8.611965209245682 with learning rate 0.005 -INFO:lightwood-2872:Loss of 8.195775926113129 with learning rate 0.01 -INFO:lightwood-2872:Loss of 6.255893141031265 with learning rate 0.05 -INFO:lightwood-2872:Found learning rate of: 0.05 -INFO:lightwood-2872:Loss @ epoch 1: 0.5818348675966263 -INFO:lightwood-2872:Loss @ epoch 2: 0.4797109067440033 -INFO:lightwood-2872:Loss @ epoch 3: 0.48386093974113464 -INFO:lightwood-2872:Loss @ epoch 4: 0.49511992931365967 -INFO:lightwood-2872:Loss @ epoch 5: 0.39475560188293457 -INFO:lightwood-2872:Loss @ epoch 6: 0.39592696726322174 -INFO:lightwood-2872:Loss @ epoch 7: 0.3622782379388809 -INFO:lightwood-2872:Loss @ epoch 8: 0.38170479238033295 -INFO:lightwood-2872:Loss @ epoch 9: 0.5138543993234634 -INFO:lightwood-2872:Loss @ epoch 10: 0.6360723078250885 -INFO:lightwood-2872:Loss @ epoch 1: 0.29868809472430835 -INFO:lightwood-2872:Loss @ epoch 2: 0.30318967591632495 -DEBUG:lightwood-2872: `fit_mixer` runtime: 0.87 seconds -INFO:lightwood-2872:Started fitting LGBM models for array prediction -INFO:lightwood-2872:Started fitting XGBoost model +INFO:lightwood-2821:Loss of 9.051180630922318 with learning rate 0.0001 +INFO:lightwood-2821:Loss of 9.014871209859848 with learning rate 0.0005 +INFO:lightwood-2821:Loss of 8.969509482383728 with learning rate 0.001 +INFO:lightwood-2821:Loss of 8.879052013158798 with learning rate 0.002 +INFO:lightwood-2821:Loss of 8.788950502872467 with learning rate 0.003 +INFO:lightwood-2821:Loss of 8.611965209245682 with learning rate 0.005 +INFO:lightwood-2821:Loss of 8.195775926113129 with learning rate 0.01 +INFO:lightwood-2821:Loss of 6.255893141031265 with learning rate 0.05 +INFO:lightwood-2821:Found learning rate of: 0.05 +INFO:lightwood-2821:Loss @ epoch 1: 0.5818348675966263 +INFO:lightwood-2821:Loss @ epoch 2: 0.4797109067440033 +INFO:lightwood-2821:Loss @ epoch 3: 0.48386093974113464 +INFO:lightwood-2821:Loss @ epoch 4: 0.49511992931365967 +INFO:lightwood-2821:Loss @ epoch 5: 0.39475560188293457 +INFO:lightwood-2821:Loss @ epoch 6: 0.39592696726322174 +INFO:lightwood-2821:Loss @ epoch 7: 0.3622782379388809 +INFO:lightwood-2821:Loss @ epoch 8: 0.38170479238033295 +INFO:lightwood-2821:Loss @ epoch 9: 0.5138543993234634 +INFO:lightwood-2821:Loss @ epoch 10: 0.6360723078250885 +INFO:lightwood-2821:Loss @ epoch 1: 0.29868809472430835 +INFO:lightwood-2821:Loss @ epoch 2: 0.30318967591632495 +DEBUG:lightwood-2821: `fit_mixer` runtime: 0.86 seconds +INFO:lightwood-2821:Started fitting LGBM models for array prediction +INFO:lightwood-2821:Started fitting XGBoost model

-INFO:lightwood-2872:A single GBM iteration takes 0.1 seconds
-INFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.987446546555 seconds constraint
+INFO:lightwood-2821:A single GBM iteration takes 0.1 seconds
+INFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.987055063248 seconds constraint
 
-INFO:lightwood-2872:Started fitting XGBoost model
+INFO:lightwood-2821:Started fitting XGBoost model
 
-INFO:lightwood-2872:A single GBM iteration takes 0.1 seconds
-INFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.988590955734 seconds constraint
+INFO:lightwood-2821:A single GBM iteration takes 0.1 seconds
+INFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.986838340759 seconds constraint
 
-INFO:lightwood-2872:Started fitting XGBoost model
+INFO:lightwood-2821:Started fitting XGBoost model
 
-INFO:lightwood-2872:A single GBM iteration takes 0.1 seconds
-INFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.988853693008 seconds constraint
+INFO:lightwood-2821:A single GBM iteration takes 0.1 seconds
+INFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.9879677295685 seconds constraint
 
-INFO:lightwood-2872:Started fitting XGBoost model
+INFO:lightwood-2821:Started fitting XGBoost model
 
-INFO:lightwood-2872:A single GBM iteration takes 0.1 seconds
-INFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.988720655441 seconds constraint
+INFO:lightwood-2821:A single GBM iteration takes 0.1 seconds
+INFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.9887981414795 seconds constraint
 
-INFO:lightwood-2872:Started fitting XGBoost model
+INFO:lightwood-2821:Started fitting XGBoost model
 
-INFO:lightwood-2872:A single GBM iteration takes 0.1 seconds
-INFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.9883551597595 seconds constraint
+INFO:lightwood-2821:A single GBM iteration takes 0.1 seconds
+INFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.988205194473 seconds constraint
 
-INFO:lightwood-2872:Started fitting XGBoost model
+INFO:lightwood-2821:Started fitting XGBoost model
 
-INFO:lightwood-2872:A single GBM iteration takes 0.1 seconds
-INFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.988573551178 seconds constraint
+INFO:lightwood-2821:A single GBM iteration takes 0.1 seconds
+INFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.987644195557 seconds constraint
 
-DEBUG:lightwood-2872: `fit_mixer` runtime: 0.5 seconds
-INFO:dataprep_ml-2872:Ensembling the mixer
-INFO:lightwood-2872:Mixer: NeuralTs got accuracy: 0.875
-WARNING:lightwood-2872:This model does not output probability estimates
-INFO:lightwood-2872:Mixer: XGBoostArrayMixer got accuracy: 0.869
-INFO:lightwood-2872:Picked best mixer: NeuralTs
-DEBUG:lightwood-2872: `fit` runtime: 1.41 seconds
-INFO:dataprep_ml-2872:[Learn phase 7/8] - Ensemble analysis
-INFO:dataprep_ml-2872:Analyzing the ensemble of mixers
-INFO:lightwood-2872:The block ICP is now running its analyze() method
-INFO:lightwood-2872:The block ConfStats is now running its analyze() method
-INFO:lightwood-2872:The block AccStats is now running its analyze() method
-INFO:lightwood-2872:The block PermutationFeatureImportance is now running its analyze() method
-WARNING:lightwood-2872:Block 'PermutationFeatureImportance' does not support time series nor text encoding, skipping...
-DEBUG:lightwood-2872: `analyze_ensemble` runtime: 0.16 seconds
-INFO:dataprep_ml-2872:[Learn phase 8/8] - Adjustment on validation requested
-INFO:dataprep_ml-2872:Updating the mixers
+DEBUG:lightwood-2821: `fit_mixer` runtime: 0.5 seconds
+INFO:dataprep_ml-2821:Ensembling the mixer
+INFO:lightwood-2821:Mixer: NeuralTs got accuracy: 0.875
+WARNING:lightwood-2821:This model does not output probability estimates
+INFO:lightwood-2821:Mixer: XGBoostArrayMixer got accuracy: 0.869
+INFO:lightwood-2821:Picked best mixer: NeuralTs
+DEBUG:lightwood-2821: `fit` runtime: 1.4 seconds
+INFO:dataprep_ml-2821:[Learn phase 7/8] - Ensemble analysis
+INFO:dataprep_ml-2821:Analyzing the ensemble of mixers
+INFO:lightwood-2821:The block ICP is now running its analyze() method
+INFO:lightwood-2821:The block ConfStats is now running its analyze() method
+INFO:lightwood-2821:The block AccStats is now running its analyze() method
+INFO:lightwood-2821:The block PermutationFeatureImportance is now running its analyze() method
+WARNING:lightwood-2821:Block 'PermutationFeatureImportance' does not support time series nor text encoding, skipping...
+DEBUG:lightwood-2821: `analyze_ensemble` runtime: 0.16 seconds
+INFO:dataprep_ml-2821:[Learn phase 8/8] - Adjustment on validation requested
+INFO:dataprep_ml-2821:Updating the mixers
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/torch/amp/grad_scaler.py:131: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available.  Disabling.
   warnings.warn(
-INFO:lightwood-2872:Loss @ epoch 1: 0.29626286526521045
-INFO:lightwood-2872:Loss @ epoch 2: 0.2954987535874049
-INFO:lightwood-2872:Updating array of LGBM models...
-INFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation
-INFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation
-INFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation
-INFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation
-INFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation
-INFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation
-DEBUG:lightwood-2872: `adjust` runtime: 0.09 seconds
-DEBUG:lightwood-2872: `learn` runtime: 1.92 seconds
+INFO:lightwood-2821:Loss @ epoch 1: 0.29626286526521045
+INFO:lightwood-2821:Loss @ epoch 2: 0.2954987535874049
+INFO:lightwood-2821:Updating array of LGBM models...
+INFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation
+INFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation
+INFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation
+INFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation
+INFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation
+INFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation
+DEBUG:lightwood-2821: `adjust` runtime: 0.1 seconds
+DEBUG:lightwood-2821: `learn` runtime: 1.91 seconds
 
