Deep Potential - Range Correction (DPRc) is designed to combine with QM/MM method, and corrects energies from a low-level QM/MM method to a high-level QM/MM method:
See the JCTC paper for details.
Instead the normal ab initio data, one needs to provide the correction from a low-level QM/MM method to a high-level QM/MM method:
Two levels of data use the same MM method, so
In a DPRc model, QM atoms and MM atoms have different atom types. Assuming we have 4 QM atom types (C, H, O, P) and 2 MM atom types (HW, OW):
"type_map": ["C", "H", "HW", "O", "OW", "P"]
As described in the paper, the DPRc model only corrects
"descriptor" :{
"type": "hybrid",
"list" : [
{
"type": "se_e2_a",
"sel": [6, 11, 0, 6, 0, 1],
"rcut_smth": 1.00,
"rcut": 9.00,
"neuron": [12, 25, 50],
"exclude_types": [[2, 2], [2, 4], [4, 4], [0, 2], [0, 4], [1, 2], [1, 4], [3, 2], [3, 4], [5, 2], [5, 4]],
"axis_neuron": 12,
"set_davg_zero": true,
"_comment": " QM/QM interaction"
},
{
"type": "se_e2_a",
"sel": [6, 11, 100, 6, 50, 1],
"rcut_smth": 0.50,
"rcut": 6.00,
"neuron": [12, 25, 50],
"exclude_types": [[0, 0], [0, 1], [0, 3], [0, 5], [1, 1], [1, 3], [1, 5], [3, 3], [3, 5], [5, 5], [2, 2], [2, 4], [4, 4]],
"axis_neuron": 12,
"set_davg_zero": true,
"_comment": " QM/MM interaction"
}
]
}
{ref}exclude_types <model/descriptor[se_e2_a]/exclude_types>
can be generated by the following Python script:
from itertools import combinations_with_replacement, product
qm = (0, 1, 3, 5)
mm = (2, 4)
print("QM/QM:", list(map(list, list(combinations_with_replacement(mm, 2)) + list(product(qm, mm)))))
print("QM/MM:", list(map(list, list(combinations_with_replacement(qm, 2)) + list(combinations_with_replacement(mm, 2)))))
Also, DPRc assumes MM atom energies ({ref}atom_ener <model/fitting_net[ener]/atom_ener>
) are zero:
"fitting_net": {
"neuron": [240, 240, 240],
"resnet_dt": true,
"atom_ener": [null, null, 0.0, null, 0.0, null]
}
Note that {ref}atom_ener <model/fitting_net[ener]/atom_ener>
only works when {ref}descriptor/set_davg_zero <model/descriptor[se_e2_a]/set_davg_zero>
is true
.
The DPRc model has the best practices with the AMBER QM/MM module. An example is given by GitLab RutgersLBSR/AmberDPRc. In theory, DPRc is able to be used with any QM/MM package, as long as the DeePMD-kit package accepts QM atoms and MM atoms within the cutoff range and returns energies and forces.