-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathgold_nmdc_pipeline.py
758 lines (672 loc) · 31.2 KB
/
gold_nmdc_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
import io
import json
import logging
import os
import pkgutil
import re
from typing import Dict, List, Union
import jsonschema
import nmdc_schema.nmdc as nmdc
import pandas as pd
import dotenv
from sample_annotator.clients.nmdc.runtime_api_client import RuntimeApiSiteClient
from linkml_runtime.dumpers import json_dumper
from linkml_runtime.linkml_model.types import XSDDateTime
from sample_annotator.clients.gold_client import (
ApDict,
GoldClient,
ProjectDict,
SampleDict,
StudyDict,
JSON,
)
FILE_PATH = Union[str, bytes, os.PathLike]
logger = logging.getLogger(__name__) # module level logger
def load_dotenv():
env_path = dotenv.find_dotenv()
if len(env_path) > 0:
dotenv.load_dotenv(dotenv_path=env_path, override=True)
class GoldNMDC(GoldClient):
def __init__(self, study_id: str) -> None:
# construct MongoDB with study_set, biosample_set, omics_processing_set
self.nmdc_db = nmdc.Database()
# set the GOLD study id
self.study_id = study_id
# load nmdc-runtime credentials from environment
load_dotenv()
def _get_client(self) -> RuntimeApiSiteClient:
env = dict(os.environ)
return RuntimeApiSiteClient(
env["BASE_URL"], env["SITE_ID"], env["CLIENT_ID"], env["CLIENT_SECRET"]
)
def _runtime_mint_api_call(
self, request_type: str, request_url: str, schema_class: str, how_many: str
) -> JSON:
client = self._get_client()
return client.request(
request_type,
request_url,
{"schema_class": {"id": schema_class}, "how_many": how_many},
).json()
def project_ids_subset(
self, path_to_subset_ids: Union[str, bytes, os.PathLike]
) -> List[str]:
"""List of GOLD project ids to subset the retreived dataset on.
:return: list of sample project ids in the subset
"""
df = pd.read_csv(path_to_subset_ids)
# this assumes that at all times there is only one
# column in the project_ids_subset.txt file
return df[df.columns.values[0]].to_list()
def validate_nmdc(
self, file_path: Union[str, bytes, os.PathLike], database_set: str = None
) -> bool:
"""Validate JSON files against the NMDC Schema using the
jsonschema library.
:param file_path: path to input JSON file
:param database_set: optional top level database set
(e.g, study_set, biosample_set) that contains the data,
defaults to None
:return: True if no validation errors are raised, else False
"""
nmdc_json_schema_bytes = io.BytesIO(
pkgutil.get_data("nmdc_schema", "nmdc.schema.json")
)
nmdc_json_schema = json.loads(nmdc_json_schema_bytes.getvalue())
with open(file_path, "r") as fh:
json_data = json.load(fh)
if database_set:
if type(json_data) == list:
json_data = {f"{database_set}": json_data}
else:
json_data = {f"{database_set}": [json_data]}
try:
jsonschema.validate(instance=json_data, schema=nmdc_json_schema)
except jsonschema.exceptions.ValidationError as err:
logger.error(err.message)
return False
return True
def project_has_output_dict(self, read_qc_path: FILE_PATH) -> List[Dict[str, str]]:
"""Get list of dictionaries as {"projectGoldId": ["has_input_ids"]}
:param read_qc_path: path to readQC file with input output mapping
:return: List of dicts
"""
with open(read_qc_path) as f:
read_qc_array = json.load(f)
read_qc_list = []
for item in read_qc_array:
has_output_dict = {}
has_output_dict[item["was_informed_by"].replace("GOLD:", "")] = item[
"has_input"
][0]
read_qc_list.append(has_output_dict)
project_has_output_list = {
k: [d.get(k) for d in read_qc_list if k in d]
for k in set().union(*read_qc_list)
}
return project_has_output_list
def get_pi_dict(self, nmdc_entry: Dict[str, str]) -> Dict[str, str]:
"""Get dictionary with PI information like name, email, etc.