@@ -721,33 +721,33 @@

Predict
-INFO:dataprep_ml-2872:[Predict phase 1/4] - Data preprocessing
-/tmp/11cf2e3a3fe2d38f7293f27fbfc34dab78123e8d8e63ffa417157763283658414.py:587: SettingWithCopyWarning:
+INFO:dataprep_ml-2821:[Predict phase 1/4] - Data preprocessing
+/tmp/b9f9761599676d055346cd2b368083bd2229f6aecb71536117157767545533166.py:587: SettingWithCopyWarning:
 A value is trying to be set on a copy of a slice from a DataFrame.
 Try using .loc[row_indexer,col_indexer] = value instead
 
 See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
   data[col] = [None] * len(data)
-INFO:dataprep_ml-2872:Cleaning the data
+INFO:dataprep_ml-2821:Cleaning the data
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/dataprep_ml/cleaners.py:163: UserWarning: The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.
   result = pd.to_datetime(element,
-INFO:dataprep_ml-2872:Transforming timeseries data
-DEBUG:lightwood-2872: `preprocess` runtime: 0.02 seconds
-INFO:dataprep_ml-2872:[Predict phase 2/4] - Feature generation
-INFO:dataprep_ml-2872:Featurizing the data
-DEBUG:lightwood-2872: `featurize` runtime: 0.01 seconds
-INFO:dataprep_ml-2872:[Predict phase 3/4] - Calling ensemble
-DEBUG:lightwood-2872: `_timed_call` runtime: 0.09 seconds
-INFO:dataprep_ml-2872:[Predict phase 4/4] - Analyzing output
-INFO:lightwood-2872:The block ICP is now running its explain() method
-INFO:lightwood-2872:The block ConfStats is now running its explain() method
-INFO:lightwood-2872:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.
-INFO:lightwood-2872:The block AccStats is now running its explain() method
-INFO:lightwood-2872:AccStats.explain() has not been implemented, no modifications will be done to the data insights.
-INFO:lightwood-2872:The block PermutationFeatureImportance is now running its explain() method
-INFO:lightwood-2872:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.
-DEBUG:lightwood-2872: `explain` runtime: 0.09 seconds
-DEBUG:lightwood-2872: `predict` runtime: 0.22 seconds
+INFO:dataprep_ml-2821:Transforming timeseries data
+DEBUG:lightwood-2821: `preprocess` runtime: 0.02 seconds
+INFO:dataprep_ml-2821:[Predict phase 2/4] - Feature generation
+INFO:dataprep_ml-2821:Featurizing the data
+DEBUG:lightwood-2821: `featurize` runtime: 0.01 seconds
+INFO:dataprep_ml-2821:[Predict phase 3/4] - Calling ensemble
+DEBUG:lightwood-2821: `_timed_call` runtime: 0.09 seconds
+INFO:dataprep_ml-2821:[Predict phase 4/4] - Analyzing output
+INFO:lightwood-2821:The block ICP is now running its explain() method
+INFO:lightwood-2821:The block ConfStats is now running its explain() method
+INFO:lightwood-2821:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.
+INFO:lightwood-2821:The block AccStats is now running its explain() method
+INFO:lightwood-2821:AccStats.explain() has not been implemented, no modifications will be done to the data insights.
+INFO:lightwood-2821:The block PermutationFeatureImportance is now running its explain() method
+INFO:lightwood-2821:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.
+DEBUG:lightwood-2821: `explain` runtime: 0.09 seconds
+DEBUG:lightwood-2821: `predict` runtime: 0.22 seconds
 

Let’s check how a single row might look:

diff --git a/tutorials/tutorial_time_series/tutorial_time_series.ipynb b/tutorials/tutorial_time_series/tutorial_time_series.ipynb index 64fb603ac..51f683c34 100644 --- a/tutorials/tutorial_time_series/tutorial_time_series.ipynb +++ b/tutorials/tutorial_time_series/tutorial_time_series.ipynb @@ -24,10 +24,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:01.117399Z", - "iopub.status.busy": "2024-05-15T12:32:01.117200Z", - "iopub.status.idle": "2024-05-15T12:32:01.618443Z", - "shell.execute_reply": "2024-05-15T12:32:01.617772Z" + "iopub.execute_input": "2024-05-15T12:39:07.466078Z", + "iopub.status.busy": "2024-05-15T12:39:07.465874Z", + "iopub.status.idle": "2024-05-15T12:39:07.852195Z", + "shell.execute_reply": "2024-05-15T12:39:07.851479Z" } }, "outputs": [ @@ -162,10 +162,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:01.654728Z", - "iopub.status.busy": "2024-05-15T12:32:01.654340Z", - "iopub.status.idle": "2024-05-15T12:32:04.161035Z", - "shell.execute_reply": "2024-05-15T12:32:04.160343Z" + "iopub.execute_input": "2024-05-15T12:39:07.892100Z", + "iopub.status.busy": "2024-05-15T12:39:07.891629Z", + "iopub.status.idle": "2024-05-15T12:39:10.416172Z", + "shell.execute_reply": "2024-05-15T12:39:10.415460Z" } }, "outputs": [ @@ -173,14 +173,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] } ], @@ -193,10 +193,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:04.164053Z", - "iopub.status.busy": "2024-05-15T12:32:04.163790Z", - "iopub.status.idle": "2024-05-15T12:32:04.167552Z", - "shell.execute_reply": "2024-05-15T12:32:04.167026Z" + "iopub.execute_input": "2024-05-15T12:39:10.419295Z", + "iopub.status.busy": "2024-05-15T12:39:10.418970Z", + "iopub.status.idle": "2024-05-15T12:39:10.422725Z", + "shell.execute_reply": "2024-05-15T12:39:10.422113Z" } }, "outputs": [], @@ -223,10 +223,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:04.170051Z", - "iopub.status.busy": "2024-05-15T12:32:04.169696Z", - "iopub.status.idle": "2024-05-15T12:32:04.173649Z", - "shell.execute_reply": "2024-05-15T12:32:04.173022Z" + "iopub.execute_input": "2024-05-15T12:39:10.425265Z", + "iopub.status.busy": "2024-05-15T12:39:10.424889Z", + "iopub.status.idle": "2024-05-15T12:39:10.428910Z", + "shell.execute_reply": "2024-05-15T12:39:10.428271Z" } }, "outputs": [ @@ -261,10 +261,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:04.176107Z", - "iopub.status.busy": "2024-05-15T12:32:04.175746Z", - "iopub.status.idle": "2024-05-15T12:32:08.372518Z", - "shell.execute_reply": "2024-05-15T12:32:08.371822Z" + "iopub.execute_input": "2024-05-15T12:39:10.431459Z", + "iopub.status.busy": "2024-05-15T12:39:10.431088Z", + "iopub.status.idle": "2024-05-15T12:39:14.560206Z", + "shell.execute_reply": "2024-05-15T12:39:14.559482Z" } }, "outputs": [ @@ -272,49 +272,49 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2872:Analyzing a sample of 2467\u001b[0m\n" + "\u001b[32mINFO:type_infer-2821:Analyzing a sample of 2467\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2872:from a total population of 2820, this is equivalent to 87.5% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2821:from a total population of 2820, this is equivalent to 87.5% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2872:Infering type for: Month\u001b[0m\n" + "\u001b[32mINFO:type_infer-2821:Infering type for: Month\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2872:Column Month has data type date\u001b[0m\n" + "\u001b[32mINFO:type_infer-2821:Column Month has data type date\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2872:Infering type for: Sunspots\u001b[0m\n" + "\u001b[32mINFO:type_infer-2821:Infering type for: Sunspots\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2872:Column Sunspots has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2821:Column Sunspots has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Starting statistical analysis\u001b[0m\n" ] }, { @@ -323,7 +323,7 @@ "text": [ "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/dataprep_ml/cleaners.py:163: UserWarning: The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", " result = pd.to_datetime(element,\n", - "\u001b[32mINFO:dataprep_ml-2872:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Finished statistical analysis\u001b[0m\n" ] } ], @@ -360,10 +360,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:08.375604Z", - "iopub.status.busy": "2024-05-15T12:32:08.375181Z", - "iopub.status.idle": "2024-05-15T12:32:10.298183Z", - "shell.execute_reply": "2024-05-15T12:32:10.297500Z" + "iopub.execute_input": "2024-05-15T12:39:14.563441Z", + "iopub.status.busy": "2024-05-15T12:39:14.563060Z", + "iopub.status.idle": "2024-05-15T12:39:16.481390Z", + "shell.execute_reply": "2024-05-15T12:39:16.480840Z" } }, "outputs": [ @@ -371,14 +371,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Starting statistical analysis\u001b[0m\n" ] }, { @@ -387,28 +387,28 @@ "text": [ "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/dataprep_ml/cleaners.py:163: UserWarning: The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", " result = pd.to_datetime(element,\n", - "\u001b[32mINFO:dataprep_ml-2872:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Finished statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `analyze_data` runtime: 0.06 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `analyze_data` runtime: 0.06 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Cleaning the data\u001b[0m\n" ] }, { @@ -417,133 +417,133 @@ "text": [ "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/dataprep_ml/cleaners.py:163: UserWarning: The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", " result = pd.to_datetime(element,\n", - "\u001b[32mINFO:dataprep_ml-2872:Transforming timeseries data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Transforming timeseries data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `preprocess` runtime: 0.09 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `preprocess` runtime: 0.09 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 3/8] - Data splitting\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 3/8] - Data splitting\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Splitting the data into train/test\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Splitting the data into train/test\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `split` runtime: 0.0 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `split` runtime: 0.0 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2872:Preparing sequentially...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2821:Preparing sequentially...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `prepare` runtime: 0.05 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `prepare` runtime: 0.05 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 5/8] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 5/8] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `featurize` runtime: 0.05 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `featurize` runtime: 0.04 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 6/8] - Mixer training\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 6/8] - Mixer training\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Training the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Training the mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:XGBoost running on CPU\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:XGBoost running on CPU\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:XGBoost running on CPU\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:XGBoost running on CPU\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:XGBoost running on CPU\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:XGBoost running on CPU\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:XGBoost running on CPU\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:XGBoost running on CPU\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:XGBoost running on CPU\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:XGBoost running on CPU\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:XGBoost running on CPU\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:XGBoost running on CPU\u001b[0m\n" ] }, { @@ -558,12 +558,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", - "[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", - "[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", - "[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", - "[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", - "[12:32:08] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n" + "[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", + "[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", + "[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", + "[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", + "[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n", + "[12:39:14] WARNING: ../src/learner.cc:339: No visible GPU is found, setting `gpu_id` to -1\n" ] }, { @@ -575,168 +575,168 @@ "Consider using one of the following signatures instead:\n", "\taddcmul_(Tensor tensor1, Tensor tensor2, *, Number value) (Triggered internally at ../torch/csrc/utils/python_arg_parser.cpp:1578.)\n", " exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)\n", - "\u001b[32mINFO:lightwood-2872:Loss of 9.051180630922318 with learning rate 0.0001\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 9.051180630922318 with learning rate 0.0001\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss of 9.014871209859848 with learning rate 0.0005\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 9.014871209859848 with learning rate 0.0005\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss of 8.969509482383728 with learning rate 0.001\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 8.969509482383728 with learning rate 0.001\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss of 8.879052013158798 with learning rate 0.002\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 8.879052013158798 with learning rate 0.002\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss of 8.788950502872467 with learning rate 0.003\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 8.788950502872467 with learning rate 0.003\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss of 8.611965209245682 with learning rate 0.005\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 8.611965209245682 with learning rate 0.005\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss of 8.195775926113129 with learning rate 0.01\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 8.195775926113129 with learning rate 0.01\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss of 6.255893141031265 with learning rate 0.05\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss of 6.255893141031265 with learning rate 0.05\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Found learning rate of: 0.05\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Found learning rate of: 0.05\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 1: 0.5818348675966263\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 1: 0.5818348675966263\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 2: 0.4797109067440033\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 2: 0.4797109067440033\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 3: 0.48386093974113464\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 3: 0.48386093974113464\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 4: 0.49511992931365967\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 4: 0.49511992931365967\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 5: 0.39475560188293457\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 5: 0.39475560188293457\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 6: 0.39592696726322174\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 6: 0.39592696726322174\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 7: 0.3622782379388809\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 7: 0.3622782379388809\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 8: 0.38170479238033295\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 8: 0.38170479238033295\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 9: 0.5138543993234634\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 9: 0.5138543993234634\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 10: 0.6360723078250885\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 10: 0.6360723078250885\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 1: 0.29868809472430835\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 1: 0.29868809472430835\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 2: 0.30318967591632495\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 2: 0.30318967591632495\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `fit_mixer` runtime: 0.87 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `fit_mixer` runtime: 0.86 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Started fitting LGBM models for array prediction\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Started fitting LGBM models for array prediction\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Started fitting XGBoost model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Started fitting XGBoost model\u001b[0m\n" ] }, { @@ -750,14 +750,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:A single GBM iteration takes 0.1 seconds\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:A single GBM iteration takes 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.987446546555 seconds constraint\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.987055063248 seconds constraint\u001b[0m\n" ] }, { @@ -858,11 +858,18 @@ "[13]\tvalidation_0-rmse:15.87505\n" ] }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[14]\tvalidation_0-rmse:16.06330\n" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Started fitting XGBoost model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Started fitting XGBoost model\u001b[0m\n" ] }, { @@ -876,14 +883,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:A single GBM iteration takes 0.1 seconds\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:A single GBM iteration takes 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.988590955734 seconds constraint\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.986838340759 seconds constraint\u001b[0m\n" ] }, { @@ -984,11 +991,18 @@ "[13]\tvalidation_0-rmse:17.75939\n" ] }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[14]\tvalidation_0-rmse:17.84796\n" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Started fitting XGBoost model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Started fitting XGBoost model\u001b[0m\n" ] }, { @@ -1002,14 +1016,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:A single GBM iteration takes 0.1 seconds\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:A single GBM iteration takes 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.988853693008 seconds constraint\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.9879677295685 seconds constraint\u001b[0m\n" ] }, { @@ -1107,7 +1121,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Started fitting XGBoost model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Started fitting XGBoost model\u001b[0m\n" ] }, { @@ -1121,14 +1135,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:A single GBM iteration takes 0.1 seconds\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:A single GBM iteration takes 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.988720655441 seconds constraint\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.9887981414795 seconds constraint\u001b[0m\n" ] }, { @@ -1142,14 +1156,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[1]\tvalidation_0-rmse:34.13289" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" + "[1]\tvalidation_0-rmse:34.13289\n" ] }, { @@ -1240,7 +1247,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Started fitting XGBoost model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Started fitting XGBoost model\u001b[0m\n" ] }, { @@ -1254,14 +1261,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:A single GBM iteration takes 0.1 seconds\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:A single GBM iteration takes 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.9883551597595 seconds constraint\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.988205194473 seconds constraint\u001b[0m\n" ] }, { @@ -1289,14 +1296,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[3]\tvalidation_0-rmse:24.63817" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" + "[3]\tvalidation_0-rmse:24.63817\n" ] }, { @@ -1338,28 +1338,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "[9]\tvalidation_0-rmse:22.10747" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" + "[9]\tvalidation_0-rmse:22.10747\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "[10]\tvalidation_0-rmse:22.20352" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" + "[10]\tvalidation_0-rmse:22.20352\n" ] }, { @@ -1373,42 +1359,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "[12]\tvalidation_0-rmse:22.25308" + "[12]\tvalidation_0-rmse:22.25308\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[13]\tvalidation_0-rmse:22.31415" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[14]\tvalidation_0-rmse:22.31000\n" + "[13]\tvalidation_0-rmse:22.31415\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Started fitting XGBoost model\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Started fitting XGBoost model\u001b[0m\n" ] }, { @@ -1422,14 +1387,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:A single GBM iteration takes 0.1 seconds\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:A single GBM iteration takes 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Training XGBoost with 57023 iterations given 7127.988573551178 seconds constraint\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Training XGBoost with 57023 iterations given 7127.987644195557 seconds constraint\u001b[0m\n" ] }, { @@ -1492,14 +1457,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[8]\tvalidation_0-rmse:21.74380" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" + "[8]\tvalidation_0-rmse:21.74380\n" ] }, { @@ -1537,130 +1495,123 @@ "[13]\tvalidation_0-rmse:21.68890\n" ] }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[14]\tvalidation_0-rmse:21.70025\n" - ] - }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `fit_mixer` runtime: 0.5 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `fit_mixer` runtime: 0.5 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Ensembling the mixer\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Ensembling the mixer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Mixer: NeuralTs got accuracy: 0.875\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Mixer: NeuralTs got accuracy: 0.875\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:This model does not output probability estimates\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:This model does not output probability estimates\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Mixer: XGBoostArrayMixer got accuracy: 0.869\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Mixer: XGBoostArrayMixer got accuracy: 0.869\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Picked best mixer: NeuralTs\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Picked best mixer: NeuralTs\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `fit` runtime: 1.41 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `fit` runtime: 1.4 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Analyzing the ensemble of mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Analyzing the ensemble of mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block ICP is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block ICP is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block ConfStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block ConfStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block AccStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block AccStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[33mWARNING:lightwood-2872:Block 'PermutationFeatureImportance' does not support time series nor text encoding, skipping...\u001b[0m\n" + "\u001b[33mWARNING:lightwood-2821:Block 'PermutationFeatureImportance' does not support time series nor text encoding, skipping...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `analyze_ensemble` runtime: 0.16 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `analyze_ensemble` runtime: 0.16 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Updating the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Updating the mixers\u001b[0m\n" ] }, { @@ -1668,84 +1619,78 @@ "output_type": "stream", "text": [ "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/torch/amp/grad_scaler.py:131: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available. Disabling.\n", - " warnings.warn(\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 1: 0.29626286526521045\u001b[0m\n" + " warnings.warn(\n", + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 1: 0.29626286526521045\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Loss @ epoch 2: 0.2954987535874049\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Loss @ epoch 2: 0.2954987535874049\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:Updating array of LGBM models...\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:Updating array of LGBM models...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:XGBoost mixer does not have a `partial_fit` implementation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `adjust` runtime: 0.09 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `adjust` runtime: 0.1 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `learn` runtime: 1.92 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `learn` runtime: 1.91 seconds\u001b[0m\n" ] } ], @@ -1767,10 +1712,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:10.301152Z", - "iopub.status.busy": "2024-05-15T12:32:10.300912Z", - "iopub.status.idle": "2024-05-15T12:32:10.529312Z", - "shell.execute_reply": "2024-05-15T12:32:10.528664Z" + "iopub.execute_input": "2024-05-15T12:39:16.484128Z", + "iopub.status.busy": "2024-05-15T12:39:16.483722Z", + "iopub.status.idle": "2024-05-15T12:39:16.713196Z", + "shell.execute_reply": "2024-05-15T12:39:16.712480Z" } }, "outputs": [ @@ -1778,20 +1723,20 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "/tmp/11cf2e3a3fe2d38f7293f27fbfc34dab78123e8d8e63ffa417157763283658414.py:587: SettingWithCopyWarning: \n", + "/tmp/b9f9761599676d055346cd2b368083bd2229f6aecb71536117157767545533166.py:587: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " data[col] = [None] * len(data)\n", - "\u001b[32mINFO:dataprep_ml-2872:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Cleaning the data\u001b[0m\n" ] }, { @@ -1800,119 +1745,119 @@ "text": [ "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/dataprep_ml/cleaners.py:163: UserWarning: The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.\n", " result = pd.to_datetime(element,\n", - "\u001b[32mINFO:dataprep_ml-2872:Transforming timeseries data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Transforming timeseries data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `preprocess` runtime: 0.02 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `preprocess` runtime: 0.02 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Predict phase 2/4] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Predict phase 2/4] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `featurize` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `featurize` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `_timed_call` runtime: 0.09 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `_timed_call` runtime: 0.09 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2872:[Predict phase 4/4] - Analyzing output\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2821:[Predict phase 4/4] - Analyzing output\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block ICP is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block ICP is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block ConfStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block ConfStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block AccStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block AccStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2872:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2821:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `explain` runtime: 0.09 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `explain` runtime: 0.09 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2872: `predict` runtime: 0.22 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2821: `predict` runtime: 0.22 seconds\u001b[0m\n" ] } ], @@ -1932,10 +1877,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:10.531834Z", - "iopub.status.busy": "2024-05-15T12:32:10.531626Z", - "iopub.status.idle": "2024-05-15T12:32:10.542916Z", - "shell.execute_reply": "2024-05-15T12:32:10.542282Z" + "iopub.execute_input": "2024-05-15T12:39:16.715848Z", + "iopub.status.busy": "2024-05-15T12:39:16.715440Z", + "iopub.status.idle": "2024-05-15T12:39:16.726742Z", + "shell.execute_reply": "2024-05-15T12:39:16.726049Z" } }, "outputs": [ @@ -2040,10 +1985,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:10.545546Z", - "iopub.status.busy": "2024-05-15T12:32:10.545158Z", - "iopub.status.idle": "2024-05-15T12:32:10.951600Z", - "shell.execute_reply": "2024-05-15T12:32:10.950867Z" + "iopub.execute_input": "2024-05-15T12:39:16.729246Z", + "iopub.status.busy": "2024-05-15T12:39:16.728891Z", + "iopub.status.idle": "2024-05-15T12:39:17.132478Z", + "shell.execute_reply": "2024-05-15T12:39:17.131830Z" } }, "outputs": [], @@ -2056,10 +2001,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:32:10.954775Z", - "iopub.status.busy": "2024-05-15T12:32:10.954472Z", - "iopub.status.idle": "2024-05-15T12:32:11.144915Z", - "shell.execute_reply": "2024-05-15T12:32:11.144230Z" + "iopub.execute_input": "2024-05-15T12:39:17.135502Z", + "iopub.status.busy": "2024-05-15T12:39:17.135009Z", + "iopub.status.idle": "2024-05-15T12:39:17.315414Z", + "shell.execute_reply": "2024-05-15T12:39:17.314713Z" } }, "outputs": [ diff --git a/tutorials/tutorial_update_models/tutorial_update_models.html b/tutorials/tutorial_update_models/tutorial_update_models.html index 3cfce6424..b4cbe7ef8 100644 --- a/tutorials/tutorial_update_models/tutorial_update_models.html +++ b/tutorials/tutorial_update_models/tutorial_update_models.html @@ -110,8 +110,8 @@

