@@ -69,7 +69,7 @@ def test_2d_transformer(self, data, one_hot_encoder, label_encoder):
69
69
70
70
def test_many_x (self , data , label_binarizer , label_encoder ):
71
71
lb2 = LabelBinarizer ().fit (data ['var2' ])
72
- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), ('var2' , lb2 )] ,
72
+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), ('var2' , lb2 )) ,
73
73
y_structure = ('label' , label_encoder ),
74
74
data_sample = data )
75
75
batch = bs .transform (data )
@@ -87,7 +87,7 @@ def test_many_x(self, data, label_binarizer, label_encoder):
87
87
def test_many_y (self , data , label_binarizer , label_encoder ):
88
88
lb2 = LabelBinarizer ().fit (data ['var2' ])
89
89
bs = BatchShaper (x_structure = ('var1' , label_binarizer ),
90
- y_structure = [( 'label' , label_encoder ), ('var2' , lb2 )] ,
90
+ y_structure = (( 'label' , label_encoder ), ('var2' , lb2 )) ,
91
91
data_sample = data )
92
92
batch = bs .transform (data )
93
93
assert type (batch ) == tuple
@@ -111,7 +111,7 @@ def test_predict_batch(self, data, label_binarizer, label_encoder):
111
111
so for predict, the generator must return a tuple (x,), where x is a list of inputs
112
112
"""
113
113
lb2 = LabelBinarizer ().fit (data ['var2' ])
114
- batch_shaper = BatchShaper (x_structure = [( 'var1' , label_binarizer ), ('var2' , lb2 )] , data_sample = data )
114
+ batch_shaper = BatchShaper (x_structure = (( 'var1' , label_binarizer ), ('var2' , lb2 )) , data_sample = data )
115
115
batch = batch_shaper .transform (data )
116
116
assert isinstance (batch , tuple )
117
117
assert len (batch ) == 1
@@ -146,7 +146,7 @@ def test_init_with_data_sample(self):
146
146
pass
147
147
148
148
def test_none_transformer (self , data , label_binarizer , label_encoder ):
149
- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), ('var2' , None )] ,
149
+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), ('var2' , None )) ,
150
150
y_structure = ('label' , label_encoder ),
151
151
data_sample = data )
152
152
batch = bs .transform (data )
@@ -157,7 +157,7 @@ def test_none_transformer(self, data, label_binarizer, label_encoder):
157
157
assert np .array_equal (batch [0 ][1 ], np .expand_dims (data ['var2' ].values , axis = - 1 ))
158
158
159
159
def test_const_component_int (self , data , label_binarizer , label_encoder ):
160
- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), (None , 0 )] ,
160
+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), (None , 0 )) ,
161
161
y_structure = ('label' , label_encoder ),
162
162
data_sample = data )
163
163
batch = bs .transform (data )
@@ -169,7 +169,7 @@ def test_const_component_int(self, data, label_binarizer, label_encoder):
169
169
assert batch [0 ][1 ].dtype == int
170
170
171
171
def test_const_component_float (self , data , label_binarizer , label_encoder ):
172
- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), (None , 0. )] ,
172
+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), (None , 0. )) ,
173
173
y_structure = ('label' , label_encoder ),
174
174
data_sample = data )
175
175
batch = bs .transform (data )
@@ -181,7 +181,7 @@ def test_const_component_float(self, data, label_binarizer, label_encoder):
181
181
assert batch [0 ][1 ].dtype == float
182
182
183
183
def test_const_component_str (self , data , label_binarizer , label_encoder ):
184
- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), (None , u'a' )] ,
184
+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), (None , u'a' )) ,
185
185
y_structure = ('label' , label_encoder ),
186
186
data_sample = data )
187
187
batch = bs .transform (data )
@@ -194,7 +194,7 @@ def test_const_component_str(self, data, label_binarizer, label_encoder):
194
194
195
195
def test_metadata (self , data , label_binarizer , label_encoder ):
196
196
VarShaper ._dummy_constant_counter = 0
197
- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), (None , 0. )] ,
197
+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), (None , 0. )) ,
198
198
