|
| 1 | +"""CIFAR10 example for cnn_finetune. |
| 2 | +Based on: |
| 3 | +- https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/cifar10_tutorial.py |
| 4 | +- https://github.com/pytorch/examples/blob/master/mnist/main.py |
| 5 | +""" |
| 6 | + |
| 7 | +import argparse |
| 8 | + |
| 9 | +import torch |
| 10 | +import torchvision |
| 11 | +import torchvision.transforms as transforms |
| 12 | +from torch.autograd import Variable |
| 13 | +import torch.nn as nn |
| 14 | +import torch.optim as optim |
| 15 | + |
| 16 | +from cnn_finetune import make_model |
| 17 | + |
| 18 | + |
| 19 | +parser = argparse.ArgumentParser(description='cnn_finetune cifar 10 example') |
| 20 | +parser.add_argument('--batch-size', type=int, default=32, metavar='N', |
| 21 | + help='input batch size for training (default: 32)') |
| 22 | +parser.add_argument('--test-batch-size', type=int, default=64, metavar='N', |
| 23 | + help='input batch size for testing (default: 64)') |
| 24 | +parser.add_argument('--epochs', type=int, default=100, metavar='N', |
| 25 | + help='number of epochs to train (default: 100)') |
| 26 | +parser.add_argument('--lr', type=float, default=0.01, metavar='LR', |
| 27 | + help='learning rate (default: 0.01)') |
| 28 | +parser.add_argument('--momentum', type=float, default=0.9, metavar='M', |
| 29 | + help='SGD momentum (default: 0.9)') |
| 30 | +parser.add_argument('--no-cuda', action='store_true', default=False, |
| 31 | + help='disables CUDA training') |
| 32 | +parser.add_argument('--seed', type=int, default=1, metavar='S', |
| 33 | + help='random seed (default: 1)') |
| 34 | +parser.add_argument('--log-interval', type=int, default=100, metavar='N', |
| 35 | + help='how many batches to wait before logging training status') |
| 36 | +parser.add_argument('--model-name', type=str, default='resnet50', metavar='M', |
| 37 | + help='model name (default: resnet50)') |
| 38 | +parser.add_argument('--dropout-p', type=float, default=0.2, metavar='D', |
| 39 | + help='Dropout probability (default: 0.2)') |
| 40 | + |
| 41 | + |
| 42 | +args = parser.parse_args() |
| 43 | +use_cuda = not args.no_cuda and torch.cuda.is_available() |
| 44 | +device = torch.device('cuda' if use_cuda else 'cpu') |
| 45 | +model_name = args.model_name |
| 46 | + |
| 47 | + |
| 48 | +if model_name == 'alexnet': |
| 49 | + raise ValueError('The input size of the CIFAR-10 data set (32x32) is too small for AlexNet') |
| 50 | + |
| 51 | +classes = ( |
| 52 | + 'plane', 'car', 'bird', 'cat', 'deer', |
| 53 | + 'dog', 'frog', 'horse', 'ship', 'truck' |
| 54 | +) |
| 55 | + |
| 56 | + |
| 57 | +model = make_model( |
| 58 | + model_name, |
| 59 | + pretrained=False,#True, |
| 60 | + num_classes=len(classes), |
| 61 | + dropout_p=args.dropout_p, |
| 62 | + input_size=(32, 32) if model_name.startswith(('vgg', 'squeezenet')) else None, |
| 63 | +) |
| 64 | +model = model.to(device) |
| 65 | + |
| 66 | + |
| 67 | +transform = transforms.Compose([ |
| 68 | + transforms.ToTensor(), |
| 69 | + transforms.Normalize( |
| 70 | + # Need to recompute the mean std with the perturbed dataset |
| 71 | + mean= torch.tensor([0.4914, 0.4822, 0.4465]) |
| 72 | +,#model.original_model_info.mean, |