Initial model training
-INFO:lightwood-2759:No torchvision detected, image helpers not supported.
-INFO:lightwood-2759:No torchvision/pillow detected, image encoder not supported
+INFO:lightwood-2649:No torchvision detected, image helpers not supported.
+INFO:lightwood-2649:No torchvision/pillow detected, image encoder not supported
 
@@ -181,58 +181,58 @@

Initial model training
-INFO:type_infer-2759:Analyzing a sample of 979
-INFO:type_infer-2759:from a total population of 1030, this is equivalent to 95.0% of your data.
-INFO:type_infer-2759:Using 3 processes to deduct types.
-INFO:type_infer-2759:Infering type for: cement
-INFO:type_infer-2759:Infering type for: slag
-INFO:type_infer-2759:Column cement has data type float
-INFO:type_infer-2759:Column slag has data type float
-INFO:type_infer-2759:Infering type for: water
-INFO:type_infer-2759:Infering type for: flyAsh
-INFO:type_infer-2759:Column water has data type float
-INFO:type_infer-2759:Column flyAsh has data type float
-INFO:type_infer-2759:Infering type for: superPlasticizer
-INFO:type_infer-2759:Infering type for: coarseAggregate
-INFO:type_infer-2759:Column coarseAggregate has data type float
-INFO:type_infer-2759:Column superPlasticizer has data type float
-INFO:type_infer-2759:Infering type for: fineAggregate
-INFO:type_infer-2759:Infering type for: age
-INFO:type_infer-2759:Column age has data type integer
-INFO:type_infer-2759:Infering type for: concrete_strength
-INFO:type_infer-2759:Column fineAggregate has data type float
-INFO:type_infer-2759:Column concrete_strength has data type float
-INFO:type_infer-2759:Infering type for: id
-INFO:type_infer-2759:Column id has data type integer
-INFO:dataprep_ml-2759:Starting statistical analysis
-INFO:dataprep_ml-2759:Finished statistical analysis
-INFO:dataprep_ml-2759:[Learn phase 1/8] - Statistical analysis
-INFO:dataprep_ml-2759:Starting statistical analysis
-INFO:dataprep_ml-2759:Finished statistical analysis
-DEBUG:lightwood-2759: `analyze_data` runtime: 0.02 seconds
-INFO:dataprep_ml-2759:[Learn phase 2/8] - Data preprocessing
-INFO:dataprep_ml-2759:Cleaning the data
-DEBUG:lightwood-2759: `preprocess` runtime: 0.01 seconds
-INFO:dataprep_ml-2759:[Learn phase 3/8] - Data splitting
-INFO:dataprep_ml-2759:Splitting the data into train/test
-DEBUG:lightwood-2759: `split` runtime: 0.0 seconds
-INFO:dataprep_ml-2759:[Learn phase 4/8] - Preparing encoders
-DEBUG:dataprep_ml-2759:Preparing sequentially...
-DEBUG:dataprep_ml-2759:Preparing encoder for id...
-DEBUG:dataprep_ml-2759:Preparing encoder for cement...
-DEBUG:dataprep_ml-2759:Preparing encoder for slag...
-DEBUG:dataprep_ml-2759:Preparing encoder for flyAsh...
-DEBUG:dataprep_ml-2759:Preparing encoder for water...
-DEBUG:dataprep_ml-2759:Preparing encoder for superPlasticizer...
-DEBUG:dataprep_ml-2759:Preparing encoder for coarseAggregate...
-DEBUG:dataprep_ml-2759:Preparing encoder for fineAggregate...
-DEBUG:dataprep_ml-2759:Preparing encoder for age...
-DEBUG:lightwood-2759: `prepare` runtime: 0.01 seconds
-INFO:dataprep_ml-2759:[Learn phase 5/8] - Feature generation
-INFO:dataprep_ml-2759:Featurizing the data
-DEBUG:lightwood-2759: `featurize` runtime: 0.06 seconds
-INFO:dataprep_ml-2759:[Learn phase 6/8] - Mixer training
-INFO:dataprep_ml-2759:Training the mixers
+INFO:type_infer-2649:Analyzing a sample of 979
+INFO:type_infer-2649:from a total population of 1030, this is equivalent to 95.0% of your data.
+INFO:type_infer-2649:Using 3 processes to deduct types.
+INFO:type_infer-2649:Infering type for: cement
+INFO:type_infer-2649:Infering type for: slag
+INFO:type_infer-2649:Column slag has data type float
+INFO:type_infer-2649:Column cement has data type float
+INFO:type_infer-2649:Infering type for: water
+INFO:type_infer-2649:Infering type for: flyAsh
+INFO:type_infer-2649:Column water has data type float
+INFO:type_infer-2649:Column flyAsh has data type float
+INFO:type_infer-2649:Infering type for: superPlasticizer
+INFO:type_infer-2649:Infering type for: coarseAggregate
+INFO:type_infer-2649:Infering type for: id
+INFO:type_infer-2649:Column coarseAggregate has data type float
+INFO:type_infer-2649:Column superPlasticizer has data type float
+INFO:type_infer-2649:Column id has data type integer
+INFO:type_infer-2649:Infering type for: fineAggregate
+INFO:type_infer-2649:Infering type for: age
+INFO:type_infer-2649:Infering type for: concrete_strength
+INFO:type_infer-2649:Column age has data type integer
+INFO:type_infer-2649:Column fineAggregate has data type float
+INFO:type_infer-2649:Column concrete_strength has data type float
+INFO:dataprep_ml-2649:Starting statistical analysis
+INFO:dataprep_ml-2649:Finished statistical analysis
+INFO:dataprep_ml-2649:[Learn phase 1/8] - Statistical analysis
+INFO:dataprep_ml-2649:Starting statistical analysis
+INFO:dataprep_ml-2649:Finished statistical analysis
+DEBUG:lightwood-2649: `analyze_data` runtime: 0.02 seconds
+INFO:dataprep_ml-2649:[Learn phase 2/8] - Data preprocessing
+INFO:dataprep_ml-2649:Cleaning the data
+DEBUG:lightwood-2649: `preprocess` runtime: 0.01 seconds
+INFO:dataprep_ml-2649:[Learn phase 3/8] - Data splitting
+INFO:dataprep_ml-2649:Splitting the data into train/test
+DEBUG:lightwood-2649: `split` runtime: 0.0 seconds
+INFO:dataprep_ml-2649:[Learn phase 4/8] - Preparing encoders
+DEBUG:dataprep_ml-2649:Preparing sequentially...
+DEBUG:dataprep_ml-2649:Preparing encoder for id...
+DEBUG:dataprep_ml-2649:Preparing encoder for cement...
+DEBUG:dataprep_ml-2649:Preparing encoder for slag...
+DEBUG:dataprep_ml-2649:Preparing encoder for flyAsh...
+DEBUG:dataprep_ml-2649:Preparing encoder for water...
+DEBUG:dataprep_ml-2649:Preparing encoder for superPlasticizer...
+DEBUG:dataprep_ml-2649:Preparing encoder for coarseAggregate...
+DEBUG:dataprep_ml-2649:Preparing encoder for fineAggregate...
+DEBUG:dataprep_ml-2649:Preparing encoder for age...
+DEBUG:lightwood-2649: `prepare` runtime: 0.01 seconds
+INFO:dataprep_ml-2649:[Learn phase 5/8] - Feature generation
+INFO:dataprep_ml-2649:Featurizing the data
+DEBUG:lightwood-2649: `featurize` runtime: 0.06 seconds
+INFO:dataprep_ml-2649:[Learn phase 6/8] - Mixer training
+INFO:dataprep_ml-2649:Training the mixers
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/torch/amp/grad_scaler.py:131: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available.  Disabling.
   warnings.warn(
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/pytorch_ranger/ranger.py:172: UserWarning: This overload of addcmul_ is deprecated:
@@ -240,43 +240,43 @@ 

