|
| 1 | +# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. |
| 2 | +# |
| 3 | +# This source code is licensed under the BSD license found in the |
| 4 | +# LICENSE file in the root directory of this source tree. |
| 5 | + |
| 6 | +import torch |
| 7 | +import torch.distributed as dist |
| 8 | +import torch.nn as nn |
| 9 | +from autoparallel.graph_pp_runner import GraphPipelineStage |
| 10 | +from torch._C._distributed_c10d import FakeWork, PythonCallbackWork |
| 11 | +from torch.distributed import DeviceMesh |
| 12 | +from torch.distributed._local_tensor import ( |
| 13 | + local_tensor_mode, |
| 14 | + LocalIntNode, |
| 15 | + LocalRunnerMode, |
| 16 | + LocalTensor, |
| 17 | + LocalTensorMode, |
| 18 | + maybe_disable_local_tensor_mode, |
| 19 | +) |
| 20 | +from torch.distributed._local_tensor._c10d import local_p2p_op |
| 21 | +from torch.distributed.pipelining.stage import InputInfo, PipelineStage |
| 22 | +from torch.distributed.tensor import DTensor |
| 23 | +from torch.export._unlift import _assign_attr |
| 24 | +from torch.export.unflatten import _AttrKind |
| 25 | + |
| 26 | + |
| 27 | +_pg_groups: list[list[int]] = [] |
| 28 | + |
| 29 | + |
| 30 | +def create_local_tensor_mode(dp_ep_mesh: DeviceMesh, pp_rank: int) -> LocalTensorMode: |
| 31 | + dp_ep_full_mesh = dp_ep_mesh._layout.remap_to_tensor(dp_ep_mesh._rank_map) |
| 32 | + dp_ep_ranks = dp_ep_full_mesh[pp_rank].flatten().tolist() |
| 33 | + print(f"Creating local tensor mode for ranks {dp_ep_ranks}") |
| 34 | + return LocalTensorMode(frozenset(dp_ep_ranks)) |
| 35 | + |
| 36 | + |
| 37 | +def cache_pp_groups(pp_mesh: DeviceMesh) -> list[list[int]]: |
| 38 | + pp_full_mesh = pp_mesh._layout.remap_to_tensor(pp_mesh._rank_map) |
| 39 | + pp_groups = [] |
| 40 | + for i in range(pp_full_mesh.size(dim=0)): |
| 41 | + pp_group = pp_full_mesh[i].tolist() |
| 42 | + pp_groups.append(pp_group) |
| 43 | + global _pp_groups |
| 44 | + _pp_groups = pp_groups |
| 45 | + return pp_groups |
| 46 | + |
| 47 | + |
| 48 | +def combine_works(works: list[dist.Work], ctx: str | None = None) -> dist.Work: |
| 49 | + def _wait_all(timeout) -> bool: |
| 50 | + for w in works: |
| 51 | + w.wait() |
| 52 | + return True |
| 53 | + |
| 54 | + return PythonCallbackWork(_wait_all) |
| 55 | + |
| 56 | + |
| 57 | +def get_pp_peer(self: int, peer: int) -> torch.SymInt: |
| 58 | + pp_ret = {} |
| 59 | + global _pp_groups |
| 60 | + for pp_group in _pp_groups: |
| 61 | + global_rank = pp_group[self] |
| 62 | + global_peer = pp_group[peer] |
| 63 | + pp_ret[global_rank] = global_peer |
| 64 | + return torch.SymInt(LocalIntNode(pp_ret)) |
| 65 | + |
| 66 | + |
| 67 | +def expand_p2p_ops( |
| 68 | + ops: list[dist.P2POp], pp_rank: int, ctx: str | None = None |
| 69 | +) -> list[dist.P2POp]: |
| 70 | + # Ops where generated from a perspective of pp group where rank 0 is present. |
| 71 | + |
| 72 | + def multi_isend(tensor, dst=None, group=None, tag=0, group_src=None): |
| 73 | + assert group_src is not None, "Expected group rank" |
| 74 | + peer = get_pp_peer(pp_rank, group_src) |
| 75 | + if not isinstance(tensor, LocalTensor): |
| 76 | + tensor = maybe_make_tensor_local(tensor) |
| 77 | + works = local_p2p_op(peer, tensor, dist.isend) |
| 78 | + return FakeWork() |
| 79 | + |
| 80 | + def multi_irecv(tensor, src=None, group=None, tag=0, group_src=None): |
| 81 | + assert group_src is not None, "Expected group rank" |
| 82 | + peer = get_pp_peer(pp_rank, group_src) |
| 83 | + assert isinstance(tensor, LocalTensor), "Expected LocalTensor" |
| 84 | + works = local_p2p_op(peer, tensor, dist.irecv) |
| 85 | + return combine_works(works) |
| 86 | + |
| 87 | + send_ops = [] |
| 88 | + recv_ops = [] |
| 89 | + for p2p_op in ops: |
