forked from nitin-rathi/hybrid-snn-conversion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
snn.py
executable file
·514 lines (424 loc) · 22.6 KB
/
snn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
#---------------------------------------------------
# Imports
#---------------------------------------------------
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data.dataloader import DataLoader
from torch.autograd import Variable
from torchviz import make_dot
from matplotlib import pyplot as plt
from matplotlib.gridspec import GridSpec
import numpy as np
import datetime
import pdb
from self_models import *
import sys
import os
import shutil
import argparse
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def find_threshold(batch_size=512, timesteps=2500, architecture='VGG16'):
loader = torch.utils.data.DataLoader(dataset=trainset, batch_size=batch_size, shuffle=True)
try:
obj = model.module
except AttributeError:
obj = model
obj.network_update(timesteps=timesteps, leak=1.0)
pos=0
thresholds=[]
def find(layer, pos):
max_act=0
f.write('\n Finding threshold for layer {}'.format(layer))
for batch_idx, (data, target) in enumerate(loader):
if torch.cuda.is_available() and args.gpu:
data, target = data.cuda(), target.cuda()
with torch.no_grad():
model.eval()
output = model(data, find_max_mem=True, max_mem_layer=layer)
if output>max_act:
max_act = output.item()
#f.write('\nBatch:{} Current:{:.4f} Max:{:.4f}'.format(batch_idx+1,output.item(),max_act))
if batch_idx==0:
thresholds.append(max_act)
pos = pos+1
f.write(' {}'.format(thresholds))
obj.threshold_update(scaling_factor=1.0, thresholds=thresholds[:])
break
return pos
if architecture.lower().startswith('vgg'):
for l in obj.features.named_children():
if isinstance(l[1], nn.Conv2d):
pos = find(int(l[0]), pos)
for c in obj.classifier.named_children():
if isinstance(c[1], nn.Linear):
if (int(l[0])+int(c[0])+1) == (len(obj.features) + len(obj.classifier) -1):
pass
else:
pos = find(int(l[0])+int(c[0])+1, pos)
if architecture.lower().startswith('res'):
for l in model.module.pre_process.named_children():
if isinstance(l[1], nn.Conv2d):
pos = find(int(l[0]), pos)
f.write('\n ANN thresholds: {}'.format(thresholds))
return thresholds
def train(epoch):
global learning_rate
model.module.network_update(timesteps=timesteps, leak=leak)
losses = AverageMeter('Loss')
top1 = AverageMeter('Acc@1')
if epoch in lr_interval:
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] / lr_reduce
learning_rate = param_group['lr']
#f.write('Epoch: {} Learning Rate: {:.2e}'.format(epoch,learning_rate_use))
#total_loss = 0.0
#total_correct = 0
model.train()
#current_time = start_time
#model.module.network_init(update_interval)
for batch_idx, (data, target) in enumerate(train_loader):
if torch.cuda.is_available() and args.gpu:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
#pdb.set_trace()
loss = F.cross_entropy(output,target)
loss.backward()
optimizer.step()
pred = output.max(1,keepdim=True)[1]
correct = pred.eq(target.data.view_as(pred)).cpu().sum()
losses.update(loss.item(),data.size(0))
top1.update(correct.item()/data.size(0), data.size(0))
if (batch_idx+1) % train_acc_batches == 0:
temp1 = []
for value in model.module.threshold.values():
temp1 = temp1+[round(value.item(),2)]
f.write('\nEpoch: {}, batch: {}, train_loss: {:.4f}, train_acc: {:.4f}, threshold: {}, leak: {}, timesteps: {}'
.format(epoch,
batch_idx+1,
losses.avg,
top1.avg,
temp1,
model.module.leak.item(),
model.module.timesteps
)
)
f.write('\nEpoch: {}, lr: {:.1e}, train_loss: {:.4f}, train_acc: {:.4f}'
.format(epoch,
learning_rate,
losses.avg,
top1.avg,
)
)
def test(epoch):
losses = AverageMeter('Loss')
top1 = AverageMeter('Acc@1')
with torch.no_grad():
model.eval()
global max_accuracy
for batch_idx, (data, target) in enumerate(test_loader):
if torch.cuda.is_available() and args.gpu:
data, target = data.cuda(), target.cuda()
output = model(data)
loss = F.cross_entropy(output,target)
pred = output.max(1,keepdim=True)[1]
correct = pred.eq(target.data.view_as(pred)).cpu().sum()
losses.update(loss.item(),data.size(0))
