|
| 1 | +# XGBoost Regressor Example |
| 2 | +import numpy as np |
| 3 | +from sklearn.datasets import fetch_california_housing |
| 4 | +from sklearn.metrics import mean_absolute_error, mean_squared_error |
| 5 | +from sklearn.model_selection import train_test_split |
| 6 | +from xgboost import XGBRegressor |
| 7 | + |
| 8 | + |
| 9 | +def data_handling(data: dict) -> tuple: |
| 10 | + # Split dataset into features and target. Data is features. |
| 11 | + """ |
| 12 | + >>> data_handling(( |
| 13 | + ... {'data':'[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]' |
| 14 | + ... ,'target':([4.526])})) |
| 15 | + ('[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]', [4.526]) |
| 16 | + """ |
| 17 | + return (data["data"], data["target"]) |
| 18 | + |
| 19 | + |
| 20 | +def xgboost( |
| 21 | + features: np.ndarray, target: np.ndarray, test_features: np.ndarray |
| 22 | +) -> np.ndarray: |
| 23 | + """ |
| 24 | + >>> xgboost(np.array([[ 2.3571 , 52. , 6.00813008, 1.06775068, |
| 25 | + ... 907. , 2.45799458, 40.58 , -124.26]]),np.array([1.114]), |
| 26 | + ... np.array([[1.97840000e+00, 3.70000000e+01, 4.98858447e+00, 1.03881279e+00, |
| 27 | + ... 1.14300000e+03, 2.60958904e+00, 3.67800000e+01, -1.19780000e+02]])) |
| 28 | + array([[1.1139996]], dtype=float32) |
| 29 | + """ |
| 30 | + xgb = XGBRegressor(verbosity=0, random_state=42) |
| 31 | + xgb.fit(features, target) |
| 32 | + # Predict target for test data |
| 33 | + predictions = xgb.predict(test_features) |
| 34 | + predictions = predictions.reshape(len(predictions), 1) |
| 35 | + return predictions |
| 36 | + |
| 37 | + |
| 38 | +def main() -> None: |
| 39 | + """ |
| 40 | + >>> main() |
| 41 | + Mean Absolute Error : 0.30957163379906033 |
| 42 | + Mean Square Error : 0.22611560196662744 |
| 43 | +
|
| 44 | + The URL for this algorithm |
| 45 | + https://xgboost.readthedocs.io/en/stable/ |
| 46 | + California house price dataset is used to demonstrate the algorithm. |
| 47 | + """ |
| 48 | + # Load California house price dataset |
| 49 | + california = fetch_california_housing() |
| 50 | + data, target = data_handling(california) |
| 51 | + x_train, x_test, y_train, y_test = train_test_split( |
| 52 | + data, target, test_size=0.25, random_state=1 |
| 53 | + ) |
| 54 | + predictions = xgboost(x_train, y_train, x_test) |
| 55 | + # Error printing |
| 56 | + print(f"Mean Absolute Error : {mean_absolute_error(y_test, predictions)}") |
| 57 | + print(f"Mean Square Error : {mean_squared_error(y_test, predictions)}") |
| 58 | + |
| 59 | + |
| 60 | +if __name__ == "__main__": |
| 61 | + import doctest |
| 62 | + |
| 63 | + doctest.testmod(verbose=True) |
| 64 | + main() |
0 commit comments