Initial model trainingINFO:lightwood-2759:Loss of 39.99637508392334 with learning rate 0.0001 -INFO:lightwood-2759:Loss of 21.826460361480713 with learning rate 0.0005 -INFO:lightwood-2759:Loss of 15.12899512052536 with learning rate 0.001 -INFO:lightwood-2759:Loss of 15.062753021717072 with learning rate 0.002 -INFO:lightwood-2759:Loss of 26.490495562553406 with learning rate 0.003 -INFO:lightwood-2759:Loss of 33.6572003364563 with learning rate 0.005 -INFO:lightwood-2759:Loss of 303.60721158981323 with learning rate 0.01 -INFO:lightwood-2759:Loss of nan with learning rate 0.05 -INFO:lightwood-2759:Found learning rate of: 0.002 -INFO:lightwood-2759:Loss @ epoch 1: 0.11838734149932861 -INFO:lightwood-2759:Loss @ epoch 2: 0.4641949534416199 -INFO:lightwood-2759:Loss @ epoch 3: 0.3976145386695862 -INFO:lightwood-2759:Loss @ epoch 4: 0.3706841468811035 -INFO:lightwood-2759:Loss @ epoch 5: 0.2367912232875824 -INFO:lightwood-2759:Loss @ epoch 6: 0.22560915350914001 -INFO:lightwood-2759:Loss @ epoch 7: 0.12089195847511292 -DEBUG:lightwood-2759: `fit_mixer` runtime: 0.52 seconds -INFO:dataprep_ml-2759:Ensembling the mixer -INFO:lightwood-2759:Mixer: Neural got accuracy: 0.238 -INFO:lightwood-2759:Picked best mixer: Neural -DEBUG:lightwood-2759: `fit` runtime: 0.53 seconds -INFO:dataprep_ml-2759:[Learn phase 7/8] - Ensemble analysis -INFO:dataprep_ml-2759:Analyzing the ensemble of mixers -INFO:lightwood-2759:The block ICP is now running its analyze() method -INFO:lightwood-2759:The block ConfStats is now running its analyze() method -INFO:lightwood-2759:The block AccStats is now running its analyze() method -INFO:lightwood-2759:The block PermutationFeatureImportance is now running its analyze() method -INFO:lightwood-2759:[PFI] Using a random sample (1000 rows out of 10). -INFO:lightwood-2759:[PFI] Set to consider first 10 columns out of 9: ['id', 'cement', 'slag', 'flyAsh', 'water', 'superPlasticizer', 'coarseAggregate', 'fineAggregate', 'age']. -DEBUG:lightwood-2759: `analyze_ensemble` runtime: 0.15 seconds -INFO:dataprep_ml-2759:[Learn phase 8/8] - Adjustment on validation requested -INFO:dataprep_ml-2759:Updating the mixers +INFO:lightwood-2649:Loss of 39.99637508392334 with learning rate 0.0001 +INFO:lightwood-2649:Loss of 21.826460361480713 with learning rate 0.0005 +INFO:lightwood-2649:Loss of 15.12899512052536 with learning rate 0.001 +INFO:lightwood-2649:Loss of 15.062753021717072 with learning rate 0.002 +INFO:lightwood-2649:Loss of 26.490495562553406 with learning rate 0.003 +INFO:lightwood-2649:Loss of 33.6572003364563 with learning rate 0.005 +INFO:lightwood-2649:Loss of 303.60721158981323 with learning rate 0.01 +INFO:lightwood-2649:Loss of nan with learning rate 0.05 +INFO:lightwood-2649:Found learning rate of: 0.002 +INFO:lightwood-2649:Loss @ epoch 1: 0.11838734149932861 +INFO:lightwood-2649:Loss @ epoch 2: 0.4641949534416199 +INFO:lightwood-2649:Loss @ epoch 3: 0.3976145386695862 +INFO:lightwood-2649:Loss @ epoch 4: 0.3706841468811035 +INFO:lightwood-2649:Loss @ epoch 5: 0.2367912232875824 +INFO:lightwood-2649:Loss @ epoch 6: 0.22560915350914001 +INFO:lightwood-2649:Loss @ epoch 7: 0.12089195847511292 +DEBUG:lightwood-2649: `fit_mixer` runtime: 0.53 seconds +INFO:dataprep_ml-2649:Ensembling the mixer +INFO:lightwood-2649:Mixer: Neural got accuracy: 0.238 +INFO:lightwood-2649:Picked best mixer: Neural +DEBUG:lightwood-2649: `fit` runtime: 0.54 seconds +INFO:dataprep_ml-2649:[Learn phase 7/8] - Ensemble analysis +INFO:dataprep_ml-2649:Analyzing the ensemble of mixers +INFO:lightwood-2649:The block ICP is now running its analyze() method +INFO:lightwood-2649:The block ConfStats is now running its analyze() method +INFO:lightwood-2649:The block AccStats is now running its analyze() method +INFO:lightwood-2649:The block PermutationFeatureImportance is now running its analyze() method +INFO:lightwood-2649:[PFI] Using a random sample (1000 rows out of 10). +INFO:lightwood-2649:[PFI] Set to consider first 10 columns out of 9: ['id', 'cement', 'slag', 'flyAsh', 'water', 'superPlasticizer', 'coarseAggregate', 'fineAggregate', 'age']. +DEBUG:lightwood-2649: `analyze_ensemble` runtime: 0.15 seconds +INFO:dataprep_ml-2649:[Learn phase 8/8] - Adjustment on validation requested +INFO:dataprep_ml-2649:Updating the mixers /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/torch/amp/grad_scaler.py:131: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available. Disabling. warnings.warn( -INFO:lightwood-2759:Loss @ epoch 1: 0.1678172747294108 -DEBUG:lightwood-2759: `adjust` runtime: 0.03 seconds -DEBUG:lightwood-2759: `learn` runtime: 0.82 seconds +INFO:lightwood-2649:Loss @ epoch 1: 0.1678172747294108 +DEBUG:lightwood-2649: `adjust` runtime: 0.03 seconds +DEBUG:lightwood-2649: `learn` runtime: 0.83 seconds

@@ -294,24 +294,24 @@

Initial model training
-INFO:dataprep_ml-2759:[Predict phase 1/4] - Data preprocessing
-INFO:dataprep_ml-2759:Cleaning the data
-DEBUG:lightwood-2759: `preprocess` runtime: 0.01 seconds
-INFO:dataprep_ml-2759:[Predict phase 2/4] - Feature generation
-INFO:dataprep_ml-2759:Featurizing the data
-DEBUG:lightwood-2759: `featurize` runtime: 0.03 seconds
-INFO:dataprep_ml-2759:[Predict phase 3/4] - Calling ensemble
-DEBUG:lightwood-2759: `_timed_call` runtime: 0.03 seconds
-INFO:dataprep_ml-2759:[Predict phase 4/4] - Analyzing output
-INFO:lightwood-2759:The block ICP is now running its explain() method
-INFO:lightwood-2759:The block ConfStats is now running its explain() method
-INFO:lightwood-2759:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.
-INFO:lightwood-2759:The block AccStats is now running its explain() method
-INFO:lightwood-2759:AccStats.explain() has not been implemented, no modifications will be done to the data insights.
-INFO:lightwood-2759:The block PermutationFeatureImportance is now running its explain() method
-INFO:lightwood-2759:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.
-DEBUG:lightwood-2759: `explain` runtime: 0.05 seconds
-DEBUG:lightwood-2759: `predict` runtime: 0.13 seconds
+INFO:dataprep_ml-2649:[Predict phase 1/4] - Data preprocessing
+INFO:dataprep_ml-2649:Cleaning the data
+DEBUG:lightwood-2649: `preprocess` runtime: 0.01 seconds
+INFO:dataprep_ml-2649:[Predict phase 2/4] - Feature generation
+INFO:dataprep_ml-2649:Featurizing the data
+DEBUG:lightwood-2649: `featurize` runtime: 0.03 seconds
+INFO:dataprep_ml-2649:[Predict phase 3/4] - Calling ensemble
+DEBUG:lightwood-2649: `_timed_call` runtime: 0.03 seconds
+INFO:dataprep_ml-2649:[Predict phase 4/4] - Analyzing output
+INFO:lightwood-2649:The block ICP is now running its explain() method
+INFO:lightwood-2649:The block ConfStats is now running its explain() method
+INFO:lightwood-2649:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.
+INFO:lightwood-2649:The block AccStats is now running its explain() method
+INFO:lightwood-2649:AccStats.explain() has not been implemented, no modifications will be done to the data insights.
+INFO:lightwood-2649:The block PermutationFeatureImportance is now running its explain() method
+INFO:lightwood-2649:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.
+DEBUG:lightwood-2649: `explain` runtime: 0.05 seconds
+DEBUG:lightwood-2649: `predict` runtime: 0.13 seconds
 