top1.update(correct.item()/data.size(0), data.size(0))
if test_acc_every_batch:
f.write('\nAccuracy: {}/{}({:.4f})'
.format(
correct.item(),
data.size(0),
top1.avg
)
)
temp1 = []
for value in model.module.threshold.values():
temp1 = temp1+[value.item()]
if epoch>5 and top1.avg<0.15:
f.write('\n Quitting as the training is not progressing')
exit(0)
if top1.avg>max_accuracy:
max_accuracy = top1.avg
state = {
'accuracy' : max_accuracy,
'epoch' : epoch,
'state_dict' : model.state_dict(),
'optimizer' : optimizer.state_dict(),
'thresholds' : temp1,
'timesteps' : timesteps,
'leak' : leak,
'activation' : activation
}
try:
os.mkdir('./trained_models/snn/')
except OSError:
pass
filename = './trained_models/snn/'+identifier+'.pth'
torch.save(state,filename)
#if is_best:
# shutil.copyfile(filename, 'best_'+filename)
f.write(' test_loss: {:.4f}, test_acc: {:.4f}, best: {:.4f} time: {}'
.format(
losses.avg,
top1.avg,
max_accuracy,
datetime.timedelta(seconds=(datetime.datetime.now() - start_time).seconds)
)
)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SNN training')
parser.add_argument('--gpu', default=True, type=bool, help='use gpu')
parser.add_argument('-s','--seed', default=0, type=int, help='seed for random number')
parser.add_argument('--dataset', default='CIFAR10', type=str, help='dataset name', choices=['MNIST','CIFAR10','CIFAR100'])
parser.add_argument('--batch_size', default=64, type=int, help='minibatch size')
parser.add_argument('-a','--architecture', default='VGG16', type=str, help='network architecture', choices=['VGG5','VGG9','VGG11','VGG13','VGG16','VGG19','RESNET6','RESNET12','RESNET20','RESNET34'])
parser.add_argument('-lr','--learning_rate', default=1e-4, type=float, help='initial learning_rate')
parser.add_argument('--pretrained_ann', default='', type=str, help='pretrained ANN model')
parser.add_argument('--pretrained_snn', default='', type=str, help='pretrained SNN for inference')
parser.add_argument('--test_only', action='store_true', help='perform only inference')
parser.add_argument('--log', action='store_true', help='to print the output on terminal or to log file')
parser.add_argument('--epochs', default=300, type=int, help='number of training epochs')
parser.add_argument('--lr_interval', default='0.60 0.80 0.90', type=str, help='intervals at which to reduce lr, expressed as %%age of total epochs')
parser.add_argument('--lr_reduce', default=10, type=int, help='reduction factor for learning rate')
parser.add_argument('--timesteps', default=100, type=int, help='simulation timesteps')
parser.add_argument('--leak', default=1.0, type=float, help='membrane leak')
parser.add_argument('--scaling_factor', default=0.7, type=float, help='scaling factor for thresholds at reduced timesteps')
parser.add_argument('--default_threshold', default=1.0, type=float, help='intial threshold to train SNN from scratch')
parser.add_argument('--activation', default='Linear', type=str, help='SNN activation function', choices=['Linear', 'STDB'])
parser.add_argument('--alpha', default=0.3, type=float, help='parameter alpha for STDB')
parser.add_argument('--beta', default=0.01, type=float, help='parameter beta for STDB')
parser.add_argument('--optimizer', default='Adam', type=str, help='optimizer for SNN backpropagation', choices=['SGD', 'Adam'])
parser.add_argument('--weight_decay', default=5e-4, type=float, help='weight decay parameter for the optimizer')
parser.add_argument('--momentum', default=0.95, type=float, help='momentum parameter for the SGD optimizer')
parser.add_argument('--amsgrad', default=True, type=bool, help='amsgrad parameter for Adam optimizer')
parser.add_argument('--dropout', default=0.3, type=float, help='dropout percentage for conv layers')
parser.add_argument('--kernel_size', default=3, type=int, help='filter size for the conv layers')
parser.add_argument('--test_acc_every_batch', action='store_true', help='print acc of every batch during inference')
parser.add_argument('--train_acc_batches', default=200, type=int, help='print training progress after this many batches')
