62
62
parser .add_argument ('--gpu' , default = None , type = int ,
63
63
help = 'GPU id to use.' )
64
64
65
- best_prec1 = 0
65
+ best_acc1 = 0
66
66
67
67
68
68
def main ():
69
- global args , best_prec1
69
+ global args , best_acc1
70
70
args = parser .parse_args ()
71
71
72
72
if args .seed is not None :
@@ -122,7 +122,7 @@ def main():
122
122
print ("=> loading checkpoint '{}'" .format (args .resume ))
123
123
checkpoint = torch .load (args .resume )
124
124
args .start_epoch = checkpoint ['epoch' ]
125
- best_prec1 = checkpoint ['best_prec1 ' ]
125
+ best_acc1 = checkpoint ['best_acc1 ' ]
126
126
model .load_state_dict (checkpoint ['state_dict' ])
127
127
optimizer .load_state_dict (checkpoint ['optimizer' ])
128
128
print ("=> loaded checkpoint '{}' (epoch {})"
@@ -179,16 +179,16 @@ def main():
179
179
train (train_loader , model , criterion , optimizer , epoch )
180
180
181
181
# evaluate on validation set
182
- prec1 = validate (val_loader , model , criterion )
182
+ acc1 = validate (val_loader , model , criterion )
183
183
184
- # remember best prec @1 and save checkpoint
185
- is_best = prec1 > best_prec1
186
- best_prec1 = max (prec1 , best_prec1 )
184
+ # remember best acc @1 and save checkpoint
185
+ is_best = acc1 > best_acc1
186
+ best_acc1 = max (acc1 , best_acc1 )
187
187
save_checkpoint ({
188
188
'epoch' : epoch + 1 ,
189
189
'arch' : args .arch ,
190
190
'state_dict' : model .state_dict (),
191
- 'best_prec1 ' : best_prec1 ,
191
+ 'best_acc1 ' : best_acc1 ,
192
192
'optimizer' : optimizer .state_dict (),
193
193
}, is_best )
194
194
@@ -217,10 +217,10 @@ def train(train_loader, model, criterion, optimizer, epoch):
217
217
loss = criterion (output , target )
218
218
219
219
# measure accuracy and record loss
220
- prec1 , prec5 = accuracy (output , target , topk = (1 , 5 ))
220
+ acc1 , acc5 = accuracy (output , target , topk = (1 , 5 ))
221
221
losses .update (loss .item (), input .size (0 ))
222
- top1 .update (prec1 [0 ], input .size (0 ))
223
- top5 .update (prec5 [0 ], input .size (0 ))
222
+ top1 .update (acc1 [0 ], input .size (0 ))
223
+ top5 .update (acc5 [0 ], input .size (0 ))
224
224
225
225
# compute gradient and do SGD step
226
226
optimizer .zero_grad ()
@@ -236,8 +236,8 @@ def train(train_loader, model, criterion, optimizer, epoch):
236
236
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t '
237
237
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t '
238
238
'Loss {loss.val:.4f} ({loss.avg:.4f})\t '
239
- 'Prec @1 {top1.val:.3f} ({top1.avg:.3f})\t '
240
- 'Prec @5 {top5.val:.3f} ({top5.avg:.3f})' .format (
239
+ 'Acc @1 {top1.val:.3f} ({top1.avg:.3f})\t '
240
+ 'Acc @5 {top5.val:.3f} ({top5.avg:.3f})' .format (
241
241
epoch , i , len (train_loader ), batch_time = batch_time ,
242
242
data_time = data_time , loss = losses , top1 = top1 , top5 = top5 ))
243
243
@@ -263,10 +263,10 @@ def validate(val_loader, model, criterion):
263
263
loss = criterion (output , target )
264
264
265
265
# measure accuracy and record loss
266
- prec1 , prec5 = accuracy (output , target , topk = (1 , 5 ))
266
+ acc1 , acc5 = accuracy (output , target , topk = (1 , 5 ))
267
267
losses .update (loss .item (), input .size (0 ))
268
- top1 .update (prec1 [0 ], input .size (0 ))
269
- top5 .update (prec5 [0 ], input .size (0 ))
268
+ top1 .update (acc1 [0 ], input .size (0 ))
269
+ top5 .update (acc5 [0 ], input .size (0 ))
270
270
271
271
# measure elapsed time
272
272
batch_time .update (time .time () - end )
@@ -276,12 +276,12 @@ def validate(val_loader, model, criterion):
276
276
print ('Test: [{0}/{1}]\t '
277
277
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t '
278
278
'Loss {loss.val:.4f} ({loss.avg:.4f})\t '
279
- 'Prec @1 {top1.val:.3f} ({top1.avg:.3f})\t '
280
- 'Prec @5 {top5.val:.3f} ({top5.avg:.3f})' .format (
279
+ 'Acc @1 {top1.val:.3f} ({top1.avg:.3f})\t '
280
+ 'Acc @5 {top5.val:.3f} ({top5.avg:.3f})' .format (
281
281
i , len (val_loader ), batch_time = batch_time , loss = losses ,
282
282
top1 = top1 , top5 = top5 ))
283
283
284
- print (' * Prec @1 {top1.avg:.3f} Prec @5 {top5.avg:.3f}'
284
+ print (' * Acc @1 {top1.avg:.3f} Acc @5 {top5.avg:.3f}'
285
285
.format (top1 = top1 , top5 = top5 ))
286
286
287
287
return top1 .avg
0 commit comments