Skip to content

Commit c71633b

Browse files
t6saffeldt-aist
authored andcommitted
Fsigma (#40)
* add Definition Fsigma
1 parent 52c78c6 commit c71633b

File tree

1 file changed

+12
-4
lines changed

1 file changed

+12
-4
lines changed

theories/gdelta.v renamed to theories/borel_hierarchy.v

Lines changed: 12 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -66,17 +66,25 @@ apply/not_implyP; split; first exact: openT.
6666
by rewrite setTI => -[].
6767
Qed.
6868

69+
Section Fsigma.
70+
71+
Definition Fsigma (R : topologicalType) (S : set R) :=
72+
exists2 A_ : (set R)^nat,
73+
(forall i : nat, closed (A_ i)) & S = \bigcup_i (A_ i).
74+
75+
Lemma closed_Fsigma (R : topologicalType) (S : set R) : closed S -> Fsigma S.
76+
Proof. by exists (fun=> S)=> //; rewrite bigcup_const. Qed.
77+
78+
End Fsigma.
79+
6980
Section Gdelta.
7081

7182
Definition Gdelta (R : topologicalType) (S : set R) :=
7283
exists2 A_ : (set R)^nat,
7384
(forall i : nat, open (A_ i)) & S = \bigcap_i (A_ i).
7485

7586
Lemma open_Gdelta (R : topologicalType) (S : set R) : open S -> Gdelta S.
76-
Proof.
77-
exists (bigcap2 S setT)=> [i |]; last by rewrite bigcap2E setIT.
78-
by rewrite /bigcap2; case: ifP => // _; case: ifP => // _; apply: openT.
79-
Qed.
87+
Proof. by exists (fun=> S)=> //; rewrite bigcap_const. Qed.
8088

8189
Section irrat_Gdelta.
8290
Context {R : realType}.

0 commit comments

Comments
 (0)