Skip to content

Commit 33ef2db

Browse files
Add further guidance regarding document template and custom embedders (#3379)
1 parent ecb6fd7 commit 33ef2db

File tree

2 files changed

+5
-1
lines changed

2 files changed

+5
-1
lines changed

learn/ai_powered_search/search_with_user_provided_embeddings.mdx

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -28,6 +28,10 @@ curl \
2828
}'
2929
```
3030

31+
<Warning>
32+
Embedders with `source: userProvided` are incompatible with `documentTemplate` and `documentTemplateMaxBytes`.
33+
</Warning>
34+
3135
## Add documents to Meilisearch
3236

3337
Next, use [the `/documents` endpoint](/reference/api/documents?utm_campaign=vector-search&utm_source=docs&utm_medium=vector-search-guide) to upload vectorized documents. Place vector data in your documents' `_vectors` field:

reference/api/settings.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2668,7 +2668,7 @@ This field is incompatible with `rest` and `userProvided` embedders.
26682668

26692669
##### `documentTemplate`
26702670

2671-
`documentTemplate` is a string containing a [Liquid template](https://shopify.github.io/liquid/basics/introduction). Meillisearch interpolates the template for each document and sends the resulting text to the embedder. The embedder then generates document vectors based on this text.
2671+
`documentTemplate` is a string containing a [Liquid template](https://shopify.github.io/liquid/basics/introduction). When using an embedding generation service such as OpenAI, Meillisearch interpolates the template for each document and sends the resulting text to the embedder. The embedder then generates document vectors based on this text. If used with a custom embedder, Meilisearch will return an error.
26722672

26732673
You may use the following context values:
26742674

0 commit comments

Comments
 (0)