:param nmdc_entry: An NMDC record like study, project, etc.
:return: dictionary with PI information.
"""
pi_dict = next(
(contact for contact in nmdc_entry["contacts"] if "PI" in contact["roles"])
)
return pi_dict
def mod_date_handler(self, nmdc_entry: Dict[str, str]) -> XSDDateTime:
"""Compute modDate in GOLD if it has not been populated in the database.
:param nmdc_entry: An NMDC record like study, project, etc.
:return: XSDDateTime formatted datetime
"""
# use below logic to determine modDate if it is not
# populated in GOLD
mod_date = (
XSDDateTime(nmdc_entry.get("addDate"))
if nmdc_entry["addDate"]
else None
if nmdc_entry["modDate"] is None
else XSDDateTime(nmdc_entry["modDate"])
)
return mod_date
def field_site_parser(self, biosample_name: str) -> str:
"""Parse out field site information embedded in biosampleName.
:param biosample_name: biosampleName field from biosample endpoint.
:return: field site
"""
return biosample_name.split("-", 1)[1].lstrip()
def _processing_institute_handler(self, sequencing_centers: List[str]) -> List[str]:
"""GOLD NMDC transformation pipeline specific term handler.
Specific to the ProcessingInstitutionEnum term.
:param sequencing_centers: List of sequencing centers as stored in GOLD
:return: NMDC Schema compliant processing institute names
"""
nmdc_compliant_seq_ctr = ""
for seq_ctr in sequencing_centers:
if re.findall(
r"University of California[,]? San Diego", seq_ctr, flags=re.IGNORECASE
):
nmdc_compliant_seq_ctr = "UCSD"
if re.findall(
r"Environmental Molecular Sciences Laboratory",
seq_ctr,
flags=re.IGNORECASE,
):
nmdc_compliant_seq_ctr = "EMSL"
if re.findall(r"Joint Genome Institute", seq_ctr, flags=re.IGNORECASE):
nmdc_compliant_seq_ctr = "JGI"
return nmdc_compliant_seq_ctr
def compute_study_set(
self, study_data: StudyDict, minted_study_id: str, sub_port_dict: Dict
):
"""Compute study_set parameters to be populated from the dataset."""
pi_dict = self.get_pi_dict(study_data)
credit_associations = []
if "has_credit_associations" in sub_port_dict:
for cred_assoc in sub_port_dict["has_credit_associations"]:
credit_associations.append(
nmdc.CreditAssociation(
applied_roles=cred_assoc.get("applied_roles")
if "applied_roles" in cred_assoc
else None,
applies_to_person=nmdc.PersonValue(
name=cred_assoc["applies_to_person"]["name"]
if "name" in cred_assoc["applies_to_person"]
else None,
email=cred_assoc["applies_to_person"]["email"]
if "email" in cred_assoc["applies_to_person"]
else None,
orcid=cred_assoc["applies_to_person"]["orcid"]
if "orcid" in cred_assoc["applies_to_person"]
else None,
profile_image_url=cred_assoc["applies_to_person"][
"profile_image_url"
]
if "profile_image_url" in cred_assoc["applies_to_person"]
else None,
),
applied_role=cred_assoc.get("applied_role")
if "applied_role" in cred_assoc
else None,
type=cred_assoc.get("type") if "type" in cred_assoc else None,
)
)
self.nmdc_db.study_set.append(
nmdc.Study(
id=minted_study_id,
description=study_data["description"]
if study_data["description"]
else None,
title=study_data["studyName"] if study_data["studyName"] else None,
name=study_data["studyName"] if study_data["studyName"] else None,
gold_study_identifiers="GOLD:" + study_data["studyGoldId"],
principal_investigator=nmdc.PersonValue(
has_raw_value=pi_dict.get("name"),
name=pi_dict.get("name"),
email=pi_dict.get("email"),
)
if "name" and "email" in pi_dict
else None,
type="nmdc:Study",
has_credit_associations=credit_associations,
websites=sub_port_dict["websites"]
if "websites" in sub_port_dict
else None,
doi=sub_port_dict["doi"] if "doi" in sub_port_dict else None,
)
)
def compute_biosample_set(
self,
study_id: str,
biosamples: List[Dict[str, Union[str, Dict]]],
minted_biosample_ids_dict: Dict[str, str],
minted_field_research_site_ids_dict: Dict[str, str],
projects: List[str],
analysis_projects: List[Dict],
) -> SampleDict:
"""Compute biosample parameters to be populated from the dataset."""