parser.add_argument('--devices', default='0', type=str, help='list of gpu device(s)')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.devices
# Seed random number
torch.manual_seed(args.seed)
np.random.seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
#torch.backends.cudnn.deterministic = True
#torch.backends.cudnn.benchmark = False
dataset = args.dataset
batch_size = args.batch_size
architecture = args.architecture
learning_rate = args.learning_rate
pretrained_ann = args.pretrained_ann
pretrained_snn = args.pretrained_snn
epochs = args.epochs
lr_reduce = args.lr_reduce
timesteps = args.timesteps
leak = args.leak
scaling_factor = args.scaling_factor
default_threshold = args.default_threshold
activation = args.activation
alpha = args.alpha
beta = args.beta
optimizer = args.optimizer
weight_decay = args.weight_decay
momentum = args.momentum
amsgrad = args.amsgrad
dropout = args.dropout
kernel_size = args.kernel_size
test_acc_every_batch= args.test_acc_every_batch
train_acc_batches = args.train_acc_batches
values = args.lr_interval.split()
lr_interval = []
for value in values:
lr_interval.append(int(float(value)*args.epochs))
log_file = './logs/snn/'
try:
os.mkdir(log_file)
except OSError:
pass
#identifier = 'snn_'+architecture.lower()+'_'+dataset.lower()+'_'+str(timesteps)+'_'+str(datetime.datetime.now())
identifier = 'snn_'+architecture.lower()+'_'+dataset.lower()+'_'+str(timesteps)
log_file+=identifier+'.log'
if args.log:
f = open(log_file, 'w', buffering=1)
else:
f = sys.stdout
if not pretrained_ann:
ann_file = './trained_models/ann/ann_'+architecture.lower()+'_'+dataset.lower()+'.pth'
if os.path.exists(ann_file):
val = input('\n Do you want to use the pretrained ANN {}? Y or N: '.format(ann_file))
if val.lower()=='y' or val.lower()=='yes':
pretrained_ann = ann_file
f.write('\n Run on time: {}'.format(datetime.datetime.now()))
f.write('\n\n Arguments: ')
for arg in vars(args):
if arg == 'lr_interval':
f.write('\n\t {:20} : {}'.format(arg, lr_interval))
elif arg == 'pretrained_ann':
f.write('\n\t {:20} : {}'.format(arg, pretrained_ann))
else:
f.write('\n\t {:20} : {}'.format(arg, getattr(args,arg)))
# Training settings
if torch.cuda.is_available() and args.gpu:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
# if dataset == 'CIFAR10':
# normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
# elif dataset == 'CIFAR100':
# normalize = transforms.Normalize((0.5071,0.4867,0.4408), (0.2675,0.2565,0.2761))
# elif dataset == 'IMAGENET':
# normalize = transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
normalize = transforms.Normalize(mean = [0.5, 0.5, 0.5], std = [0.5, 0.5, 0.5])
if dataset in ['CIFAR10', 'CIFAR100']:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize])
transform_test = transforms.Compose([transforms.ToTensor(), normalize])
if dataset == 'CIFAR10':
trainset = datasets.CIFAR10(root = '~/Datasets/cifar_data', train = True, download = True, transform = transform_train)
testset = datasets.CIFAR10(root='~/Datasets/cifar_data', train=False, download=True, transform = transform_test)
labels = 10
elif dataset == 'CIFAR100':
trainset = datasets.CIFAR100(root = '~/Datasets/cifar_data', train = True, download = True, transform = transform_train)
testset = datasets.CIFAR100(root='~/Datasets/cifar_data', train=False, download=True, transform = transform_test)
labels = 100
elif dataset == 'MNIST':
trainset = datasets.MNIST(root='~/Datasets/mnist/', train=True, download=True, transform=transforms.ToTensor()
)
testset = datasets.MNIST(root='~/Datasets/mnist/', train=False, download=True, transform=transforms.ToTensor())
labels = 10
elif dataset == 'IMAGENET':
labels = 1000
traindir = os.path.join('/local/scratch/a/imagenet/imagenet2012/', 'train')
valdir = os.path.join('/local/scratch/a/imagenet/imagenet2012/', 'val')
trainset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
testset = datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(testset, batch_size=batch_size, shuffle=False)
if architecture[0:3].lower() == 'vgg':
