You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: reference/api/settings.mdx
+20-2
Original file line number
Diff line number
Diff line change
@@ -2435,10 +2435,11 @@ These embedder objects may contain the following fields:
2435
2435
|**`revision`**| String | Empty | Model revision hash |
2436
2436
|**`distribution`**| Object | Empty | Describes the natural distribution of search results. Must contain two fields, `mean` and `sigma`, each containing a numeric value between `0` and `1`|
2437
2437
|**`request`**| Object | Empty | A JSON value representing the request Meilisearch makes to the remote embedder |
2438
-
|**`response`**| Object | Empty | A JSON value representing the request Meilisearch expects from the remote embedder|
2438
+
|**`response`**| Object | Empty | A JSON value representing the response Meilisearch expects from the remote embedder |
2439
2439
|**`binaryQuantized`**| Boolean | Empty | Once set to `true`, irreversibly converts all vector dimensions to 1-bit values |
2440
2440
|**`indexingEmbedder`**| Object | Empty | Configures embedder to vectorize documents during indexing |
|**`index_uid`** * | String |[`uid`](/learn/getting_started/indexes#index-uid) of the requested index |
2454
+
|**`index_uid`** * | String |[`uid`](/learn/getting_started/indexes#index-uid) of the requested index |
2454
2455
2455
2456
#### Example
2456
2457
@@ -2503,6 +2504,7 @@ Partially update the embedder settings for an index. When this setting is update
2503
2504
"response": { … },
2504
2505
"headers": { … },
2505
2506
"binaryQuantized": <Boolean>,
2507
+
"pooling": <String>,
2506
2508
"indexingEmbedder": { … },
2507
2509
"searchEmbedder": { … }
2508
2510
}
@@ -2762,6 +2764,22 @@ This option can be useful when working with large Meilisearch projects. Consider
2762
2764
**Activating `binaryQuantized` is irreversible.** Once enabled, Meilisearch converts all vectors and discards all vector data that does fit within 1-bit. The only way to recover the vectors' original values is to re-vectorize the whole index in a new embedder.
2763
2765
</Capsule>
2764
2766
2767
+
##### `pooling`
2768
+
2769
+
Configure how Meilisearch should merge individual tokens into a single embedding.
2770
+
2771
+
`pooling` must be one of the following strings:
2772
+
2773
+
-`"useModel"`: Meilisearch will fetch the pooling method from the model configuration. Default value for new embedders
2774
+
-`"forceMean"`: always use mean pooling. Default value for embedders created in Meilisearch \<=v1.13
2775
+
-`"forceCls"`: always use CLS pooling
2776
+
2777
+
If in doubt, use `"useModel"`. `"forceMean"` and `"forceCls"` are compatibility options that might be necessary for certain embedders and models.
2778
+
2779
+
`pooling` is optional for embedders with the `huggingFace` source.
2780
+
2781
+
`pooling` is invalid for all other embedder sources.
2782
+
2765
2783
##### `indexingEmbedder` and `searchEmbedder` <NoticeTagtype="experimental"label="experimental" />
2766
2784
2767
2785
When using a [composite embedder](#composite-embedders), configure separate embedders Meilisearch should use when vectorizing documents and search queries.
0 commit comments