for biosample in biosamples:
try:
mod_date = self.mod_date_handler(biosample)
# retrieve INSDC identifier information using both projects and biosamples
insdc_biosample_identifiers = [
"biosample:" + proj["ncbiBioSampleAccession"]
for proj in projects
if proj["ncbiBioSampleAccession"]
and proj["biosampleGoldId"] == biosample["biosampleGoldId"]
]
# ENVO triad term value handling
if biosample["envoBroadScale"] is not None:
env_broad_scale = nmdc.ControlledIdentifiedTermValue(
term=nmdc.OntologyClass(
id=biosample["envoBroadScale"]["id"].replace("_", ":"),
name=biosample["envoBroadScale"]["label"],
),
has_raw_value=biosample["envoBroadScale"]["id"],
)
else:
env_broad_scale = None
if biosample["envoLocalScale"] is not None:
env_local_scale = nmdc.ControlledIdentifiedTermValue(
term=nmdc.OntologyClass(
id=biosample["envoLocalScale"]["id"].replace("_", ":"),
name=biosample["envoLocalScale"]["label"],
),
has_raw_value=biosample["envoLocalScale"]["id"],
)
else:
env_local_scale = None
if biosample["envoMedium"] is not None:
env_medium = nmdc.ControlledIdentifiedTermValue(
term=nmdc.OntologyClass(
id=biosample["envoMedium"]["id"].replace("_", ":"),
name=biosample["envoMedium"]["label"],
),
has_raw_value=biosample["envoMedium"]["id"],
)
else:
env_medium = None
ncbi_tax_name = (
biosample.get("ncbiTaxName") if biosample["ncbiTaxName"] else None
)
if ncbi_tax_name:
if biosample["ncbiTaxId"] is not None:
samp_taxon_id = nmdc.TextValue(
(
ncbi_tax_name
+ " "
+ "[NCBITaxon:"
+ str(biosample.get("ncbiTaxId"))
+ "]"
)
)
else:
samp_taxon_id = None
# parse site identifier from GOLD
field_site = self.field_site_parser(biosample["biosampleName"])
# there can be multiple IMG identifiers associated with a biosample
img_identifiers = []
for ap in analysis_projects:
if biosample["biosampleGoldId"] in ap["biosampleGoldId"]:
if ap["imgTaxonOid"] is not None:
img_identifiers.append(ap["imgTaxonOid"])
self.nmdc_db.biosample_set.append(
nmdc.Biosample(
# biosample identifiers
id=minted_biosample_ids_dict[biosample["biosampleGoldId"]],
gold_biosample_identifiers="GOLD:"
+ biosample["biosampleGoldId"],
insdc_biosample_identifiers=insdc_biosample_identifiers,
# metadata fields
description=biosample.get("description")
if biosample["description"]
else None,
name=biosample.get("biosampleName")
if biosample["biosampleName"]
else None,
part_of=study_id,
ncbi_taxonomy_name=ncbi_tax_name,
samp_taxon_id=samp_taxon_id,
samp_name=field_site if field_site else None,
type="nmdc:Biosample",
img_identifiers=img_identifiers,
# biosample date information
add_date=XSDDateTime(biosample.get("addDate"))
if biosample["addDate"]
else None,
collection_date=nmdc.TimestampValue(
has_raw_value=biosample.get("dateCollected", "")
)
if biosample["dateCollected"]
else None,
mod_date=mod_date,
# environment metadata fields
env_broad_scale=env_broad_scale,
env_local_scale=env_local_scale,
env_medium=env_medium,
# Earth fields
depth=nmdc.QuantityValue(
