@@ -836,39 +836,6 @@ Qed.
836836
837837End integration_by_parts.
838838
839- (* PR#1656 *)
840- Lemma derivable_oy_continuous_within_itvcy {R : numFieldType}
841- {V : normedModType R} (f : R -> V) (x : R) :
842- derivable_oy_continuous_bnd f x -> {within `[x, +oo[, continuous f}.
843- Proof .
844- Admitted .
845-
846- (* #PR1656 *)
847- Lemma derivable_oy_continuous_bndW_oo {R : numFieldType} {V : normedModType R}
848- (a c d : R) (f : R -> V) :
849- (c < d) ->
850- (a <= c) ->
851- derivable_oy_continuous_bnd f a ->
852- derivable_oo_continuous_bnd f c d.
853- Proof .
854- Admitted .
855-
856- (* PR#1662 *)
857- Lemma measurable_fun_itv_bndo_bndcP {R : realType} (a : itv_bound R) (b : R)
858- (f : R -> R) :
859- measurable_fun [set` Interval a (BLeft b)] f <->
860- measurable_fun [set` Interval a (BRight b)] f.
861- Proof .
862- Admitted .
863-
864- (* PR#1662 *)
865- Lemma measurable_fun_itv_obnd_cbndP {R : realType} (a : R) (b : itv_bound R)
866- (f : R -> R) :
867- measurable_fun [set` Interval (BRight a) b] f <->
868- measurable_fun [set` Interval (BLeft a) b] f.
869- Proof .
870- Admitted .
871-
872839Section integration_by_partsy_ge0.
873840Context {R : realType}.
874841Notation mu := lebesgue_measure.
@@ -949,11 +916,11 @@ under eq_bigr => i _.
949916 rewrite (integration_by_parts _ _ _ (@Ffai i) _ _ (@Ggai i)); last 5 first.
950917 - by rewrite ltrD2l ltr_nat.
951918 - exact: continuous_subspaceW cf.
952- - apply: derivable_oy_continuous_bndW_oo Foy.
919+ - apply: derivable_oy_continuousWoo Foy.
953920 + by rewrite ltrD2l ltr_nat.
954921 + by rewrite lerDl.
955922 - exact: continuous_subspaceW cg.
956- - apply: derivable_oy_continuous_bndW_oo Goy.
923+ - apply: derivable_oy_continuousWoo Goy.
957924 + by rewrite ltrD2l ltr_nat.
958925 + by rewrite lerDl.
959926 over.
@@ -985,7 +952,7 @@ Let sumN_Nsum_fG n :
985952Proof .
986953rewrite big_nat_cond fin_num_sumeN; rewrite -?big_nat_cond//; move=> m _.
987954rewrite seqDUE integral_itv_obnd_cbnd; last exact: measurable_funS mfG.
988- apply: integral_fune_fin_num => //=.
955+ apply: integrable_fin_num => //=.
989956apply: continuous_compact_integrable; first exact: segment_compact.
990957exact: continuous_subspaceW cfG.
991958Qed .
@@ -1068,11 +1035,13 @@ Notation mu := lebesgue_measure.
10681035Local Open Scope ereal_scope.
10691036Local Open Scope classical_set_scope.
10701037
1038+ (* TODO: move *)
10711039Lemma derivable_oy_continuous_bndN (F : R -> R^o) (a : R) :
1072- derivable_oy_continuous_bnd F a ->
1073- derivable_oy_continuous_bnd (- F)%R a.
1040+ derivable_oy_continuous_bnd F a -> derivable_oy_continuous_bnd (- F)%R a.
10741041Proof .
1075- Admitted .
1042+ move=> [/= derF Fa]; split; last exact: cvgN.
1043+ by move=> /= x xa; exact/derivableN/derF.
1044+ Qed .
10761045
10771046Variables (F G f g : R -> R^o) (a FGoo : R).
10781047Hypothesis cf : {within `[a, +oo[, continuous f}.
0 commit comments