@@ -473,15 +473,15 @@

PredictorInterf

-INFO:dataprep_ml-2759:Cleaning the data
-DEBUG:lightwood-2759: `preprocess` runtime: 0.02 seconds
-INFO:dataprep_ml-2759:Cleaning the data
-DEBUG:lightwood-2759: `preprocess` runtime: 0.01 seconds
-INFO:dataprep_ml-2759:Updating the mixers
+INFO:dataprep_ml-2649:Cleaning the data
+DEBUG:lightwood-2649: `preprocess` runtime: 0.02 seconds
+INFO:dataprep_ml-2649:Cleaning the data
+DEBUG:lightwood-2649: `preprocess` runtime: 0.01 seconds
+INFO:dataprep_ml-2649:Updating the mixers
 /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/torch/amp/grad_scaler.py:131: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available.  Disabling.
   warnings.warn(
-INFO:lightwood-2759:Loss @ epoch 1: 0.10915952424208324
-DEBUG:lightwood-2759: `adjust` runtime: 0.11 seconds
+INFO:lightwood-2649:Loss @ epoch 1: 0.10915952424208324
+DEBUG:lightwood-2649: `adjust` runtime: 0.11 seconds
 
@@ -498,24 +498,24 @@

PredictorInterf

-INFO:dataprep_ml-2759:[Predict phase 1/4] - Data preprocessing
-INFO:dataprep_ml-2759:Cleaning the data
-DEBUG:lightwood-2759: `preprocess` runtime: 0.01 seconds
-INFO:dataprep_ml-2759:[Predict phase 2/4] - Feature generation
-INFO:dataprep_ml-2759:Featurizing the data
-DEBUG:lightwood-2759: `featurize` runtime: 0.03 seconds
-INFO:dataprep_ml-2759:[Predict phase 3/4] - Calling ensemble
-DEBUG:lightwood-2759: `_timed_call` runtime: 0.03 seconds
-INFO:dataprep_ml-2759:[Predict phase 4/4] - Analyzing output
-INFO:lightwood-2759:The block ICP is now running its explain() method
-INFO:lightwood-2759:The block ConfStats is now running its explain() method
-INFO:lightwood-2759:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.
-INFO:lightwood-2759:The block AccStats is now running its explain() method
-INFO:lightwood-2759:AccStats.explain() has not been implemented, no modifications will be done to the data insights.
-INFO:lightwood-2759:The block PermutationFeatureImportance is now running its explain() method
-INFO:lightwood-2759:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.
-DEBUG:lightwood-2759: `explain` runtime: 0.05 seconds
-DEBUG:lightwood-2759: `predict` runtime: 0.13 seconds
+INFO:dataprep_ml-2649:[Predict phase 1/4] - Data preprocessing
+INFO:dataprep_ml-2649:Cleaning the data
+DEBUG:lightwood-2649: `preprocess` runtime: 0.01 seconds
+INFO:dataprep_ml-2649:[Predict phase 2/4] - Feature generation
+INFO:dataprep_ml-2649:Featurizing the data
+DEBUG:lightwood-2649: `featurize` runtime: 0.03 seconds
+INFO:dataprep_ml-2649:[Predict phase 3/4] - Calling ensemble
+DEBUG:lightwood-2649: `_timed_call` runtime: 0.03 seconds
+INFO:dataprep_ml-2649:[Predict phase 4/4] - Analyzing output
+INFO:lightwood-2649:The block ICP is now running its explain() method
+INFO:lightwood-2649:The block ConfStats is now running its explain() method
+INFO:lightwood-2649:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.
+INFO:lightwood-2649:The block AccStats is now running its explain() method
+INFO:lightwood-2649:AccStats.explain() has not been implemented, no modifications will be done to the data insights.
+INFO:lightwood-2649:The block PermutationFeatureImportance is now running its explain() method
+INFO:lightwood-2649:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.
+DEBUG:lightwood-2649: `explain` runtime: 0.05 seconds
+DEBUG:lightwood-2649: `predict` runtime: 0.13 seconds
 
