forked from mehrshadg/acf_paper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolorednoise.py
108 lines (80 loc) · 3.19 KB
/
colorednoise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
"""Generate colored noise."""
from numpy import sqrt, newaxis
from numpy.fft import irfft, rfftfreq
from numpy.random import normal
from numpy import sum as npsum
def powerlaw_psd_gaussian(exponent, size, fmin=0):
"""Gaussian (1/f)**beta noise.
Based on the algorithm in:
Timmer, J. and Koenig, M.:
On generating power law noise.
Astron. Astrophys. 300, 707-710 (1995)
Normalised to unit variance
Parameters:
-----------
exponent : float
The power-spectrum of the generated noise is proportional to
S(f) = (1 / f)**beta
flicker / pink noise: exponent beta = 1
brown noise: exponent beta = 2
Furthermore, the autocorrelation decays proportional to lag**-gamma
with gamma = 1 - beta for 0 < beta < 1.
There may be finite-size issues for beta close to one.
shape : int or iterable
The output has the given shape, and the desired power spectrum in
the last coordinate. That is, the last dimension is taken as time,
and all other components are independent.
fmin : float, optional
Low-frequency cutoff.
Default: 0 corresponds to original paper. It is not actually
zero, but 1/samples.
Returns
-------
out : array
The samples.
Examples:
---------
# generate 1/f noise == pink noise == flicker noise
>>> import colorednoise as cn
>>> y = cn.powerlaw_psd_gaussian(1, 5)
"""
# Make sure size is a list so we can iterate it and assign to it.
try:
size = list(size)
except TypeError:
size = [size]
# The number of samples in each time series
samples = size[-1]
# Calculate Frequencies (we asume a sample rate of one)
# Use fft functions for real output (-> hermitian spectrum)
f = rfftfreq(samples)
# Build scaling factors for all frequencies
s_scale = f
fmin = max(fmin, 1./samples) # Low frequency cutoff
ix = npsum(s_scale < fmin) # Index of the cutoff
if ix and ix < len(s_scale):
s_scale[:ix] = s_scale[ix]
s_scale = s_scale**(-exponent/2.)
# Calculate theoretical output standard deviation from scaling
w = s_scale[1:].copy()
w[-1] *= (1 + (samples % 2)) / 2. # correct f = +-0.5
sigma = 2 * sqrt(npsum(w**2)) / samples
# Adjust size to generate one Fourier component per frequency
size[-1] = len(f)
# Add empty dimension(s) to broadcast s_scale along last
# dimension of generated random power + phase (below)
dims_to_add = len(size) - 1
s_scale = s_scale[(newaxis,) * dims_to_add + (Ellipsis,)]
# Generate scaled random power + phase
sr = normal(scale=s_scale, size=size)
si = normal(scale=s_scale, size=size)
# If the signal length is even, frequencies +/- 0.5 are equal
# so the coefficient must be real.
if not (samples % 2): si[...,-1] = 0
# Regardless of signal length, the DC component must be real
si[...,0] = 0
# Combine power + corrected phase to Fourier components
s = sr + 1J * si
# Transform to real time series & scale to unit variance
y = irfft(s, n=samples, axis=-1) / sigma
return y