1+ import pandas as pd
2+ import random
3+ from datetime import date , timedelta
4+ from mplfinance .plotting import plot
5+ from mplfinance ._styles import make_marketcolors
6+
7+ dict_data = []
8+ start_date = date (2019 , 1 , 1 )
9+ end_date = date (2020 , 1 , 1 )
10+ delta = timedelta (days = 1 )
11+ start = 20
12+ end = 30
13+ while start_date <= end_date :
14+ openval = random .randint (start , end )
15+ closeval = random .randint (start , end )
16+ high = random .randint (max (openval , closeval ), end )
17+ low = random .randint (start , min (openval , closeval ))
18+ change = random .randint (- 5 , 5 )
19+ volume = random .randint (10000 , 20000 )
20+ dict_data .append ({
21+ "Open" : openval ,
22+ "Close" : closeval ,
23+ "High" : high ,
24+ "Low" : low ,
25+ "Date" : start_date ,
26+ "Volume" : volume
27+ })
28+ start += change
29+ end += change
30+ start_date += delta
31+
32+ df = pd .DataFrame (dict_data )
33+ df .index = pd .to_datetime (df ['Date' ])
34+
35+ # custom_colors = []
36+ # for i in range(len(df)):
37+ # if i % 3 == 0:
38+ # custom_colors.append(make_marketcolors(up='#29c9ff', down='#f3b5ff', edge='#29c9ff', wick='#29c9ff', ohlc='#32a852', volume='#a89132'))
39+ # elif i%5 == 0:
40+ # custom_colors.append("#000000")
41+ # else:
42+ # custom_colors.append(None)
43+
44+ # plot(df, type='candle', style='yahoo', colors=custom_colors, volume=True)
45+ plot (df , type = 'candle' , style = 'yahoo' , volume = True )
0 commit comments