| 90 | + op = p2p_op.op |
| 91 | + if op is dist.isend: |
| 92 | + p2p_op.op = multi_isend |
| 93 | + send_ops.append(p2p_op) |
| 94 | + elif op is dist.irecv: |
| 95 | + p2p_op.op = multi_irecv |
| 96 | + recv_ops.append(p2p_op) |
| 97 | + else: |
| 98 | + raise AssertionError("Unxpected op {op}") |
| 99 | + |
| 100 | + # Execute send ops first and then recv because the latter are blocking |
| 101 | + return send_ops + recv_ops |
| 102 | + |
| 103 | + |
| 104 | +class LocalGraphPipelineStage(GraphPipelineStage): |
| 105 | + def log_name(self) -> str: |
| 106 | + return ( |
| 107 | + f"PP rank {self.group_rank} Stage {self.stage_index} of {self.num_stages}" |
| 108 | + ) |
| 109 | + |
| 110 | + def _get_recv_ops(self, recv_infos: tuple[InputInfo, ...]) -> list[dist.P2POp]: |
| 111 | + ops = super()._get_recv_ops(recv_infos) |
| 112 | + ops = expand_p2p_ops(ops, self.group_rank, self.log_name() + " _get_recv_ops") |
| 113 | + return ops |
| 114 | + |
| 115 | + def get_fwd_send_ops(self, fwd_chunk_id: int) -> list[dist.P2POp]: |
| 116 | + ops = super().get_fwd_send_ops(fwd_chunk_id) |
| 117 | + ops = expand_p2p_ops( |
| 118 | + ops, self.group_rank, self.log_name() + " get_fwd_send_ops" |
| 119 | + ) |
| 120 | + return ops |
| 121 | + |
| 122 | + def get_bwd_send_ops(self, bwd_chunk_id: int) -> list[dist.P2POp]: |
| 123 | + ops = super().get_bwd_send_ops(bwd_chunk_id) |
| 124 | + ops = expand_p2p_ops( |
| 125 | + ops, self.group_rank, self.log_name() + " get_bwd_send_ops" |
| 126 | + ) |
| 127 | + return ops |
| 128 | + |
| 129 | + def _get_init_p2p_neighbors_ops(self) -> list[dist.P2POp]: |
| 130 | + ops = super()._get_init_p2p_neighbors_ops() |
| 131 | + ops = expand_p2p_ops( |
| 132 | + ops, self.group_rank, self.log_name() + " _get_init_p2p_neighbors_ops" |
| 133 | + ) |
| 134 | + return ops |
| 135 | + |
| 136 | + |
| 137 | +def local_tensor_mode_if_enabled( |
| 138 | + ltm: LocalTensorMode | None = None, |
| 139 | +) -> LocalTensorMode | None: |
| 140 | + |
| 141 | + for _ in range(2): |
| 142 | + if ltm is not None and not ltm._disable: |
| 143 | + return ltm |
| 144 | + ltm = local_tensor_mode() |
| 145 | + |
| 146 | + return None |
| 147 | + |
| 148 | + |
| 149 | +def maybe_make_tensor_local( |
| 150 | + tensor: torch.Tensor, |
| 151 | + ltm: LocalTensorMode | None = None, |
| 152 | +) -> torch.Tensor: |
| 153 | + ltm = local_tensor_mode_if_enabled(ltm) |
| 154 | + if ltm is None: |
| 155 | + return tensor |
| 156 | + |
| 157 | + if isinstance(tensor, LocalTensor): |
| 158 | + return tensor |
| 159 | + |
| 160 | + if isinstance(tensor, DTensor): |
| 161 | + tensor._local_tensor = maybe_make_tensor_local(tensor._local_tensor, ltm) |
| 162 | + return tensor |
| 163 | + |
| 164 | + local_tensor = ltm.rank_map(lambda r: tensor.clone().detach()) |
| 165 | + local_tensor.requires_grad = tensor.requires_grad |
| 166 | + return local_tensor |
| 167 | + |
| 168 | + |
| 169 | +def maybe_make_module_local( |
| 170 | + module: nn.Module, |
| 171 | + ltm: LocalTensorMode | None = None, |
| 172 | +) -> None: |
| 173 | + ltm = local_tensor_mode_if_enabled(ltm) |
| 174 | + print(f"maybe_make_module_local {ltm.ranks}") |
| 175 | + if ltm is None: |
| 176 | + return |
| 177 | + |
| 178 | + for k, v in module.named_parameters(): |
| 179 | + _assign_attr( |
| 180 | + nn.Parameter( |
| 181 | + data=maybe_make_tensor_local(v.data, ltm), |
| 182 | + requires_grad=v.requires_grad, |
| 183 | + ), |
| 184 | + module, |
| 185 | + k, |
| 186 | + attr_kind=_AttrKind.PARAMETER, |
| 187 | + ) |
| 188 | + |
| 189 | + for k, v in module.named_buffers(): |
| 190 | + _assign_attr( |
| 191 | + maybe_make_tensor_local(v, ltm), module, k, attr_kind=_AttrKind.BUFFER |
| 192 | + ) |
0 commit comments