has_raw_value=biosample.get("depthInMeters"),
has_unit="meters",
)
if biosample["depthInMeters"]
else None,
elev=biosample.get("elevationInMeters")
if biosample["elevationInMeters"]
else None,
alt=nmdc.QuantityValue(
has_raw_value=biosample.get("altitudeInMeters"),
has_unit="meters",
)
if biosample["altitudeInMeters"]
else None,
subsurface_depth=nmdc.QuantityValue(
has_raw_value=biosample.get("subsurfaceDepthInMeters"),
has_unit="meters",
)
if biosample["subsurfaceDepthInMeters"]
else None,
# chemical metadata fields
diss_oxygen=nmdc.QuantityValue(
has_raw_value=biosample.get("oxygenConcentration")
)
if biosample["oxygenConcentration"]
else None,
nitrite=nmdc.QuantityValue(
has_raw_value=biosample.get("nitrateConcentration")
)
if biosample["nitrateConcentration"]
else None,
ph=biosample.get("ph") if biosample["ph"] else None,
pressure=nmdc.QuantityValue(
has_raw_value=biosample.get("pressure")
)
if biosample["pressure"]
else None,
# ecosystem collected from fields
ecosystem=biosample.get("ecosystem")
if biosample["ecosystem"]
else None,
ecosystem_category=biosample.get("ecosystemCategory")
if biosample["ecosystemCategory"]
else None,
ecosystem_subtype=biosample.get("ecosystemSubtype")
if biosample["ecosystemSubtype"]
else None,
ecosystem_type=biosample.get("ecosystemType")
if biosample["ecosystemType"]
else None,
specific_ecosystem=biosample.get("specificEcosystem")
if biosample["specificEcosystem"]
else None,
# collection site metadata
geo_loc_name=nmdc.TextValue(
has_raw_value=biosample.get("geoLocation")
)
if biosample["geoLocation"]
else None,
lat_lon=nmdc.TextValue(
has_raw_value=str(biosample.get("latitude"))
+ " "
+ str(biosample.get("longitude"))
)
if biosample["latitude"] and biosample["longitude"]
else None,
habitat=biosample.get("habitat")
if biosample["habitat"]
else None,
location=biosample.get("isoCountry")
if biosample["isoCountry"]
else None,
# collection metadata fields
host_name=biosample.get("hostName")
if biosample["hostName"]
else None,
host_taxid=nmdc.TextValue(
has_raw_value=biosample.get("hostNcbiTaxid")
)
if biosample["hostNcbiTaxid"]
else None,
temp=nmdc.QuantityValue(
has_numeric_value=biosample.get(
"sampleCollectionTemperature"
)
)
if biosample["sampleCollectionTemperature"]
else None,
sample_collection_site=biosample.get("sampleCollectionSite")
if biosample["sampleCollectionSite"]
else biosample.get("sampleBodySite")
if biosample["sampleBodySite"]
else None,
collected_from=minted_field_research_site_ids_dict[
biosample["biosampleGoldId"]
],
)
)
except Exception as e:
logger.error(
f"Biosample not properly annotated: {biosample['biosampleGoldId']}\n"
f"Reason: {e}"
)
def compute_project_set(
self,
study_id: str,
projects: List[Dict[str, Union[str, Dict]]],
minted_biosample_ids_dict: Dict[str, str],
minted_project_ids_dict: Dict[str, str],
) -> ProjectDict:
"""Compute sequencing project parameters to be populated from the dataset."""