y_structure = ('label' , label_encoder ),
199
199
data_sample = data )
200
200
md = bs .metadata
@@ -228,7 +228,7 @@ def test_metadata(self, data, label_binarizer, label_encoder):
228
228
229
229
def test_dummy_var_naming (self , data , label_binarizer , label_encoder ):
230
230
VarShaper ._dummy_constant_counter = 0
231
- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), (None , 0. ), (None , 1. )] ,
231
+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), (None , 0. ), (None , 1. )) ,
232
232
y_structure = ('label' , label_encoder ),
233
233
data_sample = data )
234
234
md = bs .metadata
@@ -258,7 +258,7 @@ def inverse_transform(self, data):
258
258
return data
259
259
260
260
a = A ()
261
- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), ('var1' , a )] ,
261
+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), ('var1' , a )) ,
262
262
y_structure = ('label' , label_encoder ),
263
263
data_sample = data )
264
264
shapes = bs .shape
@@ -283,22 +283,22 @@ def inverse_transform(self, data):
283
283
return data
284
284
285
285
a = A ()
286
- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), ('var1' , a )] ,
286
+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), ('var1' , a )) ,
287
287
y_structure = ('label' , label_encoder ), data_sample = data )
288
288
n_classes = bs .n_classes
289
289
pass
290
290
291
291
def test_inverse_transform (self , data , label_binarizer , label_encoder ):
292
292
le2 = LabelEncoder ().fit (data ['var2' ])
293
293
bs = BatchShaper (x_structure = ('var1' , label_binarizer ),
294
- y_structure = [( 'label' , label_encoder ), ('var2' , le2 )] ,
294
+ y_structure = (( 'label' , label_encoder ), ('var2' , le2 )) ,
295
295
data_sample = data )
296
296
batch = bs .transform (data )
297
297
inverse = bs .inverse_transform (batch [1 ])
298
298
assert inverse .equals (data [['label' , 'var2' ]])
299
299
# Check inverse transform when constant field is in the structure
300
300
bs = BatchShaper (x_structure = ('var1' , label_binarizer ),
301
- y_structure = [( 'label' , label_encoder ), ('var2' , le2 ), (None , 0. )] ,
301
+ y_structure = (( 'label' , label_encoder ), ('var2' , le2 ), (None , 0. )) ,
302
302
data_sample = data )
303
303
batch = bs .transform (data )
304
304
# check that the constant field was added to the y output
@@ -309,7 +309,7 @@ def test_inverse_transform(self, data, label_binarizer, label_encoder):
309
309
assert inverse .equals (data [['label' , 'var2' ]])
310
310
# Check inverse transform when direct mapping field is in the structure
311
311
bs = BatchShaper (x_structure = ('var1' , label_binarizer ),
312
- y_structure = [( 'label' , label_encoder ), ('var2' , le2 ), ('var1' , None )] ,
312
+ y_structure = (( 'label' , label_encoder ), ('var2' , le2 ), ('var1' , None )) ,
313
313
data_sample = data )
314
314
batch = bs .transform (data )
315
315
# check that the constant field was added to the y output
@@ -366,7 +366,7 @@ def test_batch_forking(self, data, label_binarizer, label_encoder):
366
366
# check that data is not modified
367
367
assert data .equals (data_snapshot )
368
368
assert data_xy_fork .columns .nlevels == 2
369
- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), ('label' , label_encoder )] ,
369
+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), ('label' , label_encoder )) ,
370
370
y_structure = ('label' , label_encoder ),
371
371
data_sample = data )
372
372
tr = bs .transform (data_xy_fork )
@@ -384,7 +384,7 @@ def test_batch_forking(self, data, label_binarizer, label_encoder):
384
384
batch_fork_01 = BatchFork (levels = (0 , 1 ))
385
385
data_01_fork = batch_fork_01 .transform (data )
386
386
assert data_01_fork .columns .nlevels == 2
387
- bs = BatchShaper (x_structure = [( 'var1' , label_binarizer ), ('label' , label_encoder )] ,
387
+ bs = BatchShaper (x_structure = (( 'var1' , label_binarizer ), ('label' , label_encoder )) ,
388
388
y_structure = ('label' , label_encoder ),
389
389
multiindex_xy_keys = (0 , 1 ),
390
390
data_sample = data )
0 commit comments