Skip to content

Latest commit

 

History

History
144 lines (115 loc) · 5.39 KB

ChestCT-Scan_images.md

File metadata and controls

144 lines (115 loc) · 5.39 KB

Chest CT-Scan images

Dataset Information

The Chest CT-Scan images dataset is a 2D-CT image dataset for human chest cancer detection. The authors have collected and integrated a total of 1,000 CT images from multiple sources, which include one normal category and three cancer categories: Adenocarcinoma, Large cell carcinoma, and Squamous cell carcinoma. The dataset is pre-divided into 613 training images, 72 validation images, and 315 test images. The authors hope that this dataset will promote the research and development of classification algorithms in this field and that developers will use it to develop related applications to help doctors rescue patients more timely and accurately.

Dataset Meta Information

Dimensions Modality Task Type Anatomical Structures Anatomical Area Number of Categories Data Volume File Format
2D CT Classification Lung Chest 4 1000 JPG, PNG

Resolution Details

Dataset Statistics size
min [172, 110]
median [429, 285]
max [1200, 874]

Label Information Statistics

Category train val test
Normal 148 23 120
Adenocarcinoma 195 21 51
Large cell carcinoma 115 13 54
Squamous cell carcinoma 155 15 90

Visualization

Normal category example.

Adenocarcinoma category example.

Large cell carcinoma category example.

Squamous cell carcinoma category example.

File Structure

The file structure of the dataset is as follows, containing three folders named 'train', 'val', and 'test', each folder contains images corresponding to four different categories.

Chest CT-Scan images Dataset
├── test
│   ├── adenocarcinoma
│   │   ├── 000108 (3).png
│   │   ├── 000109 (2).png
│   │   ├── ...
│   ├── large.cell.carcinoma
│   │   ├── 000108.png
│   │   ├── 000110.png
│   │   ├── ...
│   ├── normal
│   │   ├── 6 - Copy (2) - Copy.png
│   │   ├── 6 - Copy (2).png
│   │   ├── ...
│   ├── squamous.cell.carcinoma
│   │   ├── 000108 (6).png
│   │   ├── 000110 (2).png
│   │   ├── ...
├── train
│   ├── adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib
│   │   ├── 000000 (6).png
│   │   ├── 000005 (3).png
│   │   ├── ...
│   ├── large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa
│   │   ├── 000002.png
│   │   ├── 000003 (3).png
│   │   ├── ...
│   ├── normal
│   │   ├── 2 - Copy - Copy.png
│   │   ├── 2 - Copy (2) - Copy.png
│   │   ├── ...
│   ├── squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa
│   │   ├── 000002 (4).png
│   │   ├── 000002 (6).png
│   │   ├── ...
├── val
│   ├── adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib
│   │   ├── 000108 (7).png
│   │   ├── 000108 (8).png
│   │   ├── ...
│   ├── large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa
│   │   ├── 000108 (2).png
│   │   ├── 000108.png
│   │   ├── ...
│   ├── normal
│   │   ├── 4 - Copy (2).png
│   │   ├── 4 (2).png
│   │   ├── ...
│   ├── squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa
│   │   ├── 000108 (3).png
│   │   ├── 000110 (6).png
│   │   ├── ...

Authors and Institutions

SunneYi (Alibaba Cloud Tianchi user, unknown unit)

Source Information

Official Website: https://tianchi.aliyun.com/dataset/93929

Download Link: https://tianchi.aliyun.com/dataset/93929

Article Address: None

Publication Date: 2021-03-10

Citation

@dataset{tianchi93929,
  author       = {SunneYi},
  title        = {{Chest CT-Scan images Dataset}},
  year         = {2021},
  publisher    = {Tianchi},
  url          = {https://tianchi.aliyun.com/dataset/93929},
}

Original introduction article is here.