for project in projects:
try:
pi_dict = self.get_pi_dict(project)
mod_date = self.mod_date_handler(project)
read_qc_path = os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"nmdc",
"input",
"EMP_soil_readQC.json",
)
project_has_output_dict = self.project_has_output_dict(
read_qc_path=read_qc_path
)
# create value for has_output attribute
if project["projectGoldId"] in self.project_has_output_dict(
read_qc_path=read_qc_path
):
has_output = project_has_output_dict[project["projectGoldId"]]
else:
# logger message indicating that has_output cannot be computed
# fix for warning: readQC file needs to provided for computation
# of this value
logger.warning(
f"readQC input output mapping file not provided for {project['projectGoldId']}"
)
has_output = None
self.nmdc_db.omics_processing_set.append(
nmdc.OmicsProcessing(
# omics processing metadata
id=minted_project_ids_dict[project["projectGoldId"]],
name=project.get("projectName")
if project["projectName"]
else None,
gold_sequencing_project_identifiers="GOLD:"
+ project["projectGoldId"]
if project["projectGoldId"]
else None,
ncbi_project_name=project.get("projectName")
if project["projectName"]
else None,
type="nmdc:OmicsProcessing",
has_input=minted_biosample_ids_dict[project["biosampleGoldId"]],
has_output=has_output,
part_of=study_id,
# omics processing date fields
add_date=XSDDateTime(project.get("addDate"))
if project["addDate"]
else None,
mod_date=mod_date,
principal_investigator=nmdc.PersonValue(
has_raw_value=pi_dict.get("name"),
name=pi_dict.get("name"),
email=pi_dict.get("email"),
)
if "name" and "email" in pi_dict
else None,
# sequencing details fields
omics_type=nmdc.ControlledTermValue(
has_raw_value=project.get("sequencingStrategy")
)
if project["sequencingStrategy"]
else None,
instrument_name=project.get("seqMethod")[0]
if project["seqMethod"]
else None,
processing_institution=self._processing_institute_handler(
project["sequencingCenters"]
)
if project["sequencingCenters"]
else None,
)
)
except:
logger.error(
f"Omics processing set not properly annotated: {project['projectGoldId']}"
)
def compute_analysis_project_set(self, analysis_projects: List[str]) -> ApDict:
"""Compute analysis project parameters to be populated from the dataset."""
# TODO: AP handling code to be revised after
# determining which slots are actually required
for ap in analysis_projects:
mod_date = self.mod_date_handler(ap)
if re.search("Metagenome Analysis", ap["apType"], re.IGNORECASE):
self.nmdc_db.metagenome_annotation_activity_set.append(
nmdc.MetagenomeAnnotationActivity(
id="nmdc:" + ap["apGoldId"],
name=ap["apName"],
part_of="nmdc:" + self.study_id,
execution_resource="",
git_url="",
has_input=["nmdc:" + ap_i for ap_i in ap["projects"]],
has_output="nmdc:" + ap["apGoldId"],
type=ap["apType"],
started_at_time=XSDDateTime(ap["addDate"]),
ended_at_time=XSDDateTime(mod_date),
was_informed_by="",
gold_analysis_project_identifiers="GOLD:" + ap["apGoldId"],
)
)
if re.search("Metatranscriptome Analysis", ap["apType"], re.IGNORECASE):
self.nmdc_db.metatranscriptome_activity_set.append(
nmdc.MetatranscriptomeAnnotationActivity(
id="nmdc:" + ap["apGoldId"],
name=ap["apName"],
part_of="nmdc:" + self.study_id,
execution_resource="",
git_url="",
has_input=["nmdc:" + ap_i for ap_i in ap["projects"]],
has_output="nmdc:" + ap["apGoldId"],
type=ap["apType"],
started_at_time=XSDDateTime(ap["addDate"]),
ended_at_time=XSDDateTime(mod_date),
was_informed_by="",
gold_analysis_project_identifiers="GOLD:" + ap["apGoldId"],
)
)
def transform_gold_nmdc(
self, file_path: Union[str, bytes, os.PathLike] = None
) -> str:
"""Transform any dataset fetched from GOLD Database into
NMDC Schema compliant JSON data.
