-
Notifications
You must be signed in to change notification settings - Fork 3.1k
/
Copy pathcreate_dataset.py
executable file
·315 lines (268 loc) · 12 KB
/
create_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""
NOTE:
- This scripts is a demo to import example data import Qlib
- !!!!!!!!!!!!!!!TODO!!!!!!!!!!!!!!!!!!!:
- Its structure is not well designed and very ugly, your contribution is welcome to make importing dataset easier
"""
from datetime import date, datetime as dt
import os
from pathlib import Path
import random
import shutil
import time
import traceback
from arctic import Arctic, chunkstore
import arctic
from arctic import Arctic, CHUNK_STORE
from arctic.chunkstore.chunkstore import CHUNK_SIZE
import fire
from joblib import Parallel, delayed, parallel
import numpy as np
import pandas as pd
from pandas import DataFrame
from pandas.core.indexes.datetimes import date_range
from pymongo.mongo_client import MongoClient
DIRNAME = Path(__file__).absolute().resolve().parent
# CONFIG
N_JOBS = -1 # leaving one kernel free
LOG_FILE_PATH = DIRNAME / "log_file"
DATA_PATH = DIRNAME / "raw_data"
DATABASE_PATH = DIRNAME / "orig_data"
DATA_INFO_PATH = DIRNAME / "data_info"
DATA_FINISH_INFO_PATH = DIRNAME / "./data_finish_info"
DOC_TYPE = ["Tick", "Order", "OrderQueue", "Transaction", "Day", "Minute"]
MAX_SIZE = 3000 * 1024 * 1024 * 1024
ALL_STOCK_PATH = DATABASE_PATH / "all.txt"
ARCTIC_SRV = "127.0.0.1"
def get_library_name(doc_type):
if str.lower(doc_type) == str.lower("Tick"):
return "ticks"
else:
return str.lower(doc_type)
def is_stock(exchange_place, code):
if exchange_place == "SH" and code[0] != "6":
return False
if exchange_place == "SZ" and code[0] != "0" and code[:2] != "30":
return False
return True
def add_one_stock_daily_data(filepath, type, exchange_place, arc, date):
"""
exchange_place: "SZ" OR "SH"
type: "tick", "orderbook", ...
filepath: the path of csv
arc: arclink created by a process
"""
code = os.path.split(filepath)[-1].split(".csv")[0]
if exchange_place == "SH" and code[0] != "6":
return
if exchange_place == "SZ" and code[0] != "0" and code[:2] != "30":
return
df = pd.read_csv(filepath, encoding="gbk", dtype={"code": str})
code = os.path.split(filepath)[-1].split(".csv")[0]
def format_time(day, hms):
day = str(day)
hms = str(hms)
if hms[0] == "1": # >=10,
return (
"-".join([day[0:4], day[4:6], day[6:8]]) + " " + ":".join([hms[:2], hms[2:4], hms[4:6] + "." + hms[6:]])
)
else:
return (
"-".join([day[0:4], day[4:6], day[6:8]]) + " " + ":".join([hms[:1], hms[1:3], hms[3:5] + "." + hms[5:]])
)
