|
| 1 | +import numpy as np |
| 2 | +import torch |
| 3 | +from torch.nn import functional as F |
| 4 | + |
| 5 | +# Output words instead of scores. |
| 6 | +def sentiment_score_to_name(score: float): |
| 7 | + if score > 0: |
| 8 | + return "Positive" |
| 9 | + elif score <= 0: |
| 10 | + return "Negative" |
| 11 | + |
| 12 | +# Split data into train, valid, test. |
| 13 | +def partition_dataset(df_input, smoke_test=False): |
| 14 | + """Splits data, assuming original, input dataframe contains 50K rows. |
| 15 | +
|
| 16 | + Args: |
| 17 | + df_input (pandas.DataFrame): input data frame |
| 18 | + smoke_test (boolean): if True, use smaller number of rows for testing |
| 19 | + |
| 20 | + Returns: |
| 21 | + df_train, df_val, df_test (pandas.DataFrame): train, valid, test splits. |
| 22 | + """ |
| 23 | + |
| 24 | + # Shuffle data and split into train/val/test. |
| 25 | + df_shuffled = df_input.sample(frac=1, random_state=1).reset_index() |
| 26 | + # Add a corpus index. |
| 27 | + columns = ['movie_index', 'text', 'label_int', 'label'] |
| 28 | + df_shuffled.columns = columns |
| 29 | + |
| 30 | + df_train = df_shuffled.iloc[:35_000] |
| 31 | + df_val = df_shuffled.iloc[35_000:40_000] |
| 32 | + df_test = df_shuffled.iloc[40_000:] |
| 33 | + |
| 34 | + # Save train/val/test split data locally in separate files. |
| 35 | + df_train.to_csv("train.csv", index=False, encoding="utf-8") |
| 36 | + df_val.to_csv("val.csv", index=False, encoding="utf-8") |
| 37 | + df_test.to_csv("test.csv", index=False, encoding="utf-8") |
| 38 | + |
| 39 | + return df_shuffled, df_train, df_val, df_test |
| 40 | + |
| 41 | +# Take as input a user query and conduct semantic vector search using the query. |
| 42 | +def mc_search_imdb(query, retriever, milvus_collection, search_params, top_k, |
| 43 | + milvus_client=False, COLLECTION_NAME = 'movies'): |
| 44 | + |
| 45 | + # Embed the query using same embedding model used to create the Milvus collection. |
| 46 | + query_embeddings = torch.tensor(retriever.encode(query)) |
| 47 | + # Normalize embeddings to unit length. |
| 48 | + query_embeddings = F.normalize(query_embeddings, p=2, dim=1) |
| 49 | + # Quick check if embeddings are normalized. |
| 50 | + norms = np.linalg.norm(query_embeddings, axis=1) |
| 51 | + assert np.allclose(norms, 1.0, atol=1e-5) == True |
| 52 | + # Convert the embeddings to list of list of np.float32. |
| 53 | + query_embeddings = list(map(np.float32, query_embeddings)) |
| 54 | + |
| 55 | + # Run semantic vector search using your query and the vector database. |
| 56 | + # Assemble results. |
| 57 | + distances = [] |
| 58 | + texts = [] |
| 59 | + movie_indexes = [] |
| 60 | + labels = [] |
| 61 | + if milvus_client: |
| 62 | + # MilvusClient search API call slightly different. |
| 63 | + results = milvus_collection.search( |
| 64 | + COLLECTION_NAME, |
| 65 | + data=query_embeddings, |
| 66 | + search_params=search_params, |
| 67 | + output_fields=["movie_index", "chunk", "label"], |
| 68 | + limit=top_k, |
| 69 | + consistency_level="Eventually", |
| 70 | + ) |
| 71 | + # Results returned from MilvusClient are in the form list of lists of dicts. |
| 72 | + for result in results[0]: |
| 73 | + distances.append(result['distance']) |
| 74 | + texts.append(result['entity']['chunk']) |
| 75 | + movie_indexes.append(result['entity']['movie_index']) |
| 76 | + labels.append(result['entity']['label']) |
| 77 | + else: |
| 78 | + # Milvus server search API call. |
| 79 | + results = milvus_collection.search( |
| 80 | + data=query_embeddings, |
| 81 | + anns_field="vector", |
| 82 | + param=search_params, |
| 83 | + output_fields=["movie_index", "chunk", "label"], |
| 84 | + limit=top_k, |
| 85 | + consistency_level="Eventually" |
| 86 | + ) |
| 87 | + # Assemble results from Milvus server. |
| 88 | + distances = results[0].distances |
| 89 | + for result in results[0]: |
| 90 | + texts.append(result.entity.get("chunk")) |
| 91 | + movie_indexes.append(result.entity.get("movie_index")) |
| 92 | + labels.append(result.entity.get("label")) |
| 93 | + |
| 94 | + # Assemble all the results in a zipped list. |
| 95 | + formatted_results = list(zip(distances, movie_indexes, texts, labels)) |
| 96 | + |
| 97 | + return formatted_results |
| 98 | + |
0 commit comments