:param study_id: Gold study id
:param file_path: optional file name argument to write JSON dump
output to
:return: JSON string
"""
projects = self.fetch_projects_by_study(self.study_id)
biosamples = self.fetch_biosamples_by_study(self.study_id)
analysis_projects = self.fetch_analysis_projects_by_study(self.study_id)
path_to_subset_ids = os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"nmdc",
"input",
"project_ids_subset.txt",
)
projects_subset = self.project_ids_subset(path_to_subset_ids)
if projects_subset:
# subsetted list of projects filtered
projects = [
proj for proj in projects if proj["projectGoldId"] in projects_subset
]
biosamples_subset = [proj["biosampleGoldId"] for proj in projects]
# subsetted list of biosamples filtered
biosamples = [
samp
for samp in biosamples
if samp["biosampleGoldId"] in biosamples_subset
]
# subsetted list of analysis projects filtered
analysis_projects = [
ap
for ap in analysis_projects
if any(e in projects_subset for e in ap["projects"])
]
minted_study_id = self._runtime_mint_api_call(
"POST", "/pids/mint", "nmdc:Study", 1
)
study_data = self.fetch_study(id=self.study_id)
study_data_portal = (
self._get_client().request("GET", f"/studies/gold:{self.study_id}").json()
)
self.compute_study_set(study_data, minted_study_id[0], study_data_portal)
minted_biosample_ids = self._runtime_mint_api_call(
"POST", "/pids/mint", "nmdc:Biosample", len(biosamples)
)
gold_biosample_ids = [biosample["biosampleGoldId"] for biosample in biosamples]
minted_biosample_ids_dict = dict(zip(gold_biosample_ids, minted_biosample_ids))
# code block ensuring that a FieldResearchSite id is associated with
# all biosamples from the same site
site_ids = [
{
biosample["biosampleGoldId"]: self.field_site_parser(
biosample["biosampleName"]
).split(" ")[0]
}
for biosample in biosamples
]
gold_site_ids_dict = {}
site_vals_list = []
for site in site_ids:
for gb, site_id in site.items():
gold_site_ids_dict[gb] = site_id
site_vals_list.append(site_id)
site_vals_list = set(site_vals_list)
minted_field_research_site_ids = self._runtime_mint_api_call(
"POST", "/pids/mint", "nmdc:FieldResearchSite", len(site_vals_list)
)
site_ids_dict = dict(zip(site_vals_list, minted_field_research_site_ids))
gold_biosample_ids = [biosample["biosampleGoldId"] for biosample in biosamples]
minted_field_research_site_ids_dict = {
k: site_ids_dict.get(v, v) for k, v in gold_site_ids_dict.items()
}
minted_project_ids = self._runtime_mint_api_call(
"POST", "/pids/mint", "nmdc:OmicsProcessing", len(projects)
)
gold_project_ids = [project["projectGoldId"] for project in projects]
minted_project_ids_dict = dict(zip(gold_project_ids, minted_project_ids))
# refactor: nested loop to associate analysis project information with biosample
# reason: individual API calls to analysis_projects endpoint with biosample id as
# query parameter are expensive
for ga in analysis_projects:
for gb in biosamples:
for gp_a in ga["projects"]:
for gp_b in gb["projects"]:
if gp_a == gp_b["projectGoldId"]:
if "biosampleGoldId" in ga:
ga["biosampleGoldId"].append(gb["biosampleGoldId"])
else:
ga["biosampleGoldId"] = gb["biosampleGoldId"]
self.compute_biosample_set(
minted_study_id[0],
biosamples,
minted_biosample_ids_dict,
minted_field_research_site_ids_dict,
projects,
analysis_projects,
)
# TODO: enable if you want to pull sequencing project information from GOLD
self.compute_project_set(
minted_study_id[0],
projects,
minted_biosample_ids_dict,
minted_project_ids_dict,
)
# TODO: enable if you want to pull AP information from GOLD
# self.compute_analysis_project_set(analysis_projects)
# dump JSON string serialization of NMDC Schema object
json_str = json_dumper.dumps(self.nmdc_db, inject_type=False)
# if file_path is provided then additionally write to file at path
if file_path:
with open(file_path, "w", encoding="utf-8") as f:
json.dump(json.loads(json_str), f, ensure_ascii=False, indent=4)
return json_str