model = VGG_SNN_STDB(vgg_name = architecture, activation = activation, labels=labels, timesteps=timesteps, leak=leak, default_threshold=default_threshold, alpha=alpha, beta=beta, dropout=dropout, kernel_size=kernel_size, dataset=dataset)
elif architecture[0:3].lower() == 'res':
model = RESNET_SNN_STDB(resnet_name = architecture, activation = activation, labels=labels, timesteps=timesteps,leak=leak, default_threshold=default_threshold, alpha=alpha, beta=beta, dropout=dropout, dataset=dataset)
# if freeze_conv:
# for param in model.features.parameters():
# param.requires_grad = False
#Please comment this line if you find key mismatch error and uncomment the DataParallel after the if block
model = nn.DataParallel(model)
if pretrained_ann:
state = torch.load(pretrained_ann, map_location='cpu')
cur_dict = model.state_dict()
for key in state['state_dict'].keys():
if key in cur_dict:
if (state['state_dict'][key].shape == cur_dict[key].shape):
cur_dict[key] = nn.Parameter(state['state_dict'][key].data)
f.write('\n Success: Loaded {} from {}'.format(key, pretrained_ann))
else:
f.write('\n Error: Size mismatch, size of loaded model {}, size of current model {}'.format(state['state_dict'][key].shape, model.state_dict()[key].shape))
else:
f.write('\n Error: Loaded weight {} not present in current model'.format(key))
model.load_state_dict(cur_dict)
f.write('\n Info: Accuracy of loaded ANN model: {}'.format(state['accuracy']))
#If thresholds present in loaded ANN file
if 'thresholds' in state.keys():
thresholds = state['thresholds']
f.write('\n Info: Thresholds loaded from trained ANN: {}'.format(thresholds))
try :
model.module.threshold_update(scaling_factor = scaling_factor, thresholds=thresholds[:])
except AttributeError:
model.threshold_update(scaling_factor = scaling_factor, thresholds=thresholds[:])
else:
thresholds = find_threshold(batch_size=512, timesteps=1000, architecture=architecture)
try:
model.module.threshold_update(scaling_factor = scaling_factor, thresholds=thresholds[:])
except AttributeError:
model.threshold_update(scaling_factor = scaling_factor, thresholds=thresholds[:])
#Save the threhsolds in the ANN file
temp = {}
for key,value in state.items():
temp[key] = value
temp['thresholds'] = thresholds
torch.save(temp, pretrained_ann)
if pretrained_snn:
state = torch.load(pretrained_snn, map_location='cpu')
cur_dict = model.state_dict()
for key in state['state_dict'].keys():
if key in cur_dict:
if (state['state_dict'][key].shape == cur_dict[key].shape):
cur_dict[key] = nn.Parameter(state['state_dict'][key].data)
f.write('\n Loaded {} from {}'.format(key, pretrained_snn))
else:
f.write('\n Size mismatch {}, size of loaded model {}, size of current model {}'.format(key, state['state_dict'][key].shape, model.state_dict()[key].shape))
else:
f.write('\n Loaded weight {} not present in current model'.format(key))
model.load_state_dict(cur_dict)
if 'thresholds' in state.keys():
try:
if state['leak_mem']:
state['leak'] = state['leak_mem']
except:
pass
if state['timesteps']!=timesteps or state['leak']!=leak:
f.write('\n Timesteps/Leak mismatch between loaded SNN and current simulation timesteps/leak, current timesteps/leak {}/{}, loaded timesteps/leak {}/{}'.format(timesteps, leak, state['timesteps'], state['leak']))
thresholds = state['thresholds']
model.module.threshold_update(scaling_factor = state['scaling_threshold'], thresholds=thresholds[:])
else:
f.write('\n Loaded SNN model does not have thresholds')
f.write('\n {}'.format(model))
#model = nn.DataParallel(model)
if torch.cuda.is_available() and args.gpu:
model.cuda()
if optimizer == 'Adam':
optimizer = optim.Adam(model.parameters(), lr=learning_rate, amsgrad=amsgrad, weight_decay=weight_decay)
elif optimizer == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=learning_rate, weight_decay=weight_decay, momentum=momentum)
f.write('\n {}'.format(optimizer))
max_accuracy = 0
#print(model)
#f.write('\n Threshold: {}'.format(model.module.threshold))
for epoch in range(1, epochs):
start_time = datetime.datetime.now()
if not args.test_only:
train(epoch)
test(epoch)
f.write('\n Highest accuracy: {:.4f}'.format(max_accuracy))