## Discard the entire row if wrong data timestamp encoutered.
timestamp = list(zip(list(df["date"]), list(df["time"])))
error_index_list = []
for index, t in enumerate(timestamp):
try:
pd.Timestamp(format_time(t[0], t[1]))
except Exception:
error_index_list.append(index) ## The row number of the error line
# to-do: writting to logs
if len(error_index_list) > 0:
print("error: {}, {}".format(filepath, len(error_index_list)))
df = df.drop(error_index_list)
timestamp = list(zip(list(df["date"]), list(df["time"]))) ## The cleaned timestamp
# generate timestamp
pd_timestamp = pd.DatetimeIndex(
[pd.Timestamp(format_time(timestamp[i][0], timestamp[i][1])) for i in range(len(df["date"]))]
)
df = df.drop(columns=["date", "time", "name", "code", "wind_code"])
# df = pd.DataFrame(data=df.to_dict("list"), index=pd_timestamp)
df["date"] = pd.to_datetime(pd_timestamp)
df.set_index("date", inplace=True)
if str.lower(type) == "orderqueue":
## extract ab1~ab50
df["ab"] = [
",".join([str(int(row["ab" + str(i + 1)])) for i in range(0, row["ab_items"])])
for timestamp, row in df.iterrows()
]
df = df.drop(columns=["ab" + str(i) for i in range(1, 51)])
type = get_library_name(type)
# arc.initialize_library(type, lib_type=CHUNK_STORE)
lib = arc[type]
symbol = "".join([exchange_place, code])
if symbol in lib.list_symbols():
print("update {0}, date={1}".format(symbol, date))
if df.empty == True:
return error_index_list
lib.update(symbol, df, chunk_size="D")
else:
print("write {0}, date={1}".format(symbol, date))
lib.write(symbol, df, chunk_size="D")
return error_index_list
def add_one_stock_daily_data_wrapper(filepath, type, exchange_place, index, date):
pid = os.getpid()
code = os.path.split(filepath)[-1].split(".csv")[0]
arc = Arctic(ARCTIC_SRV)
try:
if index % 100 == 0:
print("index = {}, filepath = {}".format(index, filepath))
error_index_list = add_one_stock_daily_data(filepath, type, exchange_place, arc, date)
if error_index_list is not None and len(error_index_list) > 0:
f = open(os.path.join(LOG_FILE_PATH, "temp_timestamp_error_{0}_{1}_{2}.txt".format(pid, date, type)), "a+")
f.write("{}, {}, {}\n".format(filepath, error_index_list, exchange_place + "_" + code))
f.close()
except Exception as e:
info = traceback.format_exc()
print("error:" + str(e))
f = open(os.path.join(LOG_FILE_PATH, "temp_fail_{0}_{1}_{2}.txt".format(pid, date, type)), "a+")
f.write("fail:" + str(filepath) + "\n" + str(e) + "\n" + str(info) + "\n")
f.close()
finally:
arc.reset()
def add_data(tick_date, doc_type, stock_name_dict):
pid = os.getpid()
if doc_type not in DOC_TYPE:
print("doc_type not in {}".format(DOC_TYPE))
return
try:
begin_time = time.time()
os.system(f"cp {DATABASE_PATH}/{tick_date + '_{}.tar.gz'.format(doc_type)} {DATA_PATH}/")
os.system(
f"tar -xvzf {DATA_PATH}/{tick_date + '_{}.tar.gz'.format(doc_type)} -C {DATA_PATH}/ {tick_date + '_' + doc_type}/SH"
)
os.system(
f"tar -xvzf {DATA_PATH}/{tick_date + '_{}.tar.gz'.format(doc_type)} -C {DATA_PATH}/ {tick_date + '_' + doc_type}/SZ"
)
os.system(f"chmod 777 {DATA_PATH}")
os.system(f"chmod 777 {DATA_PATH}/{tick_date + '_' + doc_type}")
os.system(f"chmod 777 {DATA_PATH}/{tick_date + '_' + doc_type}/SH")
os.system(f"chmod 777 {DATA_PATH}/{tick_date + '_' + doc_type}/SZ")
os.system(f"chmod 777 {DATA_PATH}/{tick_date + '_' + doc_type}/SH/{tick_date}")
os.system(f"chmod 777 {DATA_PATH}/{tick_date + '_' + doc_type}/SZ/{tick_date}")
print("tick_date={}".format(tick_date))
temp_data_path_sh = os.path.join(DATA_PATH, tick_date + "_" + doc_type, "SH", tick_date)
temp_data_path_sz = os.path.join(DATA_PATH, tick_date + "_" + doc_type, "SZ", tick_date)
is_files_exist = {"sh": os.path.exists(temp_data_path_sh), "sz": os.path.exists(temp_data_path_sz)}
sz_files = (
(
set([i.split(".csv")[0] for i in os.listdir(temp_data_path_sz) if i[:2] == "30" or i[0] == "0"])
& set(stock_name_dict["SZ"])
)
if is_files_exist["sz"]
else set()
)