diff --git a/tutorials/tutorial_update_models/tutorial_update_models.ipynb b/tutorials/tutorial_update_models/tutorial_update_models.ipynb index 32ca35f36..baad7f850 100644 --- a/tutorials/tutorial_update_models/tutorial_update_models.ipynb +++ b/tutorials/tutorial_update_models/tutorial_update_models.ipynb @@ -21,10 +21,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:30.371645Z", - "iopub.status.busy": "2024-05-15T12:31:30.371452Z", - "iopub.status.idle": "2024-05-15T12:31:33.203343Z", - "shell.execute_reply": "2024-05-15T12:31:33.202682Z" + "iopub.execute_input": "2024-05-15T12:38:36.597254Z", + "iopub.status.busy": "2024-05-15T12:38:36.597058Z", + "iopub.status.idle": "2024-05-15T12:38:39.444383Z", + "shell.execute_reply": "2024-05-15T12:38:39.443711Z" } }, "outputs": [ @@ -32,14 +32,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:No torchvision detected, image helpers not supported.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:No torchvision detected, image helpers not supported.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:No torchvision/pillow detected, image encoder not supported\u001b[0m\n" ] } ], @@ -53,10 +53,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:33.206422Z", - "iopub.status.busy": "2024-05-15T12:31:33.206158Z", - "iopub.status.idle": "2024-05-15T12:31:33.429712Z", - "shell.execute_reply": "2024-05-15T12:31:33.429076Z" + "iopub.execute_input": "2024-05-15T12:38:39.447713Z", + "iopub.status.busy": "2024-05-15T12:38:39.447197Z", + "iopub.status.idle": "2024-05-15T12:38:39.569705Z", + "shell.execute_reply": "2024-05-15T12:38:39.568972Z" } }, "outputs": [ @@ -98,10 +98,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:33.432194Z", - "iopub.status.busy": "2024-05-15T12:31:33.431990Z", - "iopub.status.idle": "2024-05-15T12:31:34.871737Z", - "shell.execute_reply": "2024-05-15T12:31:34.871077Z" + "iopub.execute_input": "2024-05-15T12:38:39.572420Z", + "iopub.status.busy": "2024-05-15T12:38:39.572012Z", + "iopub.status.idle": "2024-05-15T12:38:41.013683Z", + "shell.execute_reply": "2024-05-15T12:38:41.013049Z" }, "scrolled": true }, @@ -110,364 +110,364 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Analyzing a sample of 979\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Analyzing a sample of 979\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:from a total population of 1030, this is equivalent to 95.0% of your data.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:from a total population of 1030, this is equivalent to 95.0% of your data.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Using 3 processes to deduct types.\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Using 3 processes to deduct types.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: cement\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: cement\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: slag\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: slag\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column cement has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column slag has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column slag has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column cement has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: water\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: water\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: flyAsh\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: flyAsh\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column water has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column water has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column flyAsh has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column flyAsh has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: superPlasticizer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: superPlasticizer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: coarseAggregate\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: coarseAggregate\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column coarseAggregate has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: id\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column superPlasticizer has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column coarseAggregate has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: fineAggregate\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column superPlasticizer has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: age\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column id has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column age has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: fineAggregate\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: concrete_strength\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: age\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column fineAggregate has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Infering type for: concrete_strength\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column concrete_strength has data type float\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column age has data type integer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Infering type for: id\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column fineAggregate has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:type_infer-2759:Column id has data type integer\u001b[0m\n" + "\u001b[32mINFO:type_infer-2649:Column concrete_strength has data type float\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Finished statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 1/8] - Statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Starting statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Starting statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Finished statistical analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Finished statistical analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `analyze_data` runtime: 0.02 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `analyze_data` runtime: 0.02 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 2/8] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `preprocess` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `preprocess` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 3/8] - Data splitting\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 3/8] - Data splitting\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Splitting the data into train/test\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Splitting the data into train/test\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `split` runtime: 0.0 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `split` runtime: 0.0 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 4/8] - Preparing encoders\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing sequentially...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing sequentially...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for id...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for id...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for cement...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for cement...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for slag...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for slag...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for flyAsh...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for flyAsh...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for water...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for water...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for superPlasticizer...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for superPlasticizer...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for coarseAggregate...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for coarseAggregate...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for fineAggregate...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for fineAggregate...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:dataprep_ml-2759:Preparing encoder for age...\u001b[0m\n" + "\u001b[37mDEBUG:dataprep_ml-2649:Preparing encoder for age...\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `prepare` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `prepare` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 5/8] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 5/8] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `featurize` runtime: 0.06 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `featurize` runtime: 0.06 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 6/8] - Mixer training\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 6/8] - Mixer training\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Training the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Training the mixers\u001b[0m\n" ] }, { @@ -487,224 +487,224 @@ "Consider using one of the following signatures instead:\n", "\taddcmul_(Tensor tensor1, Tensor tensor2, *, Number value) (Triggered internally at ../torch/csrc/utils/python_arg_parser.cpp:1578.)\n", " exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)\n", - "\u001b[32mINFO:lightwood-2759:Loss of 39.99637508392334 with learning rate 0.0001\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of 39.99637508392334 with learning rate 0.0001\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss of 21.826460361480713 with learning rate 0.0005\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of 21.826460361480713 with learning rate 0.0005\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss of 15.12899512052536 with learning rate 0.001\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of 15.12899512052536 with learning rate 0.001\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss of 15.062753021717072 with learning rate 0.002\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of 15.062753021717072 with learning rate 0.002\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss of 26.490495562553406 with learning rate 0.003\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of 26.490495562553406 with learning rate 0.003\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss of 33.6572003364563 with learning rate 0.005\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of 33.6572003364563 with learning rate 0.005\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss of 303.60721158981323 with learning rate 0.01\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of 303.60721158981323 with learning rate 0.01\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss of nan with learning rate 0.05\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss of nan with learning rate 0.05\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Found learning rate of: 0.002\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Found learning rate of: 0.002\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 1: 0.11838734149932861\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 1: 0.11838734149932861\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 2: 0.4641949534416199\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 2: 0.4641949534416199\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 3: 0.3976145386695862\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 3: 0.3976145386695862\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 4: 0.3706841468811035\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 4: 0.3706841468811035\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 5: 0.2367912232875824\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 5: 0.2367912232875824\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 6: 0.22560915350914001\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 6: 0.22560915350914001\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 7: 0.12089195847511292\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 7: 0.12089195847511292\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `fit_mixer` runtime: 0.52 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `fit_mixer` runtime: 0.53 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Ensembling the mixer\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Ensembling the mixer\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Mixer: Neural got accuracy: 0.238\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Mixer: Neural got accuracy: 0.238\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Picked best mixer: Neural\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Picked best mixer: Neural\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `fit` runtime: 0.53 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `fit` runtime: 0.54 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 7/8] - Ensemble analysis\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Analyzing the ensemble of mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Analyzing the ensemble of mixers\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block ICP is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block ICP is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block ConfStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block ConfStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block AccStats is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block AccStats is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block PermutationFeatureImportance is now running its analyze() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:[PFI] Using a random sample (1000 rows out of 10).\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:[PFI] Using a random sample (1000 rows out of 10).\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:[PFI] Set to consider first 10 columns out of 9: ['id', 'cement', 'slag', 'flyAsh', 'water', 'superPlasticizer', 'coarseAggregate', 'fineAggregate', 'age'].\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:[PFI] Set to consider first 10 columns out of 9: ['id', 'cement', 'slag', 'flyAsh', 'water', 'superPlasticizer', 'coarseAggregate', 'fineAggregate', 'age'].\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `analyze_ensemble` runtime: 0.15 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `analyze_ensemble` runtime: 0.15 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Learn phase 8/8] - Adjustment on validation requested\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Updating the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Updating the mixers\u001b[0m\n" ] }, { @@ -719,21 +719,21 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 1: 0.1678172747294108\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 1: 0.1678172747294108\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `adjust` runtime: 0.03 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `adjust` runtime: 0.03 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `learn` runtime: 0.82 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `learn` runtime: 0.83 seconds\u001b[0m\n" ] } ], @@ -770,10 +770,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:34.874734Z", - "iopub.status.busy": "2024-05-15T12:31:34.874316Z", - "iopub.status.idle": "2024-05-15T12:31:35.015369Z", - "shell.execute_reply": "2024-05-15T12:31:35.014803Z" + "iopub.execute_input": "2024-05-15T12:38:41.016512Z", + "iopub.status.busy": "2024-05-15T12:38:41.016092Z", + "iopub.status.idle": "2024-05-15T12:38:41.160419Z", + "shell.execute_reply": "2024-05-15T12:38:41.159845Z" } }, "outputs": [ @@ -781,126 +781,126 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `preprocess` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `preprocess` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 2/4] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 2/4] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `featurize` runtime: 0.03 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `featurize` runtime: 0.03 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `_timed_call` runtime: 0.03 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `_timed_call` runtime: 0.03 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 4/4] - Analyzing output\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 4/4] - Analyzing output\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block ICP is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block ICP is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block ConfStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block ConfStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block AccStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block AccStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `explain` runtime: 0.05 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `explain` runtime: 0.05 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `predict` runtime: 0.13 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `predict` runtime: 0.13 seconds\u001b[0m\n" ] }, { @@ -1094,10 +1094,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:35.017903Z", - "iopub.status.busy": "2024-05-15T12:31:35.017554Z", - "iopub.status.idle": "2024-05-15T12:31:35.127911Z", - "shell.execute_reply": "2024-05-15T12:31:35.127311Z" + "iopub.execute_input": "2024-05-15T12:38:41.162902Z", + "iopub.status.busy": "2024-05-15T12:38:41.162689Z", + "iopub.status.idle": "2024-05-15T12:38:41.276226Z", + "shell.execute_reply": "2024-05-15T12:38:41.275636Z" } }, "outputs": [ @@ -1105,35 +1105,35 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `preprocess` runtime: 0.02 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `preprocess` runtime: 0.02 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `preprocess` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `preprocess` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Updating the mixers\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Updating the mixers\u001b[0m\n" ] }, { @@ -1148,14 +1148,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:Loss @ epoch 1: 0.10915952424208324\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:Loss @ epoch 1: 0.10915952424208324\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `adjust` runtime: 0.11 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `adjust` runtime: 0.11 seconds\u001b[0m\n" ] } ], @@ -1168,10 +1168,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:35.130571Z", - "iopub.status.busy": "2024-05-15T12:31:35.130366Z", - "iopub.status.idle": "2024-05-15T12:31:35.268592Z", - "shell.execute_reply": "2024-05-15T12:31:35.267965Z" + "iopub.execute_input": "2024-05-15T12:38:41.279047Z", + "iopub.status.busy": "2024-05-15T12:38:41.278590Z", + "iopub.status.idle": "2024-05-15T12:38:41.418298Z", + "shell.execute_reply": "2024-05-15T12:38:41.417642Z" } }, "outputs": [ @@ -1179,126 +1179,126 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 1/4] - Data preprocessing\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Cleaning the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Cleaning the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `preprocess` runtime: 0.01 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `preprocess` runtime: 0.01 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 2/4] - Feature generation\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 2/4] - Feature generation\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:Featurizing the data\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:Featurizing the data\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `featurize` runtime: 0.03 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `featurize` runtime: 0.03 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 3/4] - Calling ensemble\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `_timed_call` runtime: 0.03 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `_timed_call` runtime: 0.03 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:dataprep_ml-2759:[Predict phase 4/4] - Analyzing output\u001b[0m\n" + "\u001b[32mINFO:dataprep_ml-2649:[Predict phase 4/4] - Analyzing output\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block ICP is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block ICP is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block ConfStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block ConfStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:ConfStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block AccStats is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block AccStats is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:AccStats.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:The block PermutationFeatureImportance is now running its explain() method\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32mINFO:lightwood-2759:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" + "\u001b[32mINFO:lightwood-2649:PermutationFeatureImportance.explain() has not been implemented, no modifications will be done to the data insights.\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `explain` runtime: 0.05 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `explain` runtime: 0.05 seconds\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[37mDEBUG:lightwood-2759: `predict` runtime: 0.13 seconds\u001b[0m\n" + "\u001b[37mDEBUG:lightwood-2649: `predict` runtime: 0.13 seconds\u001b[0m\n" ] }, { @@ -1462,10 +1462,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-15T12:31:35.271408Z", - "iopub.status.busy": "2024-05-15T12:31:35.270879Z", - "iopub.status.idle": "2024-05-15T12:31:35.276560Z", - "shell.execute_reply": "2024-05-15T12:31:35.275925Z" + "iopub.execute_input": "2024-05-15T12:38:41.421175Z", + "iopub.status.busy": "2024-05-15T12:38:41.420697Z", + "iopub.status.idle": "2024-05-15T12:38:41.426502Z", + "shell.execute_reply": "2024-05-15T12:38:41.425844Z" } }, "outputs": [