-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path06_kmeans_evaluate_predictions.py
166 lines (121 loc) · 5.73 KB
/
06_kmeans_evaluate_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import sys
from joblib import Parallel, delayed
import multiprocessing
import support_functions as sup
from math import sqrt
import cPickle as cpkl
def p_loop(based, alg, metric, k, fold, output_folder, pred_path, num_clusters, log_file):
file_name = '{}_{}_{}_c{}_k{}_f{}.cpkl'.format(based, alg, metric, num_clusters, k, fold)
sup.logmsg('{}_{}_{}_c{}_k{}_f{} - Evaluating ratings'.format(based, alg, metric,
num_clusters, k,
fold),
log_file)
file = os.path.join(pred_path, file_name)
pred_dict = sup.read_cpkl(file)
sup.logmsg('{}_{}_{}_c{}_k{}_f{} - Done reading predict file'.format(based, alg, metric,
num_clusters, k,
fold), log_file)
coverage = pred_dict.pop(-1)
mae = 0.0
mse = 0.0
n = float(len(pred_dict))
for key in pred_dict.keys():
rat, pred = pred_dict[key]
# sup.logmsg('{}_{}_{}_k{}_f{} - {}'.format(based, alg, metric, k,
# fold, (rat, pred)))
if pred != 0.0:
err = rat - pred
mae += abs(err)
mse += (err * err)
else:
n -= 1.
# sup.logmsg('{}_{}_{}_c{}_k{}_f{} - ERROR: {} prediction equals 0'.format(
# based, alg, metric, k, fold, key), log_file)
# sup.logmsg('{}_{}_{}_k{}_f{} - {}'.format(based, alg, metric, k,
# fold, (rmse, mae, mse)))
mae /= n
mse /= n
rmse = sqrt(mse)
sup.logmsg('{}_{}_{}_c{}_k{}_f{} - Writing evaluation on disk'.format(based, alg, metric,
num_clusters, k,
fold), log_file)
# print (rmse, mse, mae)
out_file_name = '{}_{}_{}_c{}_k{}_f{}.csv'.format(based, alg, metric, num_clusters, k,
fold)
file_path = os.path.join(output_folder, 'kmeans_evaluation')
if not os.path.exists(file_path):
try:
os.makedirs(file_path)
except:
pass
file = os.path.join(file_path, out_file_name)
f = open(file, 'w')
rmse = str(rmse).replace('.', ',')
mse = str(mse).replace('.', ',')
mae = str(mae).replace('.', ',')
coverage = str(coverage).replace('.', ',')
f.write('RMSE:;{}\n'.format(rmse))
f.write('MSE:;{}\n'.format(mse))
f.write('MAE:;{}\n'.format(mae))
f.write('Coverage:;{}\n'.format(coverage))
f.write('0 errors:;{}\n\n'.format(str(float(len(pred_dict)) - n).replace('.', ',')))
f.write('userID; itemID; Rating; Predicted\n')
for key in pred_dict.keys():
userId, itemId = key
rat, pred = pred_dict[key]
rat = str(rat).replace('.', ',')
pred = str(pred).replace('.', ',')
f.write('{};{};{};{}\n'.format(userId, itemId, rat, pred))
f.close()
pred_dict.clear()
sup.logmsg('{}_{}_{}_c{}_k{}_f{} - Done Evaluating ratings {}'.format(based, alg, metric,
num_clusters, k,
fold, (rmse, mse,
mae,
coverage)
),
log_file)
return rmse, mse, mae, coverage
num_cores = multiprocessing.cpu_count()
data_path = sys.argv[1]
pred_path = os.path.join(data_path, 'kmeans_predictions')
output_folder = data_path
num_folds = int(sys.argv[2])
NUM_USERS, NUM_ITEMS = cpkl.load(open(os.path.join(data_path, 'dataset_size.pkl'), 'rb'))
k_list = cpkl.load(open(os.path.join(data_path, 'k_list.pkl'), 'rb'))
cluster_list = cpkl.load(open(os.path.join(data_path, 'cluster_list.pkl'), 'rb'))
alg_list = ['brute']
# metric_list = ['cosine', 'euclidean', 'minkowski']
metric_list = ['cosine']
log_file = sup.create_logfile(sys.argv[0])
p_list = []
for based in ['user', 'item']:
for alg in alg_list:
for metric in metric_list:
if metric != 'cosine' or alg == 'brute':
for k in k_list:
for fold in range(num_folds):
for num_clusters in cluster_list:
p_list.append((based, alg, metric, k, fold, num_clusters))
err = Parallel(n_jobs=-1, backend="threading")(delayed(p_loop)(p[0], p[1],
p[2], p[3], p[4],
output_folder, pred_path,
p[5], log_file)
for p in p_list)
# based, alg, metric, k, fold, output_folder, pred_path, num_clusters, log_file
error_dict = {}
for p in p_list:
key = (p[0], p[1], p[2], p[3], p[4], p[5])
error_dict[key] = err.pop(0)
file = os.path.join(output_folder, 'kmeans_eval.cpkl')
sup.write_cpkl(error_dict, file)
file = os.path.join(output_folder, 'kmeans_eval.csv')
f = open(file, 'w')
f.write('based;alg;metric;num_clusters;k;fold;;rmse;mse;mae;coverage\n')
for key in sorted(error_dict.keys()):
rmse, mse, mae, coverage = error_dict[key]
based, alg, metric, k, fold, num_clusters = key
f.write('{};{};{};{};{};{};;{};{};{};{}\n'.format(based, alg, metric, num_clusters, k,
fold, rmse, mse, mae, coverage))
f.close()