-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
236 lines (192 loc) · 6.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import pickle
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image #as img
import os
import os.path
import argparse
import sys
import time
import re
import torch
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
import torch.onnx
from PIL import Image
from torchvision import models
from collections import namedtuple
import utils
from transformer_net import TransformerNet
from vgg import Vgg16
from matplotlib import cm
from torch.utils.data.dataset import Dataset
import torchvision
import torchvision.transforms as transforms
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
from cnn_finetune import make_model
import loaddata
device = 'cpu' #torch.device('cuda' if use_cuda else 'cpu')
def save_stylized(output, depth, image_name, depth_name, settype):
#print(output)
#exit()
output = output.astype(np.float32)
output = output/255.0
output = np.clip(output, a_min = 0.0, a_max = 1.0)
if settype == "train":
output_comps = image_name.split("/")
output_path = output_comps[0]+"/"+"nyu2_"+settype+"_stylized"+"/"+output_comps[2]
depth_comps = depth_name.split("/")
depth_path = depth_comps[0]+"/"+"nyu2_"+settype+"_stylized"+"/"+depth_comps[2]
output_name = output_path + "/"+output_comps[3]
depth_name = depth_path + "/"+depth_comps[3]
else:
output_comps = image_name.split("/")
output_path = output_comps[0]+"/"+"nyu2_"+settype+"_stylized"#+"/"+output_comps[2]
depth_comps = depth_name.split("/")
depth_path = depth_comps[0]+"/"+"nyu2_"+settype+"_stylized"#+"/"+depth_comps[2]
output_name = output_path + "/"+output_comps[2]
depth_name = depth_path + "/"+depth_comps[2]
#print(output_path, depth_path)
if not os.path.exists(output_path):
os.makedirs(output_path)
if not os.path.exists(depth_path):
os.makedirs(depth_path)
matplotlib.pyplot.imsave(output_name, output, vmin=0.0,vmax=1.0)
matplotlib.pyplot.imsave(depth_name, depth, vmin=0.0,vmax=1.0)
#print(output)
#matplotlib.pyplot.imshow(output)
#plt.show()
#plt.imshow(output)
#matplotlib.pyplot.imshow(depth)
#plt.show() #
return
def visualize_trio(image, depth, output):
cols = 1
images = [image, output, depth]
n_images = len(images)
titles = ["image", "stylized", "depth"]
if titles is None: titles = ['Image (%d)' % i for i in range(1,n_images + 1)]
fig = plt.figure()
for n, (img, title) in enumerate(zip(images, titles)):
a = fig.add_subplot(cols, np.ceil(n_images/float(cols)), n + 1)
#if image.ndim == 2:
# plt.gray()
plt.imshow(img)
a.set_title(title)
fig.set_size_inches(np.array(fig.get_size_inches()) * n_images)
plt.show()
return
def single_stylize(style_model, image):
content_transform = transforms.Compose([
transforms.ToTensor(),
#transforms.Lambda(lambda x: x.mul(255))
])
content_image = content_transform(image)
content_image = content_image.unsqueeze(0).to(device)
output = style_model(content_image).cpu()
output = output.squeeze().permute(1,2,0).int().data.numpy()
#output = output.squeeze().permute(1,2,0).data.numpy()
return output
def original_NYU(frame):
size = len(frame)
images, depths = [], []
for idx in range(size):
image_name = frame.iloc[idx, 0]
depth_name = frame.iloc[idx, 1]
image = matplotlib.image.imread(image_name)
depth = matplotlib.image.imread(depth_name)
images.append(image)
depths.append(depth)
return images, depths
def stylize_NYU(frame, settype):
size = len(frame)
print("total: ", size)
stylized_set = []
depth_set = []
#models = ["candy" , "mosaic", "rain_princess", "udnie"]
models = ["mosaic"]
for model in models:
style_model = TransformerNet()
modelpath = "saved_models/"+model+".pth"
state_dict = torch.load(modelpath)
for k in list(state_dict.keys()):
if re.search(r'in\d+\.running_(mean|var)$', k):
del state_dict[k]
style_model.load_state_dict(state_dict)
style_model.to(device)
for idx in range(size):
#if idx % 1000 == 0:
if idx % 1 == 0:
print("iter: ", idx)
image_name = frame.iloc[idx, 0]
depth_name = frame.iloc[idx, 1]
image = matplotlib.image.imread(image_name, format="jpg")
depth = matplotlib.image.imread(depth_name)
with torch.no_grad():
output = single_stylize(style_model, image)
#visualize_trio(image, depth, output)
#stylized_set.append(output)
#depth_set.append(depth)
#break
save_stylized(output, depth, image_name, depth_name, settype)
return stylized_set, depth_set
def load_pickle(settype):
filename = "data/augmented_"+settype+".pkl" #"test.pkl"
#filename = "data/augmented_"+settype+"_"+str(i)+".pkl" #"test.pkl"
if not os.path.exists(filename):
print("Readign NYU dataset and pickling...", settype)
# Read NYU Depth Dataset
frame = loaddata.getDataFrame(settype)
style_image, style_depth = stylize_NYU(frame)
with open(filename, 'wb') as file:
data = [style_image, style_depth]
pickle.dump(data, file)
else:
print("pkl file found...")
with open(filename, 'rb') as file:
data = pickle.load(file)
style_image, style_depth= data
return style_image, style_depth
def main():
parser = argparse.ArgumentParser(description='stylized augmentation')
parser.add_argument('--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 32)')
parser.add_argument('--test-batch-size', type=int, default=64, metavar='N',
help='input batch size for testing (default: 64)')
parser.add_argument('--epochs', type=int, default=20, metavar='N',
#help='number of epochs to train (default: 100)')
help='number of epochs to train (default: 20)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--model-name', type=str, default='resnet50', metavar='M',
help='model name (default: resnet50)')
parser.add_argument('--dropout-p', type=float, default=0.2, metavar='D',
help='Dropout probability (default: 0.2)')
parser.add_argument('--ratio', type=int, default=1, help='Orig: Stylized Ratio (default: 1)')
args = parser.parse_args()
ratio = args.ratio
train_frame = loaddata.getDataFrame("train")
stylize_NYU(train_frame, "train")
test_frame = loaddata.getDataFrame("test")
stylize_NYU(test_frame, "test")
#################################
#################################
#################################
#################################
#################################
return
if __name__ == "__main__":
main()