| 73 | + std= torch.tensor([0.2470, 0.2435, 0.2616])),#model.original_model_info.std), |
| 74 | +]) |
| 75 | + |
| 76 | +train_set = torchvision.datasets.CIFAR10( |
| 77 | + root='./data', train=True, download=True, transform=transform |
| 78 | +) |
| 79 | +train_loader = torch.utils.data.DataLoader( |
| 80 | + train_set, batch_size=args.batch_size, shuffle=True, num_workers=2 |
| 81 | +) |
| 82 | +test_set = torchvision.datasets.CIFAR10( |
| 83 | + root='./data', train=False, download=True, transform=transform |
| 84 | +) |
| 85 | +test_loader = torch.utils.data.DataLoader( |
| 86 | + test_set, args.test_batch_size, shuffle=False, num_workers=2 |
| 87 | +) |
| 88 | + |
| 89 | +criterion = nn.CrossEntropyLoss() |
| 90 | +optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) |
| 91 | + |
| 92 | + |
| 93 | +def train(epoch): |
| 94 | + total_loss = 0 |
| 95 | + total_size = 0 |
| 96 | + model.train() |
| 97 | + for batch_idx, (data, target) in enumerate(train_loader): |
| 98 | + data, target = data.to(device), target.to(device) |
| 99 | + optimizer.zero_grad() |
| 100 | + output = model(data) |
| 101 | + loss = criterion(output, target) |
| 102 | + total_loss += loss.item() |
| 103 | + total_size += data.size(0) |
| 104 | + loss.backward() |
| 105 | + optimizer.step() |
| 106 | + if batch_idx % args.log_interval == 0: |
| 107 | + print('Train Epoch: {} [{}/{} ({:.0f}%)]\tAverage loss: {:.6f}'.format( |
| 108 | + epoch, batch_idx * len(data), len(train_loader.dataset), |
| 109 | + 100. * batch_idx / len(train_loader), total_loss / total_size)) |
| 110 | + |
| 111 | + |
| 112 | +def test(): |
| 113 | + model.eval() |
| 114 | + test_loss = 0 |
| 115 | + correct = 0 |
| 116 | + with torch.no_grad(): |
| 117 | + for data, target in test_loader: |
| 118 | + data, target = data.to(device), target.to(device) |
| 119 | + output = model(data) |
| 120 | + test_loss += criterion(output, target).item() |
| 121 | + pred = output.data.max(1, keepdim=True)[1] |
| 122 | + correct += pred.eq(target.data.view_as(pred)).long().cpu().sum().item() |
| 123 | + |
| 124 | + test_loss /= len(test_loader.dataset) |
| 125 | + print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( |
| 126 | + test_loss, correct, len(test_loader.dataset), |
| 127 | + 100. * correct / len(test_loader.dataset))) |
| 128 | + |
| 129 | +def compute_mean_std(dataset): |
| 130 | + """compute the mean and std of dataset |
| 131 | + Args: |
| 132 | + dataset or test dataset |
| 133 | + witch derived from class torch.utils.data |
| 134 | + |
| 135 | + Returns: |
| 136 | + a tuple contains mean, std value of entire dataset |
| 137 | + """ |
| 138 | + |
| 139 | + data_r = numpy.dstack([dataset[i][1][:, :, 0] for i in range(len(dataset))]) |
| 140 | + data_g = numpy.dstack([dataset[i][1][:, :, 1] for i in range(len(dataset))]) |
| 141 | + data_b = numpy.dstack([dataset[i][1][:, :, 2] for i in range(len(dataset))]) |
| 142 | + mean = numpy.mean(data_r), numpy.mean(data_g), numpy.mean(data_b) |
| 143 | + std = numpy.std(data_r), numpy.std(data_g), numpy.std(data_b) |
| 144 | + |
| 145 | + return mean, std |
| 146 | + |
| 147 | +for epoch in range(1, args.epochs + 1): |
| 148 | + train(epoch) |
| 149 | + test() |
0 commit comments