sz_file_nums = len(sz_files) if is_files_exist["sz"] else 0
sh_files = (
(
set([i.split(".csv")[0] for i in os.listdir(temp_data_path_sh) if i[0] == "6"])
& set(stock_name_dict["SH"])
)
if is_files_exist["sh"]
else set()
)
sh_file_nums = len(sh_files) if is_files_exist["sh"] else 0
print("sz_file_nums:{}, sh_file_nums:{}".format(sz_file_nums, sh_file_nums))
f = (DATA_INFO_PATH / "data_info_log_{}_{}".format(doc_type, tick_date)).open("w+")
f.write("sz:{}, sh:{}, date:{}:".format(sz_file_nums, sh_file_nums, tick_date) + "\n")
f.close()
if sh_file_nums > 0:
# write is not thread-safe, update may be thread-safe
Parallel(n_jobs=N_JOBS)(
delayed(add_one_stock_daily_data_wrapper)(
os.path.join(temp_data_path_sh, name + ".csv"), doc_type, "SH", index, tick_date
)
for index, name in enumerate(list(sh_files))
)
if sz_file_nums > 0:
# write is not thread-safe, update may be thread-safe
Parallel(n_jobs=N_JOBS)(
delayed(add_one_stock_daily_data_wrapper)(
os.path.join(temp_data_path_sz, name + ".csv"), doc_type, "SZ", index, tick_date
)
for index, name in enumerate(list(sz_files))
)
os.system(f"rm -f {DATA_PATH}/{tick_date + '_{}.tar.gz'.format(doc_type)}")
os.system(f"rm -rf {DATA_PATH}/{tick_date + '_' + doc_type}")
total_time = time.time() - begin_time
f = (DATA_FINISH_INFO_PATH / "data_info_finish_log_{}_{}".format(doc_type, tick_date)).open("w+")
f.write("finish: date:{}, consume_time:{}, end_time: {}".format(tick_date, total_time, time.time()) + "\n")
f.close()
except Exception as e:
info = traceback.format_exc()
print("date error:" + str(e))
f = open(os.path.join(LOG_FILE_PATH, "temp_fail_{0}_{1}_{2}.txt".format(pid, tick_date, doc_type)), "a+")
f.write("fail:" + str(tick_date) + "\n" + str(e) + "\n" + str(info) + "\n")
f.close()
class DSCreator:
"""Dataset creator"""
def clear(self):
client = MongoClient(ARCTIC_SRV)
client.drop_database("arctic")
def initialize_library(self):
arc = Arctic(ARCTIC_SRV)
for doc_type in DOC_TYPE:
arc.initialize_library(get_library_name(doc_type), lib_type=CHUNK_STORE)
def _get_empty_folder(self, fp: Path):
fp = Path(fp)
if fp.exists():
shutil.rmtree(fp)
fp.mkdir(parents=True, exist_ok=True)
def import_data(self, doc_type_l=["Tick", "Transaction", "Order"]):
# clear all the old files
for fp in LOG_FILE_PATH, DATA_INFO_PATH, DATA_FINISH_INFO_PATH, DATA_PATH:
self._get_empty_folder(fp)
arc = Arctic(ARCTIC_SRV)
for doc_type in DOC_TYPE:
# arc.initialize_library(get_library_name(doc_type), lib_type=CHUNK_STORE)
arc.set_quota(get_library_name(doc_type), MAX_SIZE)
arc.reset()
# doc_type = 'Day'
for doc_type in doc_type_l:
date_list = list(set([int(path.split("_")[0]) for path in os.listdir(DATABASE_PATH) if doc_type in path]))
date_list.sort()
date_list = [str(date) for date in date_list]
f = open(ALL_STOCK_PATH, "r")
stock_name_list = [lines.split("\t")[0] for lines in f.readlines()]
f.close()
stock_name_dict = {
"SH": [stock_name[2:] for stock_name in stock_name_list if "SH" in stock_name],
"SZ": [stock_name[2:] for stock_name in stock_name_list if "SZ" in stock_name],
}
lib_name = get_library_name(doc_type)
a = Arctic(ARCTIC_SRV)
# a.initialize_library(lib_name, lib_type=CHUNK_STORE)
stock_name_exist = a[lib_name].list_symbols()
lib = a[lib_name]
initialize_count = 0
for stock_name in stock_name_list:
if stock_name not in stock_name_exist:
initialize_count += 1
# A placeholder for stocks
pdf = pd.DataFrame(index=[pd.Timestamp("1900-01-01")])
pdf.index.name = "date" # an col named date is necessary
lib.write(stock_name, pdf)
print("initialize count: {}".format(initialize_count))
print("tasks: {}".format(date_list))
a.reset()
# date_list = [files.split("_")[0] for files in os.listdir("./raw_data_price") if "tar" in files]
# print(len(date_list))
date_list = ["20201231"] # for test
Parallel(n_jobs=min(2, len(date_list)))(
delayed(add_data)(date, doc_type, stock_name_dict) for date in date_list
)
if __name__ == "__main__":
fire.Fire(DSCreator)